LINE案例分析
- 格式:ppt
- 大小:2.49 MB
- 文档页数:13
跨文化交际案例分析 LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】Case Study 1 Age and Status两位同事的矛盾使一家数据处理公司的总经理遇到了麻烦。
一方是一位踌躇满志的法裔加拿大小伙子,另一方是一位有特许签证的年长的中国女性,而此前两人确实很好的合作伙伴…..Case description:A manager in a data-processing company was having difficulty dealing with a conflict between a young, ambitious French Canadian male and his co-worker, an older Chinese woman who was on a special visa from China. She had recently become uncooperative and had made it clear to the manager that she would not be willing to travel to the capital with her co-worker to hold discussion with legislators about a new product with great enthusiasm.When the manager asked her what the problem was, he received no clear explanation. When he asked her co-worker, the young man had no insights to offer. The young French Canadian was clearly annoyed, however, that the Chinese woman was refusing to share her data with him. That meant he couldn’t make the presentation to the legislators because she had all the key data on her computer disks.The manager repeated questions to her but her “problem” got nowhere. So he changed his approach. He began explaining his concerns, as manger and as spokesperson for the company, about the upcoming meeting with legislators. His explanation about his position was unemotional. In that climate she then felt she could explain her position. She revealed she felt that that as an older, and to her mind, more senior person, she should not be sent to the capitol with a younger employee who would do the presentation of material she had worked hard to develop. That would diminish her status, she felt. The general manger knew the root of his headache.Questions:1.What do you think caused the conflict?2. What would you do to resolve the conflict if you were the general manager?矛盾冲突这位年长的中国女士投入极大的热情和精力开发产品.却在最后的关键时刻拒绝与年轻的同事一同去向议员做推介:当经理和同事问其原因.她并未做任何明确的回答:而当经理改变策略,不再直接询问原因,而是迂回地讲起自己的困境时,她才道出自己的顾虑。
sas线性回归分析案例(Case study of SAS linear regressionanalysis)linear regression20094788 Chen Lei calculates 2Southwest Jiao Tong UniversitySouthWest JiaoTong University-------------------------------------------------------------------Linear regression is divided into single linear regression and multiple linear regression.The model of unary linear regression isY=..0+..1X+ epsilon,HereXIndependent variable,YDependent variable,Epsilon is a random error term.It is usually assumed that the mean of the random error isZeroThe variance is(..2..2>0),..2 andXValue independent. If further assumptionsRandom errorThe difference follows a normal distribution, which is called a normal linear model. In general, withKAn independent variable and a dependent variable, dependent variableThe value can be broken down into two parts: part is due to theinfluence of the independent variable, that is to sayFunction as an argumentAmong them, the function form is alreadyKnow, but contain some unknown parameters; another part is due to other UN considered factors and random effects, that is, random errors.When a function is a linear function of unknown parameters, it is called a linear regression analysis model.If there are multiple dependent variables, the regression model is:Y=..0+..1X1+..2X2+.