2018版高中数学人教版A版必修五学案:§3.2 一元二次不等式及其解法(一)
- 格式:docx
- 大小:233.32 KB
- 文档页数:9
教学要求:正确理解一元二次不等式的概念,掌握一元二次不等式的解法;理解一元二次不等式、一元二次函数及一元二次方程的关系,能借助二次函数的图象及一元二次方程. 教学重点:熟练掌握一元二次不等式的解法.教学难点:理解一元二次不等式、一元二次函数及一元二次方程的关系.教学过程:一、复习准备:1、提问:你能回顾一下以前所学的一元二次不等式、一元二次函数及一元二次方程吗?2、比较,,a b c 的大小:22,5a b c ===-二、讲授新课:1、教学不等式20(0)ax bx a ++>≠的解集① 若判别式240b ac ∆=->,设方程20ax bx ++=的二根为1212,()x x x x <,则:0a >时,其解集为{}12|,x x x x <>或;0a <时,其解集为{}12|x x x x <<. ② 若0∆=,则有:0a >时,其解集为|,2b x x x R a ⎧⎫≠-∈⎨⎬⎩⎭;0a <时,其解集为∅. ③ 若0∆<,则有:0a >时,其解集为R ;0a <时,其解集为∅.. ④ 一元二次不等式的解集与其相应的一元二次方程的根及二次函数的图象有关,从而可数形结合法分析其解集.我们由此总结出解一元二次不等式的三部曲“方程的解→函数草图→观察得解”⑤ 简单的无理不等式的解法的关键是将无理不等式化为有理不等式。
2、教学例题:① 出示例1:求不等式244150x x --≤的解集.(解方程 → 给出图象 →学生板演)② 变式训练:求不等式244150x x -->的解集.③ 变式训练:求不等式244150x x -+->的解集.④ 出示例2:求不等式223x x -+<(方程的解→函数草图→观察得解)⑤ 出示例3:已知220ax x c ++>的解集为1132x -<<,试求,a c 的值,并解不等式220cx x a -+->(将一元二次不等式的解集与方程根的关系联系起来)⑥ 变式训练:已知不等式20ax bx c ++>的解集为(,)αβ,且0αβ<<,求不等式20cx bx a ++<的解集.3、小结:不等式20(0)ax bx a ++>≠的解集情况,解一元二次不等式的三步曲.三、巩固练习:1、求不等式2610x x --≤的解集.2、不等式22ax bx ++>的解集是}11|23x x ⎧-<<⎨⎩,则a b +的值是_________3、作业:教材P90 1、4题.教学要求:掌握一元不等式的解法;经历从实际情境中抽象出一元二次不等式模型的过程;能应用一元二次不等式解决一些实际问题.教学重点:从实际情境中抽象出一元二次不等式模型.教学难点:一元二次不等式的应用.教学过程:一、复习准备:1、解不等式:23520x x +->二、讲授新课:1、教学不等式的应用以及在实际问题中的应用① 应用范围:求定义域;集合运算;不等式恒成立;根的分布;实际应用问题.② 在求定义域的过程中结合了分数不等式、无理不等式、高次不等式等的解法,③ 解含参数的不等式问题,注意对不等式所对应的方程根的情况进行观察,同时要注意对参数的分类讨论.④ 解二次方程根的分布问题,首先要分清对应的二次函数的开口方向,及根所在的区间范围,列出有关的不等式及不等式组进而求解.⑤ 解一元二次不等式应用问题,需遵循以下四个步骤:(1)审题;(2)建模;(3)求解;(4)作答2、教学例题:① 出示例1:求函数21()56f x x x =-+的定义域. (教师讲思路→学生板演→小结方法)② .③ 出示例2:m 为何值时,方程2(3)0x m x m +-+=有实数解.(∆0≥还是0∆<→一元二次不等式问题→小结方法)④ 变式训练:m 为何值时,关于x 的方程2(1)2(21)(13)0m x m x m ++++-=(1)有两个相异实根;(2)有两个根,且它们之和为非负数.⑤ 出示例3:国家原计划以2400元/吨的价格收购某种农产品m 吨。
3.2一元二次不等式及其解法第1课时一元二次不等式及其解法学习目标核心素养1.掌握一元二次不等式的解法.(重点)2.能根据“三个二次”之间的关系解决简单问题.(难点) 通过一元二次不等式解法的学习,培养数学运算素养.1.一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).思考:不等式x2-y2>0是一元二次不等式吗?[提示]此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.3.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.思考:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?[提示]不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.4.三个“二次”的关系设f(x)=ax2+bx+c(a>0),方程ax2+bx+c=0的判别式Δ=b2-4ac 判别式Δ>0Δ=0Δ<0解不等式f(x)>0或f(x)<0的步骤求方程f(x)=0的解有两个不等的实数解x1,x2有两个相等的实数解x1=x2没有实数解画函数y=f(x)的示意图得等的集不式解f(x)>0{x|x<x1或x>x2}⎩⎨⎧x⎪⎪⎪⎭⎬⎫x≠-b2a Rf(x)<0{x|x1<x<x2}∅∅思考:若一元二次不等式ax2+x-1>0的解集为R,则实数a应满足什么条件?[提示]结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则⎩⎨⎧a>0,1+4a<0,解得a∈∅,所以不存在a使不等式ax2+x-1>0的解集为R.1.不等式3+5x-2x2≤0的解集为()A.⎩⎨⎧⎭⎬⎫x⎪⎪⎪x>3或x<-12B.⎩⎨⎧⎭⎬⎫x⎪⎪⎪-12≤x≤3C.⎩⎨⎧⎭⎬⎫x⎪⎪⎪x≥3或x≤-12D.RC[3+5x-2x2≤0⇒2x2-5x-3≥0⇒(x-3)(2x+1)≥0⇒x≥3或x≤-12.]2.不等式3x2-2x+1>0的解集为()A.⎩⎨⎧⎭⎬⎫x⎪⎪⎪-1<x<13B.⎩⎨⎧⎭⎬⎫x⎪⎪⎪13<x<1C.∅D.RD[因为Δ=(-2)2-4×3×1=4-12=-8<0,所以不等式3x2-2x+1>0的解集为R.]3.不等式x2-2x-5>2x的解集是.{x|x>5或x<-1}[由x2-2x-5>2x,得x2-4x-5>0,因为x2-4x-5=0的两根为-1,5,故x 2-4x -5>0的解集为{x |x <-1或x >5}.] 4.不等式-3x 2+5x -4>0的解集为 . ∅ [原不等式变形为3x 2-5x +4<0.因为Δ=(-5)2-4×3×4=-23<0,所以3x 2-5x +4=0无解. 由函数y =3x 2-5x +4的图象可知,3x 2-5x +4<0的解集为∅.]一元二次不等式的解法 【例1】 解下列不等式: (1)2x 2+7x +3>0; (2)-4x 2+18x -814≥0;(3)-2x 2+3x -2<0.[解] (1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12.又二次函数y =2x 2+7x +3的图象开口向上,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-12或x <-3.(2)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =94.(3)原不等式可化为2x 2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图象开口向上,所以原不等式的解集为R .解一元二次不等式的一般步骤(1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式;(3)求出相应的一元二次方程的根,或根据判别式说明方程没有实根; (4)根据函数图象与x 轴的相关位置写出不等式的解集.[跟进训练] 1.解下列不等式 (1)2x 2-3x -2>0; (2)x 2-4x +4>0; (3)-x 2+2x -3<0; (4)-3x 2+5x -2>0.[解] (1)∵Δ>0,方程2x 2-3x -2=0的根是x 1= -12,x 2=2,∴不等式2x 2-3x -2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12或x >2.(2)∵Δ=0,方程x 2-4x +4=0的根是x 1=x 2=2, ∴不等式x 2-4x +4>0的解集为{}x |x ≠2. (3)原不等式可化为x 2-2x +3>0, 由于Δ<0,方程x 2-2x +3=0无解, ∴不等式-x 2+2x -3<0的解集为R . (4)原不等式可化为3x 2-5x +2<0,由于Δ>0,方程3x 2-5x +2=0的两根为x 1=23,x 2=1, ∴不等式-3x 2+5x -2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪23<x <1.含参数的一元二次不等式的解法【例2】 解关于x 的不等式ax 2-(a +1)x +1<0.思路探究:①对于二次项的系数a 是否分a =0,a <0,a >0三类进行讨论?②当a ≠0时,是否还要比较两根的大小?[解] 当a =0时,原不等式可化为x >1. 当a ≠0时,原不等式可化为(ax -1)(x -1)<0. 当a <0时,不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)>0,∵1a <1,∴x <1a 或x >1.