红外热像在线测温系统的设计与实现讲解
- 格式:doc
- 大小:33.00 KB
- 文档页数:4
基于红外线测温技术的无接触体温检测系统设计与实现一、引言无接触体温检测系统是一种使用红外线测温技术来测量人体体温的系统,该技术可以在无需直接接触测试对象的情况下,高效、准确地测量体温。
这种系统在当前疫情背景下具有重要的应用价值,可以帮助快速筛查潜在的疫情传播者。
本文将介绍基于红外线测温技术的无接触体温检测系统的设计与实现。
二、设计要求1. 检测准确性:系统需要能够准确地测量人体体温,误差控制在±0.2°C以内。
2. 实时性:系统应具备实时性,能够快速获取并显示测试结果。
3. 可靠性:系统需要稳定可靠,能够长时间运行而不发生故障。
4. 用户友好性:系统应具备简单直观的用户界面,易于操作。
5. 数据记录功能:系统应具备数据记录功能,可以记录每一次测温的结果,以备后续参考和分析。
三、系统组成与工作原理基于红外线测温技术的无接触体温检测系统主要由以下组成部分构成:1. 红外线传感器:用于检测人体发出的红外线辐射量,将其转化为电信号。
2. 温度转换模块:将红外线传感器输出的电信号转换为对应的温度数值。
3. 控制逻辑模块:负责控制整个系统的工作流程,包括启动、停止、显示等操作。
4. 显示与记录模块:将测温结果显示在屏幕上,并实现数据记录功能。
5. 电源模块:为系统提供稳定的电源供应。
系统的工作原理如下:1. 用户面向探测器站立,在控制逻辑模块的指引下,将额头对准测温区域。
2. 红外线传感器测量人体头部发出的红外辐射。
3. 温度转换模块将红外线传感器输出的电信号转换为相应的温度数值。
4. 控制逻辑模块将测量到的温度数据进行处理,并在显示屏上显示结果。
5. 数据记录模块将测温结果记录在系统内部,供后续查阅和分析。
四、系统设计与实现1. 硬件设计:a. 选择高精度的红外线传感器,确保测量准确性。
b. 选择合适的温度转换模块,将红外线传感器的输出转换为温度数值。
c. 设计简洁直观的用户界面,包括显示屏和控制按钮。
基于红外线测温技术的体温检测方案的设计与实现体温检测是当前疫情防控的一项重要措施,基于红外线测温技术的体温检测方案具有快速、非接触、准确等优势,能够提高体温检测的效率和安全性。
本文将探讨基于红外线测温技术的体温检测方案的设计与实现。
一、设计方案1.硬件选型:选用高精度的红外传感器和温度计,确保测温准确度。
同时,考虑到使用场景的特殊性,需要选择适合的封装形式和材质,保证设备的耐用性和易读性。
2.测温算法:研究并选择合适的测温算法,包括红外温度补偿、热辐射差异补偿、环境噪声过滤等,以提高准确性和稳定性。
可以结合机器学习算法对测温数据进行分析和优化,进一步提升测温的精度。
3.设备布置:根据使用场景的需求,设计合理的设备布置方案。
考虑到人员流动性,建议在通道入口或出口处设置检测设备,以便对人群进行高效的体温检测。
4.用户交互界面:设计友好的用户交互界面,包括显示屏幕和报警装置。
通过可视化的界面,显示测温结果,并设置合理的警戒温度范围。
当检测到异常体温时,及时发出声音或光提示,以便进行进一步的筛查和处理。
5.数据存储与传输:考虑到数据的隐私性和保密性,设计合理的数据存储和传输方案。
可选择本地存储或云端存储方式,同时,确保数据的安全性,加密传输,防止数据泄露和篡改。
二、实现过程1.采购设备:根据设计方案,选购所需的红外传感器、温度计、显示屏幕和报警装置等硬件设备。
确保设备的质量和稳定性,以提高测温的准确性和可靠性。
2.软件开发:根据测温算法的选择,进行相应的软件开发和编码工作。
通过编程语言,实现测温数据的采集、处理和分析,以及交互界面的设计和开发。
3.设备组装:将所采购的硬件设备按照设计方案进行组装。