+..IXi+..Due to the linear dieThe model contains random errors, so the regressionThe straight line reflected by the model is uncertain. The main purpose of regression analysis is to derive from theseIn the uncertain straight line, find a line which can best fit the original data information and describe it as a regression modelRelationship between independent variables,The straight line is called the regression equation.throughOften in regression analysis, yesEpsilon has the most commonly used classical assumptions.1. The expected value of epsilon isZero2, epsilon for allXFor example, it has the same variance.3, epsilon obeys normal distribution and is independent of each otherVariable.Explanation of linear regression,This paperBased on examples.In the following example, there is a one element regression analysis, and another twoMeta regression analysis.Examples(Data analysis method_exercises2.4_page79)A company manager who knows about the monthly sales of a cosmetics in a cityY(unit: box) with the middle of the cityThe number of people who use the cosmetics..1 (unit: thousand persons) and their per capita monthly income..2 (unit: yuan) betweenIn a certain monthFifteenThree cities were surveyed to obtain the above views Measured values, such as tableTwo point one twoAs shown.surfaceTwo point one twoCosmetics sales dataCitySales volume (y)Number of people (x1)Income (x2)CitySales volume (y)Number of people (x1)Income (x2)OneOne hundred and sixty-twoTwo hundred and seventy-fourTwo thousand four hundred and fiftyNineOne hundred and sixteenOne hundred and ninety-fiveTwo thousand one hundred and thirty-seven TwoOne hundred and twentyOne hundred and eightyThree thousand two hundred and fifty-four TenFifty-fiveFifty-threeTwo thousand five hundred and sixtyThreeTwo hundred and twenty-threeThree hundred and seventy-fiveThree thousand eight hundred and two ElevenTwo hundred and fifty-twoFour hundred and thirtyFour thousand and twentyFourOne hundred and thirty-oneTwo hundred and fiveTwo thousand eight hundred and thirty-eight TwelveTwo hundred and thirty-twoThree hundred and seventy-twoFour thousand four hundred and twenty-seven FiveSixty-sevenEighty-sixTwo thousand three hundred and forty-seven ThirteenOne hundred and forty-fourTwo hundred and thirty-sixTwo thousand six hundred and sixtySixOne hundred and sixty-nineTwo hundred and sixty-fiveThree thousand seven hundred and eighty-twoFourteenOne hundred and threeOne hundred and fifty-sevenTwo thousand and eighty-eight SevenEighty-oneNinety-eightThree thousand and eightFifteenTwo hundred and twelveThree hundred and seventyTwo thousand six hundred and five EightOne hundred and ninety-twoThree hundred and thirtyTwo thousand four hundred and fiftyhypothesisYand..1,Linear regression relation is found between..2 ....