当a >0时,原不等式可化为(x -1a )·(x -1)<0. 若1a <1,即a >1,则1a <x <1; 若1a =1,即a =1,则x ∈∅; 若1a >1,即0<a <1,则1<x <1a .综上所述,当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1a 或x >1;当a =0时,原不等式的解集为{x |x >1};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <1a ;当a =1时,原不等式的解集为∅;当a >1时,原不等式的解集为{x ⎪⎪⎪1a <x <1}.解含参数的一元二次不等式时的注意点(1)若二次项系数含有参数,则需对二次项系数大于0与小于0进行讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式Δ进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论.[跟进训练]2.解关于x 的不等式:ax 2-2≥2x -ax (a <0). [解] 原不等式移项得ax 2+(a -2)x -2≥0, 化简为(x +1)(ax -2)≥0.∵a <0,∴(x +1)⎝ ⎛⎭⎪⎫x -2a ≤0.当-2<a <0时,2a ≤x ≤-1; 当a =-2时,x =-1; 当a <-2时,-1≤x ≤2a . 综上所述, 当-2<a <0时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2a ≤x ≤-1; 当a =-2时, 解集为{x |x =-1}; 当a <-2时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤2a .一元二次不等式、二次方程、二次函数的关系 [探究问题]1.利用函数y =x 2-2x -3的图象说明当y >0、y <0、y =0时x 的取值集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?[提示] y =x 2-2x -3的图象如图所示.函数y =x 2-2x -3的值满足y >0时自变量x 组成的集合,亦即二次函数y =x 2-2x -3的图象在x 轴上方时点的横坐标x 的集合{x |x <-1或x >3};同理,满足y <0时x 的取值集合为{x |-1<x <3},满足y =0时x 的取值集合,亦即y =x 2-2x -3图象与x 轴交点横坐标组成的集合{-1,3}.这说明:方程ax 2+bx +c =0(a ≠0)和不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)是函数y =ax 2+bx +c (a ≠0)的一种特殊情况,它们之间是一种包含关系,也就是当y=0时,函数y =ax 2+bx +c (a ≠0)就转化为方程,当y >0或y <0时,就转化为一元二次不等式.2.方程x 2-2x -3=0与不等式x 2-2x -3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?[提示] 方程x 2-2x -3=0的解集为{-1,3}.不等式x 2-2x -3>0的解集为{x |x <-1或x >3},观察发现不等式x 2-2x -3>0解集的端点值恰好是方程x 2-2x -3=0的根.3.设一元二次不等式ax 2+bx +c >0(a >0)和ax 2+bx +c <0(a >0)的解集分别为{x |x <x 1或x >x 2},{x |x 1<x <x 2}(x 1<x 2),则x 1+x 2,x 1x 2为何值?[提示] 一元二次不等式ax 2+bx +c >0(a >0)和ax 2+bx +c <0(a >0)的解集分别为{x |x <x 1或x >x 2},{x |x 1<x <x 2}(x 1<x 2),则⎩⎪⎨⎪⎧x 1+x 2=-ba ,x 1x 2=ca ,即不等式的解集的端点值是相应方程的根.【例3】 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.思路探究:由给定不等式的解集形式→确定a <0及关于a ,b ,c 的方程组→用a 表示b ,c →代入所求不等式→求解cx 2+bx +a <0的解集[解] 法一:由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系可知b a =-5,ca =6.由a <0知c <0,bc =-56,故不等式cx 2+bx +a <0,即x 2+b c x +a c >0,即x 2-56x +16>0,解得x <13或x >12,所以不等式cx 2+bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <13或x >12. 法二:由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,所以ax 2+bx +c =a (x -2)(x -3)=ax 2-5ax +6a ⇒b =-5a ,c =6a ,故不等式cx 2+bx +a <0,即6ax 2-5ax +a <0⇒6a ⎝ ⎛⎭⎪⎫x -13⎝ ⎛⎭⎪⎫x -12<0,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <13或x >12.1.(变结论)本例中的条件不变,求关于x 的不等式cx 2-bx +a >0的解集. [解] 由根与系数的关系知b a =-5,ca =6且a <0. ∴c <0,bc =-56,故不等式cx 2-bx +a >0, 即x 2-b c x +ac <0,即x 2+56x +16<0.解之得⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13. 2.(变条件)若将本例中的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}变为“关于x 的不等式ax 2+bx +c ≥0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-13≤x ≤2.求不等式cx 2+bx +a <0的解集.[解] 法一:由ax 2+bx +c ≥0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-13≤x ≤2知a <0.又⎝ ⎛⎭⎪⎫-13×2=c a <0,则c >0. 又-13,2为方程ax 2+bx +c =0的两个根,∴-b a =53,∴b a =-53. 又c a =-23,∴b =-53a ,c =-23a ,∴所求不等式变为⎝ ⎛⎭⎪⎫-23a x 2+⎝ ⎛⎭⎪⎫-53a x +a <0,即2ax 2+5ax -3a >0.又∵a <0,∴2x 2+5x -3<0, 所求不等式的解集为{x ⎪⎪⎪-3<x <12}.法二:由已知得a <0 且⎝ ⎛⎭⎪⎫-13+2=-b a ,⎝ ⎛⎭⎪⎫-13×2=c a 知c >0,设方程cx 2+bx +a =0的两根分别为x 1,x 2, 则x 1+x 2=-b c ,x 1·x 2=ac , 其中a c=1⎝⎛⎭⎪⎫-13×2=-32, -b c =-b ac a =⎝ ⎛⎭⎪⎫-13+2⎝ ⎛⎭⎪⎫-13×2=1⎝ ⎛⎭⎪⎫-13+12=-52,∴x 1=1⎝ ⎛⎭⎪⎫-13=-3,x 2=12. ∴不等式cx 2+bx +a <0(c >0)的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-3<x <12.已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循:(1)根据解集来判断二次项系数的符号;(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式; (3)约去 a, 将不等式化为具体的一元二次不等式求解.1.解一元二次不等式的常见方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:①化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0); ②求方程ax 2+bx +c =0(a >0)的根,并画出对应函数y =ax 2+bx +c 图象的简图;③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解. 当m <n 时,若(x -m )(x -n )>0,则可得{x |x >n 或x <m }; 若(x -m )(x -n )<0,则可得{x |m <x <n }. 有口诀如下:大于取两边,小于取中间. 2.含参数的一元二次型的不等式在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项系数a >0,a <0,a =0.(2)关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0). (3)关于不等式对应的方程根的大小的讨论:x 1>x 2, x 1=x 2,x 1<x 2.3.由一元二次不等式的解集可以逆推二次函数图象的开口及与x 轴的交点坐标.1.判断正误(1)mx 2-5x <0是一元二次不等式.( ) (2)若a >0,则一元二次不等式ax 2+1>0无解.( )(3)若一元二次方程ax 2+bx +c =0的两根为x 1,x 2(x 1<x 2),则一元二次不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2}.