确保设备的外观整洁、结构稳固,并测试设备的正常工作状态。
4.设备调试:对已组装的设备进行调试工作,包括传感器的校准、温度计的测试、测温算法的验证等。
确保设备的准确性和稳定性,提高测温的精度。
5.设备安装:根据设备布置方案,将已调试的设备安装到指定的位置。
红外热成像人体温度监测预警系统方案一、方案背景:新型冠状病毒肆虐,为了防控病毒的传播,共克时艰,复工企业要做好企业员工的体温监测工作。
航天云网联手长视科技打造面向人员流动密集场所的人体温度监测预警系统解决方案。
二、应用场景三、方案优势本方案采用红外热成像、云计算、大数据、人工智能等技术,进行无接触温度测量,生成人眼可见的红外热图像,实现远距离大面积的人体温度测量,加强疫情防控。
趋势等信息。
五、硬件产品介绍图:错误!使用“开始”选项卡将标题应用于要在此处显示的文字。
与黑体技术规格:规格参数与型号测温探测器探测器类型非制冷焦平面探测器分辨率640*512 / 336*256 像素间距17μm波段8μm ~14μm热灵敏度50mk测温测温范围高增益:-40°C ~ +160°C 低增益:-40°C ~ +550°C 测温精度±2°C或2%(工业测温)、±0.5°C(人体测温)压缩标准视频压缩标准H.264视频格式mp4,mov压缩输出码率1Mbps ~ 4Mbps接口模拟输出1路CVBS网络接口RJ45 10M/100M/1000M自适应串行接口可定制RS-232、RS-485报警接口1入1出协议Ethernet/IP, TCP, UDP, SNTP, RTSP, HTTP, ICMP, SMTP, DHCP, UPnP,PPPOE基本参数镜头标配 13mm/19mm(其它镜头可根据需求定制)尺寸44.5*44.5*72.6mm重量140g六、配置清单航天云网人体温度监测预警系统将为企业参与疫情防控提供便捷、贴心、高效的服务,航天云网积极助力打赢疫情防控阻击战。
售后响应7*24小时线上运维,故障2小时响应,远程联机服务,平均4小时内就解决问题。
Telecom Power Technology设计应用新型模式红外热成像测温系统设计与实现谭振鹏(广东电网有限责任公司佛山供电局,广东由于传统的红外测温装置不具备数据传输功能,且工作模式单一,故以传统红外测温装置为基础,研发监测数据端。
新型数字式红外测温传感器具有较好的可移植性,既可以实现在线监测模式与便携测温模式的随机切换,又可以满足对现场测温数据的传输,PC诊断。
通过设计实验验证新型数字化测温系统的准确性,结果表明该系统可满足电力设备现场出现的测温需求,非电气设备;红外测温;多模式;便携测量;在线监测Design and Implementation of New Mode Infrared Thermal Imaging TemperatureMeasurement SystemTAN ZhenpengFoshan Power Supply Bureau of Guangdong Power Grid Co.Because the traditional infrared temperature measurement device does not have the data transmission 2020年11月10日第37卷第21期Telecom Power TechnologyNov. 10,2020,Vol. 37 No. 21 谭振鹏:新型模式红外热成像测温系统设计与实现都由不同的模块组成,各个模块之间既可以相互联系协同工作,又可以发挥自身功能。
其核心功能为App 的主干功能,通过分析红外测温发出的需求数据,设计满足电气设备的测温需求。