=..0+..1....1+..2....2+..,..=1,2,... 15.amongIndependent and identically distributed... (0,..2)(One)Coefficient of linear regression..0,..1,Least squares estimation and error variance of..2..2 estimates, writes regression equations, and...Regression coefficientInterpret;(Two)The ANOVA table was used to explain the significance of linear regression test. Square of the coefficient of the complex correlation..2valueAnd explain its meaning;(ThreeSeparately seek..1 andThe confidence of..2 is95%Confidence interval;(Four)YesThe number of people tested by alpha =0.05 ..1 and income..2Sales volumeYIs the effect significant?Regression coefficientTest of general hypothesis test method ..1 andThe interaction of..2 (i.e...1..2) yesYIs the effect significant?;Data importEdit window inputThis questionTheData import code:TitleData analysis method_exercises2.4_page79"; / *Title, omission does not affect analysis results * /DataMylib.ch2_2_4;*First, a new logical library,Logical LibrariesMylibCreate data setCh2_2_4*/Input y X1 x2 @ @ /*@@; Represents a continuous input,YDependent variable,X1,X2Independent variable* /Cards; / *Start input data* /1622742450120180, 32542233753802131205283867862347, 1692653782819830081923302450, 1161952137Fifty-five532560252430402023, 37244271442362660103157, 20882123702605;*Missing data"."Otherwise, the corresponding set of data will be automatically deleted* /Run/*runStatement is used to illustrate all rows before the statement in the current procedure step* /PressF8After run,Open logical libraryMylibYou can see the new data setCh2_2_4.SASA variety of imports are provided According to the manner, for example: One,Read data from file,INFILEF:\Mylib\CH2_2_4.txt";TwoAnd the use of established data sets,Proc reg data=mylib.ch2_2_4;You can also import directly from outsideExcelOther ways. The program above is entered directly in the editbox.procedure callThe procedure to call in this questionyesProc regProcess.Proc regProcess isSASsystemMany regression analysis process of the system in the Except that it can fit the general linear regression model,A variety of optimal model selection methods and model checking methods are also provided.Among themOneTwo)ThreeThe results of multivariate linear regression analysis are mainly used. (Four) will use a linear regression analysisResults.(I)Yand..,Linear regression analysisProcReg*transferRegProcess use* /MOdel y=x1 x2;*Dependent variableYThe independent variable is X1,X2*/Run;ModelStatement: used to define the model's dependent variables, arguments, model options, and output options.Common options areSelection=,Specifies the variable selection method:FORWARD(forward input method),BACKWARDXiang HoushanDivision),STEPWISE(stepwise regression),ADJRSQ(modified multiple correlation coefficient criterion),CP(Cp criterionEtc..NOINTSaid, is often included in the modelNumber item;STBThe regression coefficient, output standard;CLIThe output of single predictive value, confidence interval; RResidual scores are performedAnalysis of results of the analysis and output; IOutput(XTX).1matrix.Format:MODELDependent variable name=Argument rankingTheseoption]Cases:Model y=x1 / x2 selection=stepwise / *; stepwise regression* /After running the program, get the results Parameter estimation table(One)Least squares estimation:= = (0,... 