( ) (4)不等式x 2-2x +3>0的解集为R . ( )[答案] (1)× (2)× (3)× (4)√[提示] (1)错误.当m =0时,是一元一次不等式;当m ≠0时,是一元二次不等式.(2)错误.因为a >0,所以不等式ax 2+1>0恒成立,即原不等式的解集为R .(3)错误.当a >0时,ax 2+bx +c <0的解集为{x |x 1<x <x 2},否则不成立.(4)正确.因为Δ=(-2)2-12<0,所以不等式x 2-2x +3>0的解集为R . 2.设a <-1,则关于x 的不等式a (x -a )⎝ ⎛⎭⎪⎫x -1a <0的解集为 .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 或x >1a[因为a <-1,所以a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-- 11 - 1,所以1a >a ,所以x >1a 或x <a .]3.若不等式ax 2+bx +2>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <13,则a +b 的值为 .-14 [由已知得,ax 2+bx +2=0的解为-12,13,且a <0.∴⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎨⎧a =-12,b =-2, ∴a +b =-14.]4.解下列不等式:(1)x (7-x )≥12;(2)x 2>2(x -1).[解] (1)原不等式可化为x 2-7x +12≤0,因为方程x 2-7x +12=0的两根为x 1=3,x 2=4,所以原不等式的解集为{x |3≤x ≤4}.(2)原不等式可以化为x 2-2x +2>0,因为判别式Δ=4-8=-4<0,方程x 2-2x +2=0无实根,而抛物线y =x 2-2x +2的图象开口向上,所以原不等式的解集为R .。
§3.2一元二次不等式及其解法1. 掌握一元二次不等式的解法;2. .复习2:二次函数图象的画法.二、新课导学※ 学习探究探究任务:一元二次不等式的解法与一元二次方程及二次函数的关系问题:解关于x 的不等式:022>-x x分析:解不等式,实质就是要求出满足不等式的x 的集合。
当x 分别取-2,-1,0,1,2,3,4。
时,式子x x 22-分别有确定的值与之对应,把确定的对应的值用y 表示,即可用函数x x y 22-=表示x 与y 之间关系,原不等式022>-x x 可化为 y>0,依据函数x x y 22-=的图象可以解不等式y>0。
步骤:(1)与不等式对应的方程x x 22-=0是否有解,若有,分别为__________(2)与不等式对应的函数x x y 22-=的图象为抛物线,开口向 ,与x 轴有 个交点,如图:(3)根据图象写出不等式的解集为_____________※ 典型例题 例1 求不等式0232>+-x x 的解集.类推:不等式0)4)(3(>--x x 的解集为 .不等式0)6)(5(>+-x x 的解集为 .不等式0))((21>--x x x x 的解集为 .变式:上面的各不等式中,不等号改为“<”,解分别为什么?例2.求不等式0122>+-x x 的解集.类推:不等式0)3(2>-x 的解集为 .不等式0)6(2>+x 的解集为 . 不等式0)(21>-x x 的解集为 .变式:上面的各不等式中,不等号改为“<”,解分别为什么?例3、求不等式0322>+-x x 的解集.类推:不等式0)3(2>-x 的解集为 .不等式0)6(2>+x 的解集为 .不等式0)(21>-x x 的解集为 .变式:上面的各不等式中,不等号改为“<”,解分别为什么?小结:1、解一元二次不等式的一般步骤(1)求与不等式对应的方程c bx ax ++2=0的解;(2)画出与不等式对应的函数c bx ax y ++=2的图象;(3)根据图象写出不等式解集。
课题: §3.2一元二次不等式及其解法第2课时【教学目标】1.知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2.过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想【教学重点】熟练掌握一元二次不等式的解法【教学难点】理解一元二次不等式与一元二次方程、二次函数的关系【教学过程】1.课题导入1.一元二次方程、一元二次不等式与二次函数的关系2.一元二次不等式的解法步骤——课本第86页的表格2.讲授新课[范例讲解]例1某种牌号的汽车在水泥路面上的刹车距离s m 和汽车的速度 x km/h 有如下的关系:21120180s x x =+ 在一次交通事故中,测得这种车的刹车距离大于39.5m ,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h )解:设这辆汽车刹车前的速度至少为x km/h ,根据题意,我们得到21139.520180x x +>移项整理得:2971100x x +->显然 0>,方程2971100x x +-=有两个实数根,即 1288.94,79.94x x ≈-≈。
所以不等式的解集为{}|88.94,79.94x x x <->或在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为79.94km/h.例4、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (辆)与创造的价值y (元)之间有如下的关系:22220y x x =-+若这家工厂希望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应该生产多少辆摩托车?解:设在一个星期内大约应该生产x 辆摩托车,根据题意,我们得到222206000x x -+>移项整理,得211030000x x -+<因为1000=>,所以方程211030000x x -+=有两个实数根1250,60x x ==由二次函数的图象,得不等式的解为:50<x<60因为x 只能取正整数,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在51—59辆之间时,这家工厂能够获得6000元以上的收益。
3.2 一元二次不等式及其解法材拓展1.一元一次不等式通过同解变形,一元一次不等式可化为:ax >b .若a >0,则其解集为⎩⎨⎧⎭⎬⎫x |x >b a .若a <0,则其解集为⎩⎨⎧⎭⎬⎫x |x <b a .若a =0,b <0,解集为R ;b ≥0,解集为∅. 2.三个“二次”的关系通过同解变形,一元二次不等式可化为:ax 2+bx +c >0或ax 2+bx +c <0 (a >0). 不妨设方程ax 2+bx +c =0的两根为x 1、x 2且x 1<x 2.从函数观点来看,一元二次不等式ax 2+bx +c >0 (a >0)的解集,就是二次函数y =ax 2+bx +c (a >0)在x 轴上方部分的点的横坐标x 的集合;ax 2+bx +c <0 (a >0)的解集,就是二次函数y =ax 2+bx +c (a >0)在x 轴下方部分的点的横坐标x 的集合.从方程观点来看,一元二次方程的根是对应的一元二次不等式解集的端点值.3.简单的高次不等式的解法——数轴穿根法数轴穿根法来源于实数积的符号法则,例如要解不等式(x -1)(x -2)(x -3)>0.我们可以列表如下:x 的区间x <1 1<x <2 2<x <3 x >3 x -1 - + + + x -2 - - + + x -3 - - - +(x -3)(x -2)·(x -1) - + - +把表格的信息“浓缩”在数轴得:据此,可写出不等式(x -1)(x -2)(x -3)>0的解集是{x |1<x <2或x >3}. 一般地,利用数轴穿根法解一元高次不等式的步骤是:(1)化成形如p (x )=(x -x 1)(x -x 2)…(x -x n )>0 (或<0)的标准形式; (2)将每个因式的根标在数轴上,从右上方依次通过每个点画曲线; (3)奇次根依次穿过,偶次根穿而不过(即不要改变符号);(4)根据曲线显现出的p (x )的符号变化规律,标出p (x )的正值区间和负值区间; (5)写出不等式的解集,并检验零点是否在解集内. 4.分式不等式的解法 (1)f (x )g (x )>0⇔f (x )·g (x )>0. (2)f (x )g (x )<0⇔f (x )·g (x )<0. (3)f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )·g (x )≥0g (x )≠0. (4)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0g (x )≠0. 注意:解不等式时,一般情况下不要在两边约去相同的因式.例如:解不等式:2x +1x -3>2x +13x -2.解 原不等式⇔2x +1x -3-2x +13x -2>0⇔(2x +1)2(x -3)(3x -2)>0⇔⎝⎛⎭⎫x +122(x -3)⎝⎛⎭⎫x -23>0⇔x <-12或-12<x <23或x >3.∴原不等式的解集为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,23∪(3,+∞).5.恒成立问题(1)f (x )≥a ,x ∈D 恒成立⇔f (x )min ≥a ,x ∈D 恒成立; f (x )≤a ,x ∈D 恒成立⇔f (x )max ≤a ,x ∈D 恒成立;(2)ax 2+bx +c >0恒成立⇔⎩⎨⎧ a >0Δ<0或⎩⎪⎨⎪⎧a =b =0c >0ax 2+bx +c <0恒成立⇔⎩⎨⎧ a <0Δ<0或⎩⎪⎨⎪⎧a =b =0c <0. 