2.4 PC 端后台软件PC 端后台软件实现了对电力设备运行状态的评估,具体包括对电气设备温度的远程监测、报警以及预警等功能[2]。
在电力现场的维修和生产过程中,智能终端或监控中心可利用PC 软件优势实时监控现场,并查看和分析历史数据,同时还可以查看当时的红外成像等,促使监测手段更加灵活。
基于红外线测温技术的温度监控系统设计与实现温度监控系统是一种广泛应用于各个领域的重要设备,它能够实时监测环境温度,并通过数据分析和处理,提供准确、稳定的温度信息,帮助人们进行有效的温度控制和管理。
基于红外线测温技术的温度监控系统是一种先进、高精度的监测方法,具有非接触、无干扰等优点,逐渐成为温度监控领域的首选技术。
本文将围绕基于红外线测温技术的温度监控系统的设计和实现展开,主要包括以下几个方面的内容:系统架构设计、硬件选型与搭建、软件开发与实现、系统测试与性能评估。
首先,系统架构设计是整个温度监控系统的核心。
在选择合适的硬件平台和软件框架之前,我们需要明确系统的功能需求和技术要求,包括测量范围、精度要求、温度分辨率等。
针对不同的应用场景和实际需求,我们可以选择合适的红外线测温传感器和控制器,搭建一个高效、可靠的系统架构。
其次,硬件选型与搭建是系统实现的重要步骤。
基于红外线测温技术的温度监控系统需要选择合适的红外线测温传感器,并配合适当的信号放大电路和AD转换器,实现对温度信号的采集和处理。
同时,我们还需要选用适合的微控制器或单片机作为系统控制单元,通过编程和通信接口设计,实现对传感器和其他外设的控制和数据传输。
然后,软件开发与实现是温度监控系统的关键环节。
通过合理的软件设计和编程,我们可以实现对传感器和外设的控制,并将采集到的温度数据进行预处理、存储和显示等功能。
在软件开发过程中,除了基本功能的实现,还可以考虑一些额外的功能,如数据传输和存储、报警机制、远程监控和控制等,以满足用户的特定需求。
最后,系统测试与性能评估能够反映温度监控系统的稳定性和准确性。
通过对系统的功能性测试和性能测试,包括对不同温度环境下的测量误差、响应时间、稳定性和重复性等指标进行评估和分析,以确保系统的可靠性和精确性。
同时,我们还可以对系统的实时性、功耗、稳定性等方面进行考察,以进一步优化系统的性能。
综上所述,基于红外线测温技术的温度监控系统设计与实现需要从系统架构设计、硬件选型与搭建、软件开发与实现、系统测试与性能评估等方面入手。
人体红外测温系统设计一、本文概述随着科技的发展和人们生活水平的提高,对健康和安全的关注日益增强。
在这个背景下,人体红外测温系统作为一种非接触式的温度测量方式,以其快速、准确、安全的特点,逐渐在医疗、公共安全、交通等领域得到广泛应用。
本文旨在深入研究和探讨人体红外测温系统的设计原理、技术实现和应用前景,以期为相关领域的实践和发展提供理论支持和技术指导。
本文将首先介绍人体红外测温系统的基本原理,包括红外辐射的基本理论、人体红外辐射的特性以及红外测温的基本原理。
在此基础上,详细阐述人体红外测温系统的设计过程,包括硬件设计、软件设计以及算法优化等方面。
还将对系统的性能进行评估,包括测温精度、稳定性、响应时间等指标的分析和测试。
本文将对人体红外测温系统的应用前景进行展望,探讨其在不同领域的应用可能性和发展潜力。
通过本文的研究和探讨,旨在提高人体红外测温系统的技术水平和应用效果,为人们的健康和安全提供更加可靠的保障。
也希望能够激发更多研究者和从业者对人体红外测温系统的兴趣和关注,推动相关技术的不断创新和发展。
二、红外测温技术原理红外测温技术是一种非接触式的温度测量技术,其基本原理基于物体发射的红外辐射与物体温度之间的关系。
所有高于绝对零度的物体都会发射红外辐射,这种辐射的强度与物体的温度有直接关系。