1,... 2) = (3.45261,0.49600,0.00920) Regression equation:Y=3.45261+0.49600..1+0.00920..2ANOVA table(TwoError variance estimate:... 2=MSE=4.74040Multiple correlation coefficientSquares:..2=0.9989(R-Square)Significance: from the value of the complex correlation coefficient, it can be seen that it is highly significantand..1,..2)Multiple correlation coefficient SquaresCan also passBy calculation:..2=SSR/SST=53845/53902=0.9989 (Three)Confidence interval:K+....t1..2 (N.P) s...)...0.975 (12) =2.17881 (via check) T distribution table obtained) You can also pass the functionY=TINV(P,DFObtain...1=0.496+/-2.179*0.00605Draw (Zero point four eight two eight ,Zero point five zero nine two )..2=0.0092+/-2.179*0.00096811,DrawZero point zero zero seven one ,Zero point zero one one three )(Two)YandLinear regression analysisProcRegData=mylib.ch2_2_4; / *Direct reference data set* /Model y=x1;Run;(FourThe coefficient of multiple correlation is: Zero point nine nine one zeroX1YesYSignificant influence(Three)YandLinear regression analysis ProcRegData=mylib.ch2_2_4; / * Direct reference data set * /Model y=x2;Run;(Four)The coefficient of quadratic correlation is square: Zero point four zero eight seven,X2YesYThe effect is not significant(Four)YandLinear regression analysis of... Data mylib.ch2_2_4;Set mylib.ch2_2_4;*Read data set* /Z=x1*x2;*New argumentZ*/Run;Proc reg;Model y=z;*Argument isZ*/Run;(Four)The square of the complex correlation coefficient is: Zero point nine zero three zero,X1X2YesYSignificant impactLinear regression analysis using modules (I)Linear regression analysisstart-upSASSystem, and click "solution" in turn"->"Analysis"->"Analysts"And then click "file""->Open, open the data set"Ch2_2_4.sas7bdat",FigureVariable listindependent variable dependent variableThe value of confidence a Click "Statistics" in turn" ->"Regression"->"Simple" pop-up dialog boxOne)Variable settingsOn the left hand side of the variables listCentral ElectionYClick"DependentThe button is set as dependent variable ;SelectedX2Click"Explanatory"Button, set it as an argument."ModelIn the settings bar, select by default" Linear"" means linear regression.(Two)TestsSet upClick"TestsButton to eject the dialog boxConfidence defaults toZero Point Zero FiveMay change.Click"OK".