6.一元二次方程根的分布我们以ax 2+bx +c =0 (a >0)为例,借助开口方向向上的二次函数的图象给出根的分布的充要条件.根的分布 二次函数的图象 充要条件x 1<k <x 2f (k )<0x 1<x 2<k⎩⎨⎧ f (k )>0-b2a <k Δ>0k <x 1<x 2⎩⎨⎧f (k )>0-b 2a >k Δ>0k 1<x 1 <x 2<k 2⎩⎨⎧f (k 1)>0f (k 2)>0k 1<-b 2a <k 2Δ>0k 1<x 1<k 2 <x 2<k 3⎩⎪⎨⎪⎧f (k 1)>0f (k 2)<0f (k 3)>0法突破一、分式不等式的解法方法链接:解分式不等式通常是移项通分再求解,切忌随意去分母(仅在分母恒大于零时可以去分母).例1 解不等式:x 2+2x -23+2x -x 2≥x .解 原不等式⇔x 2+2x -23+2x -x 2-x ≥0⇔x 3-x 2-x -23+2x -x 2≥0⇔(x 3-2x 2)+(x 2-x -2)3+2x -x 2≥0⇔(x -2)x 2+(x -2)(x +1)x 2-2x -3≤0⇔(x -2)(x 2+x +1)(x -3)(x +1)≤0⇔x -2(x +1)(x -3)≤0. 由图可知,原不等式的解集为{x |x <-1或2≤x <3}.二、含参数不等式的解法方法链接:对于含有参数的不等式,由于参数的取值范围不同,其结果就不同,因此必须对参数进行分类讨论,即要产生一个划分参数的标准.例2 解不等式:(x -k )(x +3)x +2<x +1 (k ∈R ).解 原不等式⇔kx +3k +2x +2>0⇔(x +2)(kx +3k +2)>0当k =0时,原不等式解集为{x |x >-2}; 当k >0时,(kx +3k +2)(x +2)>0,变形为⎝⎛⎭⎫x +3k +2k (x +2)>0.∵3k +2k =3+2k >3>2,∴-3k +2k<-2.∴x <-3k +2k 或x >-2.故解集为⎩⎨⎧⎭⎬⎫x |x >-2或x <-3k +2k . 当k <0时,原不等式⇔(x +2)⎝⎛⎭⎫x +3k +2k <0由(-2)-⎝⎛⎭⎫-3k +2k =k +2k .∴当-2<k <0时,k +2k <0,-2<-3k +2k ,不等式的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-3k +2k ; 当k =-2时,-3k +2k=-2,原不等式⇔(x +2)2<0不等式的解集为∅;当k <-2时,k +2k >0,-2>-3k +2k .不等式的解集为⎩⎨⎧⎭⎬⎫x |-3k +2k <x <-2.综上所述,当k =0时,不等式的解集为{x |x >-2}; 当k >0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x <-3k +2k 或x >-2;当-2<k <0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |-2<x <-3k +2k ;当k =-2时,不等式的解集为∅; 当k <-2时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |-3k +2k <x <-2.三、恒成立问题的解法方法链接:在含参数的恒成立不等式问题中,参数(“客”)和未知数(“主”)是相互牵制、相互依赖的关系,在这里是已知参数a (“客”)的取值范围,反过来求x (“主”)的取值范围,若能转换“主”与“客”两者在问题中的地位:视参数a 为“主”,未知数x 为“客”,则关于x 的一元二次不等式就立即转化为关于a 的一元一次不等式,运用反“客”为“主”的方法,使问题迎刃而解.例3 已知不等式x 2+px +1>2x +p .(1)如果不等式当|p |≤2时恒成立,求x 的取值范围; (2)如果不等式当2≤x ≤4时恒成立,求p 的取值范围.分析 题中不等式含有两个字母x ,p ,由(1)的条件可知,应视p 为变量,x 为常量,再求x 的范围;由(2)的条件可知,应视x 为变量,p 为常量,再求p 的范围.解 (1)不等式化为:(x -1)p +x 2-2x +1>0, 令f (p )=(x -1)p +x 2-2x +1,则f (p )的图象是一条直线.又因为|p |≤2,所以-2≤p ≤2,于是得:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0.即⎩⎪⎨⎪⎧(x -1)·(-2)+x 2-2x +1>0,(x -1)·2+x 2-2x +1>0. 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0. ∴x >3或x <-1. 故x 的取值范围是x >3或x <-1.(2)不等式可化为(x -1)p >-x 2+2x -1, ∵2≤x ≤4,∴x -1>0.∴p >-x 2+2x -1x -1=1-x .由于不等式当2≤x ≤4时恒成立,所以p >(1-x )max .而2≤x ≤4,所以(1-x )max =-1, 于是p >-1.故p 的取值范围是p >-1. 四、一元二次方程根的分布 方法链接:一元二次方程根的分布一般要借助一元二次函数的图象加以分析,准确找到限制根的分布的充要条件.常常从以下几个关键点去限制,①判别式,②对称轴,③根所在区间端点函数值的符号.例4 已知关于x 的一元二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解 设f (x )=x 2+2mx +2m +1,根据题意,画出示意图由图分析可得,m 满足不等式组 ⎩⎪⎨⎪⎧f (0)=2m +1<0f (-1)=2>0f (1)=4m +2<0f (2)=6m +5>0解得:-56<m <-12.五、一元二次不等式的实际应用 方法链接:解一元二次不等式应用题的关键在于构造一元二次不等式模型,解出不等式后还应注意变量应具有的“实际含义”.例5 国家原计划以2 400元/吨的价格收购某种农产品m 吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点.即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x 个百分点,收购量能增加2x 个百分点.试确定x 的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.分析对比项 调整前 调整后税率 8% (8-x )%收购量 m (吨) (1+2x %)m (吨)税收总收入 2 400m ×8%2 400(1+2x %)m×(8-x)%解 设税率调低后的“税收总收入”为y 元. y =2 400m (1+2x %)·(8-x )%=-1225m (x 2+42x -400) (0<x ≤8).依题意,y ≥2 400m ×8%×78%即:-1225m (x 2+42x -400)≥2 400m ×8%×78%整理得x 2+42x -88≤0,解得-44≤x ≤2. 根据x 的实际意义,知0<x ≤8, 所以0<x ≤2为所求.区突破1.忽略判别式的适用范围而致错例1 若不等式(a -2)x 2+2(a -2)x -4<0对x ∈R 恒成立,求实数a 的取值范围. [错解] 不等式(a -2)x 2+2(a -2)x -4<0, 对x ∈R 恒成立.⇔{ a -Δ<0 ⇔{ a(a -2)2-4(a -2)(-4)<0 ⇔-2<a <2.[点拨] 当a -2=0时,原不等式不是一元二次不等式,不能应用根的判别式,应当单独检验不等式是否成立.[正解] 当a -2=0,即a =2时,原不等式为-4<0,所以a =2时成立. 当a -2≠0时,由题意得{ a -Δ<0, 即{ a(a -2)2-4(a -2)(-4)<0, 解得-2<a <2.综上所述,可知-2<a ≤2. 温馨点评 在中学阶段,“判别式”是与“二次”联系在一起的,对于一元一次不等式不能应用判别式法来判断.在处理形如ax 2+bx +c 的问题时,要注意对x 2系数的讨论.2.混淆“定义域为R ”与“值域为R ”的区别而致错例2 若函数y =lg(ax 2-2x +a )的值域为R ,求a 的取值范围. [错解1] ∵函数y =lg(ax 2-2x +a )的值域为R . ∴ax 2-2x +a >0对x ∈R 恒成立.∴{ aΔ<0, 即{ a-4a 2<0,∴a >1. [错解2] ∵函数y =lg(ax 2-2x +a )的值域为R . ∴代数式ax 2-2x +a 能取遍一切正值. ∴Δ=4-4a 2≥0, ∴-1≤a ≤1.[点拨] 上述解法1把值域为R 误解为定义域为R ;解法2虽然理解题意,解题方向正确,但是忽略了a <0时,代数式ax 2-2x +a 不可能取到所有正数,从而也是错误的.[正解] 当a =0时,y =lg(-2x )值域为R , a =0适合.当a ≠0时,ax 2-2x +a =a ⎝⎛⎭⎫x -1a 2+⎝⎛⎭⎫a -1a 为使y =lg(ax 2-2x +a )的值域为R , 代数式ax 2-2x +a 应取到所有正数.所以a 应满足⎩⎨⎧a a -1a ≤0,解得0<a ≤1. 综上所述,0≤a ≤1.题多解例 解不等式:lg x -1≤3-lg x . 解 方法一 lg x -1≤3-lg x⇔{ lg x -1≥-lg x ≥x -1≤(3-lg x )2 ⇔{ 1≤lg x ≤2x -7lg x +10≥0 ⇔{ 1≤lg x ≤x ≤2或lg x ≥5 ⇔1≤lg x ≤2⇔10≤x ≤100. 