红外测温仪通过接收并测量目标物体发射的红外辐射,然后根据特定的算法将辐射强度转换为温度值,从而实现对物体温度的测量。
红外测温技术的核心在于红外辐射与温度之间的转换关系。
根据普朗克辐射定律,黑体在任意温度下,其单位面积在单位时间内向各个方向辐射出的总能量与黑体的绝对温度的四次方成正比。
红外测温仪通常采用黑体辐射定律作为理论基础,通过测量目标物体发射的红外辐射强度,再结合目标物体的发射率(即物体发射的红外辐射与相同温度下黑体发射的红外辐射之比),经过计算得到物体的真实温度。
红外测温技术具有测量速度快、非接触、测温范围广、受环境影响小等优点,因此在医疗、工业、安全监控等领域得到了广泛应用。
电力设备在线红外测温系统的软件设计与实现摘要:本文主要介绍了基于电力设备在线红外测温系统的软件设计与实现。
首先,对电力设备在线红外测温系统的原理和工作方式进行了概述,然后介绍了软件设计的需求分析和系统架构设计,最后详细介绍了软件实现过程中的技术路线和实现方法。
该系统可以实现对电力设备的实时监测和故障诊断,为电力设备的安全运行提供了有效的保障。
本文的研究成果可以为电力行业的发展提供参考和借鉴。
关键词:电力设备,在线红外测温,系统设计,软件实现,监测和诊断正文:1.引言电力系统作为现代社会不可或缺的基础设施之一,一旦发生故障往往会带来严重的后果,因此对电力系统的安全运行一直是电力行业的重点关注和研究方向。
其中,电力设备的正常运行对于整个电力系统至关重要,因此对电力设备进行实时监测和故障诊断一直是电力行业的研究热点。
随着红外技术的不断发展和应用,将其应用于电力设备在线监测成为了一种有效的手段。
红外测温技术可以通过红外热像仪对设备表面的温度进行精确测量,并将测量结果传输至电脑软件进行数据处理和分析,从而实现对电力设备的实时监测和故障诊断。
因此,本文基于电力设备在线红外测温系统,对其软件设计和实现进行了研究和探讨,以期提高电力设备的安全运行水平。
2.电力设备在线红外测温系统的原理和工作方式电力设备在线红外测温系统主要由红外热像仪、传感器、数据采集器、数据处理器等组成。
其工作原理为:(1)红外热像仪通过对电力设备表面的红外辐射进行测量,获得设备表面的温度分布图像。
(2)传感器通过与热像仪配合,对电力设备进行位置精确定位,并通过传感器将温度数据传输至数据采集器。
(3)数据采集器对传输的温度数据进行采集和处理,并将处理后的数据传输至数据处理器。
(4)数据处理器通过对数据的处理和分析,将数据转换为电力设备的状态信息和运行状况,并通过界面显示给用户。
3.软件设计的需求分析和系统架构设计(1)需求分析本系统的需求分析主要包括以下几个方面:①硬件平台:基于红外热像仪等硬件设备构建监测系统。
红外热像在线测温系统的设计与实现讲解红外热像在线测温系统是一种利用红外热像仪进行温度测量的系统。
该系统可以广泛应用于工业、医疗、安防等领域,可以实现对目标物体的非接触式温度监测,并通过可视化界面显示测量结果。
下面将对红外热像在线测温系统的设计与实现进行详细讲解。
首先,红外热像在线测温系统的设计需要明确需求和目标。
需要考虑的因素包括:测温范围、测温精度、测温速度、实时显示和记录功能等。
其次,系统设计需要选取合适的红外热像仪。
选择红外热像仪时需要考虑以下几个指标:像素分辨率、测温范围、测温精度、测温速度、镜头类型、系统接口等。
根据具体需求和预算情况选择合适的红外热像仪。
接下来是系统的硬件设计。
系统硬件包括:红外热像仪、显示屏、控制主板和其他相关电路。
红外热像仪通过接口与控制主板连接,将采集到的红外图像数据传送给主板处理。
显示屏用于实时显示测温结果。
控制主板负责数据处理、界面控制和数据传输等功能。
然后是系统的软件设计。
软件设计主要包括测温算法的实现和界面设计。