(Three)PlotsSet upClick"Plots"Button" pops up the plotting Options dialog boxChoice"ResidulTab."Studentized"Represents a student residual," Normal quantile-Quantile plot"Stands for normality."QQGraph check.Settings as shownResidual columnNormal inspectionTest barVariable columnvariance analysisparameter estimationClick"OK"And click on the main settings dialog box "OK",ThereforeAnd get resultsregression equationClick"Analysis (new, project) "Dialog box""Plot of RSTUDENTVsX2"" pops up the residual graph Dialog boxClick again"Plot of RSTUDENTVsNQQ"Pop upQQchartThe normal state of the residual by the studentQQIt can be seen that the model error term is approximately normal distribution.Independent variable selection(two) manyLinear regression analysisstart-upSASSystem, click "solution" in turnResolution"->"Analysis">"Analyst", and then click "file"" ->Open, open the data set"Ch2_2_4.sas7bdat".Click "Statistics" in turn"->"Regression"->"Linear" pop-up dialog boxSelect argumentX1,X2Dependent variableY. Click"ModelButton to eject the dialog boxIn"Selection method"Column" provides independent variable selection, such as: Stepwise selectionExpressStep regression method;Adjusted R-SquareIndicates the modified multiple correlation coefficient criterion. This example selectsStepwise regression method. Click"OK".PlotsThe setting is similar to the one element regression analysis. Last click"OK".Multivariate linear analysis:Residual plotQQIn addition, click"Analysis (New project)"Dialog box"Code"Pop-up program dialog box.The above process is mainly explained by linear regressionSASThe use of the system, and therefore less analysis of the results. For example: byQQAs can be seen from the graphspotApproach a straight line, IndicateError termApproximatejuststateDistribution.。
基本的分析框架主要有:1 Cost-Benefit成本效益分析比如一个饮料制造商考虑是否应该上一个订单自动处理系统这时候就需要采用成本效益分析;Cost of new automated orderprocessing system would involve: HW/SW devel opment cost, marketing to supportthe new program, customer service,而Benefitside的话,我们需要考虑new client business generated以及incremental business that could be drawn from existingcustomers;2Internal/External分析比如我们的运输业客户最近的capacity utilization rate下降了;这时候我们需要考虑内外部因素,内部因素可能有:scheduling and routing system,sales effort, capacity management process出问题了,外部因素可能是整个行业都在面临产能利用率不高的问题,或者是竞争对手采取了新的定价政策,把我们的顾客抢走了等等;常用的案例分析框架有:一.BusinessStrategy1.市场进入类市场分析市场趋势,市场规模,成熟vs. 新兴,定价趋势,市场壁垒等CompetitorMarket share,strength/weaknessConsumer Purchasing criteria,customer segment, profitabilityCompany/CapabilitiesChannelCost市场细分很重要,niche marketBusiness ModelRegulation/Restriction2.行业分析类市场市场规模,市场细分,产品需求/趋势分析,客户需求竞争竞争对手的经济情况,产品差异化,市场整合度,产业集中度顾客/供应商关系谈判能力,替代者,评估垂直整合进入/离开的障碍评估公司进入/离开,对新加入者的反应,经济规模,预测学习曲线,研究政府调控资金金融主要金融资金来源,产业风险因素,可变成本/固定成本3.新产品引入类4C Customer, Competition, Cost,Capabilities市场促销,分销渠道渠道选择,库存,运输,仓储STP分析和4PProduct, Price, Place, Promotion4.定价Product/ServiceCustomer Purchasing criteria,Price sensitive or notCompetitor/SubstituteSupply/Demand基于成本定价法cost based基于竞争对手定价法competitor based基于价格控制成本法price based二.Business Operation1.