方法二 设lg x -1=t , 则lg x =t 2+1 (t ≥0).∴lg x -1≤3-lg x⇔{ t ≥t ≤2-t 2⇔0≤t ≤1⇔0≤lg x -1≤1 ⇔1≤lg x ≤2 ⇔10≤x ≤100.方法三 解方程lg x -1=3-lg x , 解得:x =100. 令f (x )=lg x -1,易知f (x )在[10,+∞)为增函数,g (x )=3-lg x 在[10,+∞)为减函数. 且f (100)=g (100)=1.为使f (x )≤g (x ), 则10≤x ≤100.方法四 令lg x =t ,f (t )=t -1,g (t )=3-t .在同一坐标系中画出它们的图象如图所示: 易知交点为(2,1).当1≤t ≤2时,f (t )≤g (t ). 即lg x -1≤3-lg x 成立. 由1≤t ≤2,即1≤lg x ≤2, 解得:10≤x ≤100.题赏析1.(2009·江西)若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________.解析 令y 1=9-x 2,y 2=k (x +2)-2,在同一个坐标系中作出其图象,因9-x 2≤k (x +2)-2的解集为[a ,b ]且b -a =2.结合图象知b =3,a =1,即直线与圆的交点坐标为(1,22).∴k =22+21+2= 2.答案 2赏析 本题主要考查解不等式、直线过定点问题以及数形结合的数学方法. 2.(2009·天津)设0<b <1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( )A .-1<a <0B .0<a <1C .1<a <3D .3<a <6解析 (x -b )2>(ax )2,(a 2-1)x 2+2bx -b 2<0,要使x 的解集中恰有3个整数,必须有a 2-1>0.又a +1>0,∴a >1.不等式变形为[(a -1)x +b ][(a +1)x -b ]<0.∵a >1,b >0,∴b a -1>0,0<ba +1<1,∴b 1-a <x <b a +1, 其中含三个整数,∴-3≤b 1-a <-2,2<ba -1≤3.∴2a -2<b ≤3a -3.∴{ 3a -3≥b >0,a -2<b <a +1,∴{ a >1,a <3,∴1<a <3. 答案 C赏析 本题考查了一元二次不等式知识灵活地运用.。
3.2 一元二次不等式及其解法3.2.1 一元二次不等式的概念和一元二次不等式解法从容说课本节课是人民教育出版社A版必修数学5第三章不等式第二大节3.2一元二次不等式及其解法的第一节课.一元二次不等式及其解法教学分为三个学时,第一个学时先由师生共同分析日常生活中的实际问题来引出一元二次不等式及其解法中的一些基本概念、求解一元二次不等式的步骤、求解一元二次不等式的程序框图.确定一元二次不等式的概念和解法,以此激发学生对科学的探究精神和严肃认真的科学态度.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生深刻理解一元二次不等式的概念,有利于一元二次不等式的解法的教学.讲述完一元二次不等式的概念后,再回归到先前的具体事例,总结一元二次不等式解法与二次函数的关系和一元二次不等式解法的步骤,由学生用表格将一元二次不等式解法与二次函数的数形关系的对应关系用图表形式表示出来;然后用一个程序框图把求解一般一元二次不等式的过程表示出来,根据这些图表,得出一元二次不等式解法与二次函数的关系两者之间的区别与联系,再辅以新的例题巩固.整个教学过程,探究一元二次不等式的概念,揭示一元二次不等式解法与二次函数的关系本质,引出一元二次不等式解法的步骤和过程,并及时加以巩固,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点理解二次函数、一元二次方程与一元二次不等式的关系.教具准备多媒体及课件,幻灯片三张三维目标一、知识与技能1.经历从实际情景中抽象出一元二次不等式模型的过程;2.通过函数图象了解一元二次不等式与二次函数、一元二次方程的联系;3.会解一次二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性实验;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;2.通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辩证的世界观.教学过程导入新课师上网获取信息已经成为人们日常生活的重要组成部分,因特网服务公司(Internet Servi c e Provider)的任务就是负责将用户的计算机接入因特网,同时收取一定的费用.某同学要把自己的计算机接入因特网,现有两家ISP公司可供选择,公司A每小时收费1.5元;公司B的收费原则是在用户上网的第一小时内收费1.7元,第二小时内收费1.6元,以后每小时减少0.1元.(若用户一次上网时间超过17小时,按17小时计算)一般来说,一次上网时间不会超过17小时,所以,不妨一次上网时间总小于17小时,那么,一次上网在多长时间以内能够保证选择公司A 比选择公司B 所需费用少?假设一次上网x 小时,则A 公司收取的费用为1.5x ,那么B 公司收取的费用为多少?怎样得来? 生 结果是20)35(x x -元,因为是等差数列,其首项为1.7,公差为-0.1,项数为x 的和,即.20)35()1.0(2)1(7.1x x x x x -=--+师 如果能够保证选择A 公司比选择B 公司所需费用少,则如何列式? 生 由题设条件应列式为20)35(x x ->1.5x(0<x <17),整理化简得不等式x 2-5x <0.推进新课师 因此这个问题实际就是解不等式:x 2-5x <0的问题.这样的不等式就叫做一元二次不等式,它的解法是我们下面要学习讨论的重点. 什么叫做一元二次不等式?含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是a x 2+b x+c >0或a x 2+b x+c <0(a ≠0).例如2x 2-3x-2>0,3x 2-6x <-2,-2x 2+3<0等都是一元二次不等式. 那么如何求解呢?师 在初中,我们已经学习过一元一次方程和一元一次不等式的解法,以及一次函数的有关知识,那么一元一次方程、一元一次不等式以及一次函数三者之间有什么关系呢? 思考:对一次函数y=2x-7,当x 为何值时,y=0?当x 为何值时,y <0?当x 为何值时,y >0? 它的对应值表与图象如下:x 2 2.5 3 3.5 4 4.5 5 y-3-2-1123由对应值表与图象(如上图)可知: 当x=3.5时,y=0,即2x-7=0; 当x <3.5时,y <0,即2x-7<0; 当x >3.5时,y >0,即2x-7>0.师 一般地,设直线y=a x+b 与x 轴的交点是(x 0,0),则有如下结果: (1)一元一次方程a x+b =0的解是x 0;(2)①当a >0时,一元一次不等式a x+b >0的解集是{x|x >x 0};一元一次不等式a x+b <0的解集是{x|x <x 0}.②当a <0时,一元一次不等式a x+b >0的解集是{x|x <x 0};一元一次不等式a x+b <0的解集是{x|x >x 0}.师 在解决上述问题的基础上分析,一次函数、一元一次方程、一元一次不等式之间的关系.能通过观察一次函数的图象求得一元一次不等式的解集吗?生 函数图象与x 轴的交点横坐标为方程的根,不等式的解集为函数图象落在x 轴上方(下方)部分对应的横坐标.a >0 a <0一次函数 y=a x+b (a ≠0)的图象一元一次方程a x+b =0的解集 {x|x=a b -} {x|x=a b -} 一元一次不等式a x+b >0的解集 {x|x >a b-}{x|x <a b-}一元一次不等式a x+b <0的解集{x|x <ab-}{x|x >ab-}师 在这里我们发现一元一次方程、一元一次不等式与一次函数三者之间有着密切的联系.利用这种联系(集中反映在相应一次函数的图象上)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?在初中学习二次函数时,我们曾解决过这样的问题:对二次函数y=x 2-5x ,当x 为何值时,y=0?当x 为何值时,y <0?当x 为何值时,y >0?当时我们又是怎样解决的呢? 生 当时我们是通过作出函数的图象,找出图象与x 轴的交点,通过观察来解决的.二次函数y=x 2-5x 的对应值表与图象如下: x -1 0 1 2 3 4 5 6 y6-4-6-6-46由对应值表与图象(如上图)可知:当x=0或x=5时,y=0,即x 2-5x=0;当0<x <5时,y <0,即x 2-5x <0;当x <0或x >5时,y >0,即x 2-5x >0.这就是说,若抛物线y=x 2-5x 与x 轴的交点是(0,0)与(5,0),则一元二次方程x 2-5x=0的解就是x 1=0,x 2=5.一元二次不等式x 2-5x <0的解集是{x|0<x <5};一元二次不等式x 2-5x >0的解集是{x|x <0或x >5}. [教师精讲]由一元二次不等式的一般形式知,任何一个一元二次不等式,最后都可以化为a x 2+b x+c >0或a x 2+b x+c <0(a >0)的形式,而且我们已经知道,一元二次不等式的解与其相应的一元二次方程的根及二次函数图象有关,即由抛物线与x 轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集. 如何讨论一元二次不等式的解集呢?