测温算法设计要考虑实时性、准确性和效率。
常见的测温算法包括最大值、最小值和平均值等。
界面设计要直观易用,可以显示测温结果、调整参数和保存数据等功能。
最后是系统的实现和测试。
根据设计方案完成系统的搭建和调试。
包括硬件的连接和软件的安装与配置。
测试要验证系统的测温精度、测温范围和实时性等指标,同时进行界面操作和数据保存等功能的测试。
总结起来,红外热像在线测温系统的设计与实现过程主要包括明确需求和目标、选择合适的红外热像仪、进行系统硬件设计、实现测温算法和界面设计、最后完成系统的搭建和测试。
在实际应用中,可以根据具体需求进行改进和优化,满足不同场景下的测温需求。
基于红外线测温技术的温度监测系统设计与优化温度监测系统是一种基于红外线测温技术的设备,用于实时监测环境或物体的温度,并将温度数据传输给用户端。
本文将围绕这一任务名称,重点讨论温度监测系统的设计与优化。
首先,设计一个高精度的温度监测系统是十分关键的。
在系统设计阶段,需要选择合适的红外线传感器来实时测量环境或物体的温度。
传感器的选择应考虑到测温范围、测量误差、响应速度等因素。
应该选择具有较高的分辨率和精度的红外传感器,以保证数据的准确性。
其次,在系统设计过程中,需要考虑到温度监测系统的可靠性和实用性。
这可以通过合理的硬件配置和软件算法来实现。
在硬件方面,温度监测系统应该具备良好的抗干扰能力,以确保在各种环境下都能正常工作。
同时,系统应该具备一定的用户友好性,方便用户进行操作和数据查询。
在软件算法方面,温度监测系统需要进行数据处理和分析。
首先,对采集到的红外数据进行校准,以消除传感器的误差和漂移。
其次,根据实际需求,确定合适的温度单位和显示格式。
最后,根据监测数据提供相应的报警机制,当温度超出设定的阈值范围时,及时发送警报通知用户。
此外,为了实现温度监测系统的优化,还可以考虑以下几个方面:1. 数据采集频率的优化:根据监测对象的特点和应用场景,合理设置数据采集频率。
对于需要实时监测的场景,可以适当提高采集频率,以获取更准确的温度数据。
2. 温度数据传输协议的选择:根据应用环境选择合适的传输方式和协议。
可以选择无线传输方式,如蓝牙、Wi-Fi或LoRa等,以提高系统的灵活性和可移植性。
3. 数据存储与分析:对于长时间监测的应用场景,可以考虑将数据存储在云端,并利用数据分析算法对数据进行挖掘和分析。
这样可以获取更多有价值的信息和趋势,为后续决策提供参考。
4. 功耗优化:对于长时间运行的温度监测系统,功耗的优化是非常重要的。
可以通过选择低功耗的组件和采取合理的电源管理策略来降低系统的功耗,延长系统的使用寿命。
红外热像在线测温系统的设计与实现摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证.仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。
关键词:Butte0 引言在供电网络发展极为迅速和网架结构日趋合理化的今天,国家对电力系统供电可靠性的要求越来越高.红外热像测温技术在电力工业设备状态检测领域得到了广泛的应用.但红外热像图数据的大容量与传输方式有限性之间的矛盾也越来越突出,而发展到目前,中国移动强大的GPRS无线通信网络为这一问题提供了很好的解决方案.因此,研究输电线路红外热像在线测温是一项迫切而艰巨的任务。
输电线路红外热像在线测温系统运用先进的红外热像技术,对输电线路运行温度进行状态在线监测;利用已有的GPRS无线通信网络实现热像图数据的传输,具有覆盖面广,无需增加传输设备和线路的特点,特别适用于无法架设线路的偏远地域的输电线路场合。