利润改善型Revenue, Cost分析,到底是销售额下降造成,还是成本上升造成还是Both 如果销售额下降,先弄清楚Revenue Stream,哪一块下降然后看Price and Volume,接下去看4P是价格过高产品质量问题分销渠道问题还是promotion的efficacy有问题如果成本上升,看固定成本or可变成本是否有问题固定成本过高,设备是否老化,需要关闭生产线、厂房,降低管理者工资等,可变成本过高,看原材料价格是否上升,有没有降低的可能,switch suppliers 还是人员工资过高,需要裁员等成本结构是否合理,哪一部分同竞争者相比偏高产能利用率如何闲置率2. Dealer和分销渠道设计Direct Sales or DealerRelationship with dealer Pricediscount, payment terms, commissionrate, training, tech support等Capacity/ProductionCustomer Who LocationsDistribution costRegional Distribution center三.M&A类收购对象对于我们的价值value to us financial performance,capacity/production,customer base, sales coverage, channel resource, sourcing & distributionnetwork我们管理收购对象的能力ability to manage JV/acquisition,equity structure, management background等Legal, Financial, Management5CCharacter, Capacity, Capital,Conditions, Competitive AdvantageNPV计算,现金流投资回报率ROIC协同效应是否存在产能增加导致成本下降Product line更齐整客户群更广泛Risk Culture Tech IntellectualProperty Management Fit Regulation四.Market SizingSupply/DemandTop down/Bottom upBreakdown方法:Demographic, Application, Age,Income Level, Tier of City etcExtra stepAdvance的分析框架:1.收入情况如果销售额持平而利润下降,就有必要审核收入和成本;建议一般先从收入入手,确定和理解收入的来源,这样才能对成本做出合理的判断如果销售额持平而市场份额一直相对稳定,可能意味着整个行业的销售额同样变化不大,而且你的竞争对手也面临着同样的问题如果销售额下下降,就可以分析:市场需求总体水平是否下降;现有市场是否已经趋于成熟,或者你的产品是否过于陈旧;替代品导致市场份额缩减如果销售额上升和市场份额也有所增加,而利润持续下降,那么就要分析是降价造成的,还是成本上升造成的,如果问题不是出在成本上,那就要研究产品组合情况,看看利润率是否发生变化customer segment, margin, unmet needs2.利润情况如果导致利润降低的原因是收入减少,那就集中分析市场营销和分销渠道如果导致利润降低的原因是费用攀升,那就集中分析运营和财务问题,诸如销售成本,人工成本,原材料成本,租金,运输成本和营销费用等等如果收入增加而利润下降,则研究和分析:成本的变化;额外的开销;价格的变化;产品的组合;客户需求的变化3.产品情况如果产品处于新兴期,那就集中分析研发、竞争和定价的问题如果产品处于成长期,那就集中分析市场营销和竞争的问题如果产品处于成熟期,那就集中分析制造、成本和定价的问题如果产品处于衰退期,那就应定义细分市场,分析竞争对手的举措或考虑退出策略4.定价情况如果价格降低,销量会上升,但可能超出满负荷生产能力,这时候如果加班加点将会使成本飙升,从而影响利润率如果价格过高,销量会下降,导致开工率不足,库存积压,同样会导致成本上升价格战是有害的,而高价格会使得所有厂商收益以上三套框架:基本框架,常用框架和高级框架,可以配套使用,具体问题具体分析,切忌生搬硬套;需要融会贯通,才能从容应对;案例分析面试常用框架:波特五力潜在进入者、替代品、供应方、顾客方、竞争程度,用于分析某个行业的竞争格局和是否具有吸引力,SWOT分析优势、劣势、机遇、威胁,用于分析一家企业在特定商业环境内的竞争能力、5P产品、价格、渠道、促销、人,用于市场营销领域的分析、4C企业、竞争者、顾客、渠道,侧重于市场营销中新产品引入的分析、Profit breakdown成本=固定成本+可变成本,收入=销售价格,用于分析利润上升、下降,或短期内是否有利可图的问题,也用于销售分析、SMART目标必须是具体的、可以衡量的、可以达到的、和其他目标具有联系的、有时间限制的,用于目标分解和目标分析、PDCA计划、实施、检查、调整,用于控制产品质量管理,也可用于方案执行过程中的目标即时调整第一阶段:环境分析该企业属于什么行业;影响该行业、该企业及其营销活动的——1.政治、法律因素2.经济因素3.社会-文化因素4.技术因素5.环境趋势、变化为该行业、企业、及其营销活动提供了何种机遇、威胁第二阶段:行业与竞争分析1.有何与之竞争的其它行业2.本企业在行业中的相对规模如何3.在市场占有率、销售额、获利性上与其他同行企业比较如何4.在财务比率分析上与其它企业比较如何关键财务比率分析指标:4一l获利性比率①毛利率=销售额-销货成本/销售额销货成本=期初存货十购货净额-购货退还及折让-购货折扣十购货运费可供销售的商品成本②净利率=税后利润/销售额③资产回报率=税后利润/总资产④普通股收益率=税后利润/股东总资本4—2变现性比率①流动比率=流动资产/流动负债②速动比率=流动资产-库存/流动负债③库存比营运资本=库存/流动资产-流动负债4—3杠杆比率①资产负债率=总负债/总资产②负债对股东权益比=总负债/股东总权益③长期负债对股东权益比=长期负债/股东总权益4—4营运比率①总资产周转率=销售额/总资产②固定资产周转率=销售额/固定资产③库存周转率=销售额/库存5.主要竞争者是谁6.市场份额在竞争者间怎样分配7.这些竞争者的竞争地位如何如市场领导者、挑战者、追随者、补缺者8.竞争者的侵略性及其趋势如是否可能辨认快速进入者9.主要竞争者在什么基础上进行竞争该企业面临的主要竞争是什么如他们的差异性优势是什么它可维持吗它如何由营销活动所支持10.主要竞争者的背景、策略及营销组合第三阶段:企业分析1.企业的目标是什么,是否清晰陈述可以达到吗2.企业的优势,劣势3.企业组织结构中有何现实的,潜在的破坏性冲突4.企业的营销组织是如何构造的第四阶段:市场分析一、市场结构1.市场规模2.市场规模趋势增加或减少,多快3.市场如何构成,如市场细分二、消费者1.谁是顾客2.顾客是什么样的3.他们购买该产品/服务的目的4.他们在产品/服务之中寻求何种特性5.其购买过程6.购买时的影响因素7.对该产品/服务的感受8.对替代品的感受第五阶段:营销活动分析1.营销活动的目标;它是否明确陈述;它与企业目标是否一致;是否构造了营销组织以达成这些目标2.营销活动中成问题的营销概念是否规划良好并有序展开是否与合理的营销原则一致否则有何好理由3.