我们知道,对于一元二次方程a x 2+b x+c =0(a >0),设其判别式为Δ=b 2-4ac ,它的解按照Δ>0,Δ=0,Δ<0分为三种情况,相应地,抛物线y=a x 2+b x+c (a >0)与x 轴的相关位置也分为三种情况(如下图),因此,对相应的一元二次不等式a x 2+b x+c >0或a x 2+b x+c <0(a >0)的解集我们也分这三种情况进行讨论.(1)若Δ>0,此时抛物线y=a x 2+b x+c (a >0)与x 轴有两个交点〔图(1)〕,即方程a x 2+b x+c =0(a >0)有两个不相等的实根x 1,x 2(x 1<x 2),则不等式a x 2+b x+c >0(a >0)的解集是{x|x <x 1,或x >x 2};不等式a x 2+b x+c <0(a >0)的解集是{x|x 1<x <x 2}.(2)若Δ=0,此时抛物线y=a x 2+b x+c (a >0)与x 轴只有一个交点〔图(2)〕,即方程a x 2+b x+c =0(a >0)有两个相等的实根x 1=x 2=ab 2-,则不等式a x 2+b x+c >0(a >0)的解集是{x|x≠ab 2-};不等式a x 2+b x+c <0(a >0)的解集是. (3)若Δ<0,此时抛物线y=a x 2+b x+c (a >0)与x 轴没有交点〔图(3)〕,即方程a x 2+b x+c =0(a>0)无实根,则不等式a x 2+b x+c >0(a >0)的解集是R ;不等式a x 2+b x+c <0(a >0)的解集是.Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y=a x 2+b x+c (a >0)的图象a x 2+b x+c =0的根ab x 22.1∆≡±-=x 1=x 2=a b 2-∅a x 2+b x+c >0的解集 {x|x <x 1或x >x 2}{x|x≠ab 2-} Ra x 2+b x+c <0的解集 {x|x 1<x <x 2} ∅ ∅对于二次项系数是负数(即a <0)的不等式,可以先把二次项系数化成正数,再求解.[知识拓展]【例1】 解不等式2x 2-5x-3>0. 生 解:因为Δ>0,2x 2-5x-3=0的解是x 1=-21,x 2=3.所以不等式的解集是{x|x <21-,或x >3}.【例2】 解不等式-3x 2+15x >12.生 解:整理化简得3x 2-15x+12<0.因为Δ>0,方程3x 2-15x+12=0的解是x 1=1,x 2=4,所以不等式的解集是{x|1<x <4}.【例3】 解不等式4x 2+4x+1>0.生 解:因为Δ=0,方程4x 2+4x+1=0的解是x 1=x 2=21-.所以不等式的解集是{x|x≠21-}. 【例4】 解不等式-x 2+2x-3>0.生 解:整理化简,得x 2-2x+3<0.因为Δ<0,方程x 2-2x+3=0无实数解,所以不等式的解集是∅.师 由上述讨论及例题,可归纳出解一元二次不等式的程序吗? 生 归纳如下:(1)将二次项系数化为“+”:y=a x 2+b x+c >0(或<0)(a >0). (2)计算判别式Δ,分析不等式的解的情况:①Δ>0时,求根x 1<x 2,⎩⎨⎧≠.,0;,02121x x x y x x x x y <<则<若>或则>若②Δ=0时,求根x 1=x 2=x 0,⎪⎩⎪⎨⎧==∅∈≠.,0;,0;,000x x y x y x x y 则若则<若的一切实数则>若③Δ<0时,方程无解,⎩⎨⎧∅∈≤∈.,0;,0x y R x y 则若则>若(3)写出解集.师 说的很好.下面我们用一个程序框图把求解一元二次不等式的过程表示出来,请同学们将判断框和处理框中的空格填充完整. [学生活动过程][方法引导]上述过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用与新课程的理念.该过程中的思考、观察、探究起到层层铺设的作用,激起学生学习的兴趣与勇于探索的精神. 课堂小结1.一元二次不等式:含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是a x 2+b x+c >0或a x 2+b x+c <0(a ≠0).2.求解一元二次不等式的步骤和解一元二次不等式的程序.布置作业1.完成第90页的练习.2.完成第90页习题3.2第1题.板书设计一元二次不等式的概念和一元二次不等式解法多媒体演示区一元二次不等式概念一元二次不等式解题步骤例题。
§3.2 一元二次不等式及其解法(一)学习目标 1.理解一元二次方程、一元二次不等式与二次函数的关系(重点);2.掌握图象法解一元二次不等式;3.培养数形结合、分类讨论思想方法解一元二次不等式的能力(难点).知识点1一元二次不等式的概念一元二次不等式定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式表达式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数解集ax2+bx+c>0(a≠0)解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合ax2+bx+c<0(a≠0)解集是使f(x)=ax2+bx+c的函数值为负数的自变量x的取值集合ax2+bx+c≥0(a≠0)解集是使f(x)=ax2+bx+c的函数值大于或等于0的自变量x的取值集合ax2+bx+c≤0(a≠0)解集是使f(x)=ax2+bx+c的函数值小于或等于0的自变量x的取值集合【预习评价】1.怎样判断一个不等式是否为一元二次不等式?提示判断一个不等式是否为一元二次不等式,要注意两个方面:(1)是否只含有一个未知数,且未知数的最高次数是2;(2)含有未知数的式子是否是整式,如:x2-2x+1x-3>0,不等式左边不是整式,从而不是一元二次不等式,其实它是一个分式不等式.2.一元二次不等式有哪些形式?提示任意一个一元二次不等式都可以利用不等式的性质变成二次项系数大于0的形式,并且可以化为下列形式中的一种:(1)ax2+bx+c>0(a>0);(2)ax2+bx+c<0(a>0);(3)ax2+bx+c≥0(a>0);(4)ax2+bx+c≤0(a>0).知识点2“三个二次”(二次函数、一元二次方程、一元二次不等式)的关系Δ=b2-4ac Δ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图象ax2+bx+c=0(a>0)的根有两个不相等的实根x1,x2,且x1<x2有两个相等的实数根x1,x2没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪⎪x≠-b2aRax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅【预习评价】1.不等式x2-3x-10<0的解集是________.解析由于x2-3x-10=0的两根为-2,5,故x2-3x-10<0的解集为{x|-2<x<5}.答案{x|-2<x<5}2.二次不等式ax2+2x-1<0的解集为R,则a的取值范围是________.解析 ⎩⎪⎨⎪⎧a <0,Δ<0⇒⎩⎪⎨⎪⎧a <0,4+4a <0⇒a <-1.答案 (-∞,-1)方向1 解不含参数的一元二次不等式 【例1-1】 解下列不等式: (1)x 2-5x -6>0;(2)(2-x )(x +3)<0; (3)4(2x 2-2x +1)>x (4-x ).解 (1)方程x 2-5x -6=0的两根为x 1=-1,x 2=6.结合二次函数y =x 2-5x -6的图象知,原不等式的解集为{x |x <-1或x >6}. (2)原不等式可化为(x -2)(x +3)>0.方程(x -2)(x +3)=0的两根为x 1=2,x 2=-3.结合二次函数y =(x -2)(x +3)的图象知,原不等式的解集为{x |x <-3或x >2}. (3)由原不等式得8x 2-8x +4>4x -x 2. ∴原不等式等价于9x 2-12x +4>0. 解方程9x 2-12x +4=0,得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图象知,原不等式的解集为{x |x ≠23}. 方向2 解含参数的一元二次不等式【例1-2】 解关于x 的不等式(a ∈R ):x 2-(a +a 2)x +a 3>0. 解 将不等式x 2-(a +a 2)x +a 3>0变形为(x -a )(x -a 2)>0. 当a <0时,有a <a 2,所以不等式的解集为{x |x <a 或x >a 2}; 当a =0时,a =a 2=0,所以不等式的解集为{x |x ∈R ,且x ≠0}; 当0<a <1时,有a >a 2,所以不等式的解集为{x |x <a 2或x >a };当a =1时,a =a 2=1,所以不等式的解集为{x |x ∈R ,且x ≠1}; 当a >1时,有a <a 2,所以不等式的解集为{x |x <a 或x >a 2}. 规律方法 1.解不含参数的一元二次不等式的一般步骤 (1)对不等式变形,使一端为零且二次项系数大于零. (2)计算相应的判别式.(3)当Δ>0时求出相应的一元二次方程的两根. (4)根据一元二次不等式解集的结构,写出其解集. 2.解含参数的一元二次不等式的步骤题型二 三个“二次”之间的关系【例题】 已知一元二次不等式ax 2+bx +c >0的解集为(α,β),且0<α<β,求不等式cx 2+bx +a <0的解集.解 法一 由题意可得a <0,且α,β为方程ax 2+bx +c =0的两根, ∴由根与系数的关系得⎩⎪⎨⎪⎧b a =-(α+β)<0,①ca =αβ>0, ②∵a <0,0<α<β,∴由②得c <0, 则cx 2+bx +a <0可化为x 2+b c x +ac >0. ①÷②,得b c =-(α+β)αβ=-⎝ ⎛⎭⎪⎫1α+1β<0.