系统图像采集与传输终端由红外热像图采集模块、图像数据压缩模块、GPRS网络通信模块、图像数据传输模块和太阳能供电装置等组成,其中图像数据压缩模块采用JPEG硬件压缩编码技术,对静态图像进行压缩编码,最大限度地减少了网络传输的数据量,节省了网络资源,提高了图片的传输速度。
为了解决设计中的高速率图像采集、压缩控制与数据传输速度相对较慢带来的变速率采样问题,系统硬件结构采用微控制器加可编程逻辑控制芯片(MCU+CPLD)的方案,各项子功能由标准通用模块完成,降低了系统复杂度,提高了系统整体性能,用户可以利用PC机通过Internet上实现热像图的远端采集与现场监控。
红外热像在线测温系统的设计与实现
摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。
仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。
关键词:Butte
0 引言
在供电网络发展极为迅速和网架结构日趋合理化的今天,国家对电力系统供电可靠性的要求越来越高。
红外热像测温技术在电力工业设备状态检测领域得到了广泛的应用。
但红外热像图数据的大容量与传输方式有限性之间的矛盾也越来越突出,而发展到目前,中国移动强大的GPRS无线通信网络为这一问题提供了很好的解决方案。
因此,研究输电线路红外热像在线测温是一项迫切而艰巨的任务。
输电线路红外热像在线测温系统运用先进的红外热像技术,对输电线路运行温度进行状态在线监测;利用已有的GPRS无线通信网络实现热像图数据的传输,具有覆盖面广,无需增加传输设备和线路的特点,特别适用于无法架设线路的偏远地域的输电线路场合。
系统图像采集与传输终端由红外热像图采集模块、图像数据压缩模块、GPRS网络通信模块、图像数据传输模块和太阳能供电装置等组成,其中图像数据压缩模块采用JPEG硬件压缩编码技术,对静态图像进行压缩编码,最大限度地减少了网络传输的数据量,节省了网络资源,提高了图片的传输速度。
为了解决设计中的高速率图像采集、压缩控制与数据传输速度相对较慢带来的变速率采样问题,系统硬件结构采用微控制器加可编程逻辑控制芯片(MCU+CPLD)的方案,各项子功能由标准通用模块完成,降低了系统复杂度,提高了系统整体性能,用户可以利用PC机通过Internet上实现热像图的远端采集与现场监控。
1 红外热像技术在输电线路温度监测中的应用模型
1.1 红外热像技术简介
红外热像技术是探测输电线路中各种电气设备表面辐射的不为人眼所见的红外线的技术。
它反映设备表面的红外辐射场,即温度场。
并根据设备表面的温度场,测量设备某一部分的平均温度。
是一种被动的、非接触式的检测手段。
红外热像仪就是利用该技术制作而成的检测设备,目前已在电力设备故障诊断领域得到广泛应用。
其简单工作示意图如图1所示。
1.2 红外热像技术在输电线路温度监测中的应用
输电线路的温度信息可以通过红外图像进行有效反映。
红外成像是惟一一种可以将热信息瞬间可视化,并加以验证的诊断技术。
红外热像仪可揭示热故障,并通过非接触温度测量加以定性分析,在专业的红外分析软件的帮助下,数秒内便可自动完成分析报告。
所有利用或者发射能量的设备在发生故障前都会产生发热现象。
保证电气设备运行可靠性的关键便是对能源的有效管理,而红外热像技术已成为预防性维护领域最有效的检测工具,它能够在设备发生故障之前,快速、准确、安全地发现故障。
在电气接点发生故障之前及时发现并进行维修,可以避免输电线路因高温热故障造成断电掉电所带来的高昂代价。
红外热像仪能够正确引导预防性维护专家对电气设备的运行情况进行准确判断。
可以将测量温度值与历史温度进行比较,或者与相同时间同类设备的温度读数进行比较,以准确判断是否发生了显著的温升,是否会导致部件失效,带来生产隐患。