营销活动指向的目标市场它是否定义良好该市场是否足够大以使得为其服务有利可图它是否有长期潜力4.营销活动提供了何种竞争优势如无,如何在市场上获得竞争优势5.正在销售何种产品其宽度、深度,及企业产品大类的一致性是否需要新产品填充其产品大类有何产品需要清除各项产品的获利性6.用何促销组织促销活动与产品/产品形象一致吗如何改善促销组合7.使用何分销渠道是否在恰当的时间、地点提供产品以满足顾客需要该渠道在本行业是否典型是否更有效8.使用何种定价策略与其他公司同类产品比价格如何价格如何确定的9.营销研究与信息结合到营销活动中了吗整个营销活动是否内在一致第2部分分析问题及其核心因素——检查表1.本案根本问题次要问题2.何证据说其是中心事项该证据在多大程度上基于事实观点假设3.有何征兆说这是本案真正问题4.所定义问题如何相互联系他们互相独立,还是某一深层问题的结果5.这些问题在短期、长期会有何节外生枝第3部分形成、评价并记录备选行动方案——检查表1.有哪些解决问题的可行方案2.这些方案的限制或前提条件企业素质资源企业领导的倾向性社会责任法律制约3.对于该企业有哪些可行的主要方案影响、涉及这些方案的营销概念4.在企业所处形势下所列方案是否合理是否合逻辑这些方案与其营销计划目标、企业目标是否一致5.每个方案的成本与利益;优劣势第4部分选择、实施并记录被选行动方案——检查表1.在前述约束条件下哪个方案能最好地解决问题并最少地制造新问题2.为实施所选方案必须做那些工作3.方案牵涉到哪些人员其责任4.何时、何地实施5.可能的结果6.方案的成败如何测量。
成功的客户关系管理案例分析_客户关系管理经典案例客户关系管理顾名思义,是企业用来管理客户关系的工具。
客户关系管理是一个不断加强与顾客交流,不断了解顾客需求,并不断对产品及服务进行改进和提高以满足顾客的需求的连续的过程。
以下是店铺为大家带来的关于成功的客户关系管理案例,欢迎阅读!成功的客户关系管理案例篇1荷兰皇家航空KLM是世界上依旧用原有名称运营的历史最悠久的航空公司。
截至2010年3月31日,有31,787名雇员。
在2004年,KLM获得Gartner的欧洲CRM杰出奖。
此奖表彰此航空公司把CRM 战略性远景与务实执行相结合,把软件应用部署与文化变化相结合的能力。
从2001年初开始,包括KLM在内很多航空公司均面临需求疲软和不可预测的困难,还有来自低成本竞争的巨大压力。
KLM为此推行了一个广泛的成本消减规划。
但是KLM意识到单单减少成本不能确保长期公司长期健康发展。
整个航空产业的收入依旧在持续下滑,简单地提高飞机上座率并不能保证企业的生存。
KLM 决定从战略上聚焦到CRM,差异化自己(让自己与竞争对手区别开)。
KLM需要重新思考与客户的接触方式,在每个接触点上给予客户更加个性化和一致的体验,突显出与众不同。
但是首先它要克服来自内部的疑问,这些疑问部分来自1997年搁置的CRM项目。
在外部咨询师的帮助和ICT(Information, Communication and Technology)部门的领导下,KLM开展了广泛CRM的研究,研究从商业机会上讲对KLM意味着什么?ICT能力需要哪些更新才能实现目标?主要目标包括:·在所有交互点上实施更好的客户识别能力·改进客户数据收集,集成和使用·创建新构架的ICT平台,将替换现有的自然成长的ICT设施然而,这个提议对整个公司来讲太多了,难以消化。
最终这个由ICT驱动的大项目没有启动。
这归咎于过多的前期投资和缺少业务层面的支持。
宏病毒原理及案例分析屈立成4114005088什么是宏?所谓宏,就是一些命令组织在一起,作为一个单独命令完成一个特定任务。
Microsoft Word中对宏定义为:“宏就是能组织到一起作为一独立的命令使用的一系列word命令,它能使日常工作变得更容易”。
Word使用宏语言Word_Basic将宏作为一系列指令来编写。
Word宏病毒是一些制作病毒的专业人员利用Microsoft Word的开放性即word中提供的Word BASIC编程接口,专门制作的一个或多个具有病毒特点的宏的集合,这种病毒宏的集合影响到计算机的使用,并能通过.DOC文档及.DOT 模板进行自我复制及传播。
宏可使任务自动化,如果在Word中重复进行某项工作,可用宏使其自动执行。
宏是将一系列的Word命令和指令结合在一起,形成一个命令,以实现任务执行的自动化。
用户可创建并执行一个宏,以替代人工进行一系列费时而重复的Word操作。
事实上,它是一个自定义命令,用来完成所需任务。
宏的一些典型应用如:加速日常编辑和格式设置、组合多个命令、使对话框中的选项更易于访问、使一系列复杂的任务自动执行等。
Word 提供了两种创建宏的方法:宏录制器和Visual Basic 编辑器。
宏录制器可帮助用户开始创建宏。
Word 在VBA 编程语言中把宏录制为一系列的Word 命令。
可在Visual Basic 编辑器中打开已录制的宏,修改其中的指令。
也可用Visual Basic 编辑器创建包括Visual Basic 指令的非常灵活和强有力的宏,这些指令无法采用录制的方式。
VBAVisual Basic for Applications(VBA)是Visual Basic的一种宏语言,是微软开发出来在其桌面应用程序中执行通用的自动化任务的编程语言。
主要能用来扩展Windows的应用程式功能,特别是Microsoft Office软件。
也可说是一种应用程式视觉化的Basic 脚本。
案例摘要2007年8月,林砺加盟李宁,李宁开始做电子商务In 2007 August, Lin Li joined the lining, lining begin to do electronic business affairs2008年1月,李宁电子商务部正式成立In 2008 January, lining the electronic commerce department was formally established2008年4月,李宁在淘宝的官网上线In 2008 April, lining in Taobao website on line2008年底,李宁公司收编了400多家网络加盟店,总销售额达到2亿元By the end of 2008, lining company incorporated more than 400 network affiliate, total sales reached 200000000 yuan进入2009年,李宁对网络商店进行统一规划,为网店提供专用的CI和VI系统In 2009, the network shops lining the unified planning, for the shop to provide a dedicated CI and VI system目录一、李宁品牌概述 ······················································错误!未定义书签。