由②得a c =1αβ=1α·1β>0.∴1α,1β为方程x 2+b c x +ac =0的两根.又∵0<α<β,∴0<1β<1α,∴不等式x 2+b c x +ac >0的解集为⎩⎨⎧⎭⎬⎫x |x <1β或x >1α, 即不等式cx 2+bx +a <0的解集为⎩⎨⎧⎭⎬⎫x |x <1β或x >1α. 法二 由题意知a <0,∴由cx 2+bx +a <0,得c a x 2+ba x +1>0. 将方法一中的①②代入, 得αβx 2-(α+β)x +1>0, 即(αx -1)(βx -1)>0. 又∵0<α<β,∴0<1β<1α.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1β或x >1α. 规律方法 应用三个“二次”之间的关系解题的思想一元二次不等式与其对应的函数与方程之间存在着密切的联系,即给出了一元二次不等式的解集,则可知不等式二次项系数的符号和相应一元二次方程的根.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.【训练】 已知关于x 的不等式x 2+ax +b <0的解集为{x |1<x <2},求关于x 的不等式bx 2+ax +1>0的解集.解 ∵x 2+ax +b <0的解集为{x |1<x <2}, ∴1,2是方程x 2+ax +b =0的两根.由根与系数的关系得⎩⎪⎨⎪⎧-a =1+2,b =1×2,得⎩⎪⎨⎪⎧a =-3,b =2,代入所求不等式,得2x 2-3x +1>0. 解得x <12或x >1.∴bx 2+ax +1>0的解集为{x |x <12或x >1}.课堂达标1.下面所给关于x 的几个不等式:①3x +4<0;②x 2+mx -1>0;③ax 2+4x -7>0;④x 2<0.其中一定为一元二次不等式的有( ) A.1个 B.2个 C.3个D.4个解析 ②④一定是一元二次不等式. 答案 B2.若不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13<x <12,则a ,c 的值为( )A.a =6,c =1B.a =-6,c =-1C.a =1,c =6D.a =-1,c =-6解析易知a <0,且⎩⎪⎨⎪⎧-5a =12+13,c a =13×12⇒⎩⎪⎨⎪⎧a =-6,c =-1.答案 B3.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是______________. 解析 x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2. 答案 (-∞,2]∪[4,+∞)4.不等式x 2+3x -4<0的解集为________.解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为(-4,1).答案 (-4,1)5.求下列不等式的解集:(1)2x 2+7x +3>0; (2)-x 2+8x -3>0; (3)x 2-4x -5≤0; (4)-4x 2+18x -814≥0.解 (1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12. 又二次函数y =2x 2+7x +3的图象开口向上,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-12或x <-3. (2)因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x 2+8x -3=0有两个不等实根x 1=4-13,x 2=4+13. 又二次函数y =-x 2+8x -3的图象开口向下, 所以原不等式的解集为{x |4-13<x <4+13}. (3)原不等式可化为(x -5)(x +1)≤0, 所以原不等式的解集为{x |-1≤x ≤5}. (4)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =94. 课堂小结1.对字母系数分类讨论时,要注意确定分类的标准,而且分类时要不重不漏.一般方法是:(1)当二次项系数不确定时,按二次项系数等于零、大于零、小于零三种情况进行分类.(2)判别式大于零时,还需要讨论两根的大小.(3)判别式不确定时,按判别式大于零、等于零、小于零三种情况讨论. 2.三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:。
一元二次不等式及其解法(第二课时)教学目标:1、知识与技能目标:(1)理解二次函数、一元二次方程、一元二次不等式的关系. (2)熟练掌握一元二次不等式的解法.(3)掌握含参数的一元二次不等式的解法及简单的不等式中的恒成立问题的解题方法. (4)培养学生数形结合的能力,分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2、过程与方法目标:培养学生运用等价转化和数形结合等数学思想解决数学问题的能力.3、情感态度价值观目标:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
教学重难点:1、一元二次不等式的解法.2、含参数的一元二次不等式以及不等式中的恒成立问题. 教学方法:情景教学法、问题教学法、引探式教学法。
教学过程:一、复习回顾,引入新课1、二次函数、一元二次方程、一元二次不等式之间的关系是什么?acb 42-=∆0>∆0=∆0<∆)0(2>++=a c bx ax y 的图象)0(02>=++a c bx ax 的根不相等的两实根1x )212x x x <(、相等的两实根abx x 221-==无实根2、解一元二次不等式的基本步骤是什么?(1)化不等式为标准形式:)0(02>>++a c bx ax 或)0(02><++a c bx ax 。
(2)求方程)0(02>=++a c bx ax 的根。
(3)画出函数)0(2>++=a c bx ax y 的图像。
(4)由图像找出不等式的解集。
即:转化、求根、画图、找解。
二、讲授新课:例题1. 一元二次不等式的解法: 解不等式:10732≤-x x教师展示做题步骤:解:原不等式可化为:010732≤--x x因为010732=--x x 的两根分别为11-=x 、3102=x 所以原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤-3101x x 变式训练:解下列不等式:(1)04422<-+-x x (2)322-<+-x x 学生演板:(1) 解:原不等式可化为:0222>+-x x 因为0424)2(2<-=⨯--=∆所以原不等式的解集为Ø 学生复述做题过程:(2)解:原不等式可化为:0322>+-x x因为0322=--x x 的两根分别为11-=x 、232=x 所以原不等式的解集为⎭⎬⎫⎩⎨⎧>-<3101x x x 或 例题2. 已知解集,求参数的取值或取值范围。
[学习目标] 1.理解一元二次方程、一元二次不等式与二次函数的关系.2.掌握图象法解一元二次不等式.3.培养数形结合、分类讨论思想方法解一元二次不等式的能力.知识点一一元二次不等式的概念思考下列不等式是一元二次不等式的有________.①x2>0;②-3x2-x≤5;③x3+5x-6>0;④ax2-5y<0(a为常数);⑤ax2+bx+c>0.答案①②解析①②是,符合定义;③不是,因为未知数的最高次数是3,不符合定义;④不是,当a =0时,它是一元一次不等式,当a≠0时,它含有两个变量x,y;⑤不是,当a=0时,不符合一元二次不等式的定义.知识点二一元二次不等式的解法利用“三个二次”的关系我们可以解一元二次不等式.解一元二次不等式的一般步骤:(1)将不等式变形,使一端为0且二次项系数大于0;(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根,作出函数图象,当Δ<0时,直接作出函数图象草图;(4)根据对应二次函数的图象,写出不等式的解集.知识点三“三个二次”(二次函数、一元二次方程、一元二次不等式)的关系思考若一元二次不等式ax2+2x-1<0的解集为R,则a的取值范围是________.答案(-∞,-1)解析⎩⎪⎨⎪⎧a<0,Δ<0⇒⎩⎪⎨⎪⎧a<0,4+4a<0⇒a<-1.题型一一元二次不等式的解法例1解下列不等式:(1)2x2+7x+3>0;(2)-4x 2+18x -814≥0;(3)-2x 2+3x -2<0; (4)-12x 2+3x -5>0.解 (1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12.又二次函数y =2x 2+7x +3的图象开口向上,所以原不等式的解集为{x |x >-12或x <-3}.(2)原不等式可化为⎝⎛⎭⎫2x -922≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x =94. (3)原不等式可化为2x 2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图象开口向上,所以原不等式的解集为R .(4)原不等式可化为x 2-6x +10<0,Δ=(-6)2-40=-4<0,所以方程x 2-6x +10=0无实根,又二次函数y =x 2-6x +10的图象开口向上,所以原不等式的解集为∅. 反思与感悟 解一元二次不等式注意事项 (1)先将二次项系数化为正数;(2)正确理解“Δ>0”“Δ<0”对于二次函数图象的意义; (3)答案要写成解集(或区间)形式. 