主要用于电力预防性维护等用途。
特别是用于输电线路预防性维护、检测方面,具有很大的优越性。
2 输电线路红外热像在线测温系统的实现方案
2.1 系统的工作原理
安装在输电线路现场的前端采集终端利用高精度数字式温度传感器对环境温度参数值进行采集;利用高精度红外热像仪对准需要进行温度监测的电气设备。
前端系统定时地采集到各种电气设备有关温度分布的热像图后,将数据传送给电路系统,电路系统经过分析处理后将热像图进行压缩和打包处理,然后通过GPRS无线网络的方式发送到监控中心的计算机数据服务器上。
数据服务器安装相应的应用软件程序进行数据的自动处理,主要完成热像图的接收与解压还原,之后以图像和图形的形式将各种电气设备的温度分布情况直观的显示在客户端,不同温度以不同颜色显示。
系统结合数据软件系统和各种修正理论模型分析各种电气设备存在的热缺陷和故障状态,及时给出诊断信息,有效预防输电线路高温热故障的发生。
系统集成了环境温度在线监测和输电线路温度分布的在线红外热像监测等,并借助现有中国移动强大的GPRS无线通信网络进行实时数据传输,实现了对输电线路温度状态的监测。
2.2 系统的结构
整个监控系统主要分为两个部分:图像采集与传输终端(前端);监控中
心计算机数据服务器(中心端)。
在系统构成上可分为上位机(监控中心计算机数据服务器)和下位机(图像采集与传输终端)两大部分。
计算机数据服务器负责对图像采集与传输终端进行管理和控制,处于管理层次的上层,因此称为上位机。
图像采集与传输终端处在数据中心的控制下,负责对数据进行采集和传输,处于管理层次的下层,因此称为下位机。
系统结构如图2所示。
图像采集与传输终端包括以图像采集芯片处理器为核心的图像采集与JPEG压缩部分和GPRS网络传输部分以及红外报警部分。
图像采集部分由视频A /D芯片实现模拟图像的数字化转换,使用专用芯片实现JPEG图像压缩编码。
GPRS无线网络传输部分由专用GPRS模块实现网络传输功能,它与图像采集部分的接口是通用异步串行接口(UART)。
红外报警部分实现输电线路温度出现异常状况的报警功能。
下位机主要实现输电线路现场原始图像的采集和压缩以及压缩图像数据的GPRS无线信道传输,这些功能都由相应的软件支持系统实现。
服务器包括硬件和软件,硬件为具有公网IP地址的计算机,软件即为服务器程序,由服务器程序实现GPRS网络传输模块和中心间的命令传递和数据传输。
监控中心计算机数据服务器也包括硬件和软件部分。
硬件为一台能接入Internet的计算机,软件为监控程序,电脑的网络状态为公网、动态IP。
在这里特别指出,因为监控中心端满足服务器的网络要求,所以该系统将服务器和监控中心端放到一台计算机上,以节约硬件和网络资源。
上位机主要实现压缩图像数据的接收及解码和接收图像数据的数据库保存和处理。
2.3 系统的功能描述
2.3.1 上位机(监控中心计算机数据服务器)
上位机系统在用户计算机上实现和运行并将相关数据存入数据库。
主要完成对各个监测点数据的收集,并将下位机的相关配置信息、设置状态信息和环境数据存储到数据库中,方便用户进行数据处理和分析。
上位机系统主要功能如下:
(1)显示:数据的显示包含多项内容,包括:温度传感器采集数据和红外热像监控器热像图的显示、历史值的显示、按照时间显示数据等。
(2)存储内容:实时数据、历史数据、运行记录、当前状态
(3)历史数据整理:该系统可以对历史数据文件进行整理,删除选定的历史数据文件,删除某段时间以前的历史数据。
(4)打印报表:可以打印两种报表,选择日期,再选择报表类型,即可打印。
热门词条
w83320gwp91374l6twaywd8250a-02wx4ir333c-airg4ph50kdiyrirlr31031462051-3。