跟踪训练1 解下列不等式:(1)x 2-5x -6>0;(2)(2-x )(x +3)<0; (3)4(2x 2-2x +1)>x (4-x ).解 (1)方程x 2-5x -6=0的两根为x 1=-1,x 2=6.结合二次函数y =x 2-5x -6的图象知,原不等式的解集为{x |x <-1或x >6}. (2)原不等式可化为(x -2)(x +3)>0.方程(x -2)(x +3)=0的两根为x 1=2,x 2=-3.结合二次函数y =(x -2)(x +3)的图象知,原不等式的解集为{x |x <-3或x >2}. (3)由原不等式得8x 2-8x +4>4x -x 2. ∴原不等式等价于9x 2-12x +4>0. 解方程9x 2-12x +4=0,得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图象知,原不等式的解集为{x |x ≠23}.题型二 解含参数的一元二次不等式例2 解关于x 的不等式:ax 2-(a -1)x -1<0(a ∈R ). 解 原不等式可化为:(ax +1)(x -1)<0, 当a =0时,x <1;当a >0时,⎝⎛⎭⎫x +1a (x -1)<0, ∴-1a <x <1;当a =-1时,x ≠1;当-1<a <0时,⎝⎛⎭⎫x +1a (x -1)>0, ∴x >-1a 或x <1;当a <-1时,-1a <1,∴x >1或x <-1a .综上,当a =0时,原不等式的解集是{x |x <1}; 当a >0时,原不等式的解集是⎩⎨⎧⎭⎬⎫x |-1a <x <1;当a =-1时,原不等式的解集是{x |x ≠1};当-1<a <0时,原不等式的解集是⎩⎨⎧⎭⎬⎫x |x <1或x >-1a .当a <-1时,原不等式的解集是⎩⎨⎧⎭⎬⎫x |x <-1a 或x >1.反思与感悟 含参数不等式的解题步骤(1)将二次项系数化为正数;(2)判断相应的方程是否有根(如果可以直接分解因式,可省去此步);(3)根据根的情况写出相应的解集(若方程有两个相异实根,为了写出解集还要讨论两个根的大小).另外,当二次项含有参数时,应先讨论二次项系数是否为0,这决定不等式是否为一元二次不等式.跟踪训练2 解关于x 的不等式x 2-(a +a 2)x +a 3>0. 解 原不等式可化为(x -a )(x -a 2)>0 讨论a 与a 2的大小(1)当a 2>a 即a >1或a <0时, x >a 2或x <a .(2)当a 2=a 即a =0或a =1时, x ≠a .(3)当a 2<a 即0<a <1时, x >a 或x <a 2.综上,当a <0或a >1时,解集为{x |x >a 2或x <a }, 当a =0或1时,解集为{x |x ≠a }, 当0<a <1时,解集为{x |x >a 或x <a 2}. 题型三 “三个二次”关系的应用例3 已知一元二次不等式ax 2+bx +c >0的解集为(α,β),且0<α<β,求不等式cx 2+bx +a <0的解集.解 方法一 由题意可得a <0,且α,β为方程ax 2+bx +c =0的两根,∴由根与系数的关系得⎩⎨⎧ba =-(α+β)<0, ①ca =αβ>0, ②∵a <0,0<α<β,∴由②得c <0, 则cx 2+bx +a <0可化为x 2+b c x +ac >0.①÷②,得b c =-(α+β)αβ=-⎝⎛⎭⎫1α+1β<0.由②得a c =1αβ=1α·1β>0.∴1α,1β为方程x 2+b c x +ac =0的两根.又∵0<α<β,∴0<1β<1α,∴不等式x 2+b c x +a c >0的解集为⎩⎨⎧⎭⎬⎫x |x <1β或x >1α,即不等式cx 2+bx +a <0的解集为⎩⎨⎧⎭⎬⎫x |x <1β或x >1α.方法二 由题意知a <0,∴由cx 2+bx +a <0,得c a x 2+ba x +1>0.将方法一中的①②代入, 得αβx 2-(α+β)x +1>0, 即(αx -1)(βx -1)>0. 又∵0<α<β,∴0<1β<1α.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1β或x >1α.反思与感悟 求一般的一元二次不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)的解集,先求出一元二次方程ax 2+bx +c =0(a ≠0)的根,再根据函数图象与x 轴的相关位置确定一元二次不等式的解集.当两个“有关联”的不等式同时出现时,应注意根与系数的关系的应用.跟踪训练3 已知关于x 的不等式x 2+ax +b <0的解集为{x |1<x <2},求关于x 的不等式bx 2+ax +1>0的解集.解 ∵x 2+ax +b <0的解集为{x |1<x <2}, ∴1,2是方程x 2+ax +b =0的两根.由根与系数的关系得⎩⎪⎨⎪⎧-a =1+2,b =1×2,得⎩⎪⎨⎪⎧a =-3,b =2,代入所求不等式,得2x 2-3x +1>0. 解得x <12或x >1.∴bx 2+ax +1>0的解集为{x |x <12或x >1}.例4 若一元二次不等式ax 2+bx +c <0的解集为{x |x <-3或x >5},则ax 2-bx +c <0的解集为____________.错解 由根与系数的关系得:⎩⎨⎧-3+5=-ba ,-3×5=c a,⇒⎩⎪⎨⎪⎧b =-2a ,c =-15a . 代入得ax 2+2ax -15a <0,① ∴x 2+2x -15<0,② ∴(x -3)(x +5)<0, ∴-5<x <3. 答案 {x |-5<x <3}错因 分析①式化为②式,忽略了二次项系数a 的符号,并非同解变形. 正解 由根与系数的关系得:⎩⎨⎧-ba =-3+5,c a=-3×5,⇒⎩⎪⎨⎪⎧b =-2a ,c =-15a .∴ax 2+2ax -15a <0, 又由解集的形式知a <0, ∴上式化为x 2+2x -15>0, ∴(x -3)(x +5)>0, ∴x >3或x <-5.答案 (-∞,-5)∪(3,+∞) 误区警示1.注意隐含信息的提取有些信息是隐含在题设的条件中的,适当挖掘题设信息可较好地完成对解答题目不明信息的突破,如本例借助不等式及其解集的对应关系得出“a <0”这一关键信息,从而避免不必要的讨论.2.注意“三个二次”的关系二次函数的零点,就是相应一元二次方程的根,也是相应一元二次不等式解集的分界点.1.设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A.⎝⎛⎭⎫-3,-32B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3 答案 D解析 由A ={x |x 2-4x +3<0}={x |1<x <3},B ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x >32, 得A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪32<x <3=⎝⎛⎭⎫32,3,故选D. 2.若不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12,则a ,c 的值为( ) A .a =6,c =1 B .a =-6,c =-1 C .a =1,c =6 D .a =-1,c =-6 答案 B解析 易知a <0,且⎩⎨⎧-5a =12+13,c a =13×12,⇒⎩⎪⎨⎪⎧a =-6,c =-1.3.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是______________. 答案 (-∞,2]∪[4,+∞)解析 x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2.4.不等式x 2+3x -4<0的解集为________. 答案 (-4,1)解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为(-4,1). 5.已知关于x 的不等式mx 2-(2m +1)x +m -1≥0的解集为空集,求实数m 的取值范围. 解 (1)当m =0时,原不等式化为-x -1≥0,∴x ≤-1, 解集非空.(2)当m ≠0时,⎩⎪⎨⎪⎧m <0,Δ=[-(2m +1)]2-4m (m -1)<0, ∴m <-18,∴综上,m <-18,即m 的取值范围是⎝⎛⎭⎫-∞,-18.1.解一元二次不等式的常见方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:①化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);②求方程ax2+bx+c=0(a>0)的根(或者方程无根),并画出对应函数y=ax2+bx+c图象的简图;③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助因式分解或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m<x<n.有口诀如下:大于取两边,小于取中间.2.含参数的一元二次不等式在解含参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0.(2)关于不等式对应的方程的根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).(3)关于不等式对应的方程的根的大小的讨论:x1>x2,x1=x2,x1<x2.。