抗拔桩参数
- 格式:xls
- 大小:11.00 KB
- 文档页数:1
抗拔承载力设计值抗拔承载力是指承受拉力的能力,常用于土木工程中的地基设计。
在地基工程中,抗拔承载力设计值是指地基在受到外部拉力作用时的安全承载能力。
本文将探讨抗拔承载力设计值的计算方法和影响因素。
抗拔承载力设计值的计算方法一般遵循相关的规范和标准。
国际上常用的计算方法有欧洲规范、美国规范等。
这些规范中一般包含了土壤的力学性质参数、地基结构的几何参数、地下水位等因素,并给出了相应的计算公式和系数。
抗拔承载力设计值与土壤的力学性质参数有关。
土壤的抗拔承载力与土壤的黏聚力、内摩擦角等参数密切相关。
黏聚力是土壤颗粒之间的吸附力,内摩擦角是土壤颗粒之间的摩擦力。
这些参数可以通过室内试验或现场测试获得,然后根据相关的计算公式计算出抗拔承载力设计值。
地基结构的几何参数也会影响抗拔承载力设计值。
地基结构的几何参数包括桩身的直径、长度、埋深等。
一般来说,桩身的直径越大,长度越长,埋深越深,抗拔承载力设计值就越大。
这是因为较大的桩身可以提供更大的承载面积,较长的桩身可以提供更多的支持力,较深的埋深可以减小地基受力的影响。
地下水位也是影响抗拔承载力设计值的重要因素。
地下水位的高低会直接影响土壤的饱和度和有效应力。
一般来说,地下水位越高,土壤的饱和度越大,有效应力越小,抗拔承载力设计值就越小。
因此,在地基设计中需要考虑地下水位的影响,并进行相应的修正。
除了上述因素外,土壤的压缩性、地震作用、荷载大小等因素也会对抗拔承载力设计值产生影响。
土壤的压缩性决定了土壤的变形特性,地震作用会给地基结构带来动态荷载,荷载大小直接影响地基结构的受力情况。
在实际工程中,需要对这些因素进行综合考虑,确保抗拔承载力设计值的准确性和可靠性。
抗拔承载力设计值是地基工程中的重要参数,影响着地基结构的安全性和稳定性。
通过合理考虑土壤的力学性质参数、地基结构的几何参数、地下水位和其他因素,可以计算出准确可靠的抗拔承载力设计值,为工程的安全运行提供保障。
桩基抗拔试验桩基抗拔试验是土木工程中常用的一种试验方法,用于评估桩基的抗拔性能。
本文将从试验的目的、试验过程以及试验结果的分析等方面进行介绍。
桩基抗拔试验的目的是评估桩基在受到水平力作用下的抗拔能力。
这对于土木工程项目的设计和施工具有重要意义,可以帮助工程师确定桩基的合理布置和设计参数,从而保证工程的安全可靠性。
试验过程主要包括以下几个步骤。
首先,选择试验桩,并将其预埋在地下。
然后,在试验桩的顶部安装一套测试设备,包括测力计、位移计等。
接下来,通过施加水平力,对试验桩进行加载。
在加载过程中,需要记录下水平力和相应的位移数据。
试验的加载过程可以根据需要进行多次,以得到更加准确的数据。
最后,根据试验数据进行分析,计算出桩基的抗拔能力。
试验结果的分析主要包括两个方面。
首先,需要计算出桩基的抗拔力矩,即桩基在水平力作用下的力矩。
这个力矩可以通过测力计的读数和试验桩的几何参数进行计算。
其次,需要计算出桩基的抗拔能力,即桩基能够承受的最大水平力。
这个能力可以通过试验数据的分析得出,一般以试验桩开始失稳为标志。
桩基抗拔试验的结果对于土木工程项目的设计和施工具有重要意义。
首先,可以根据试验结果评估桩基的抗拔能力,从而确定桩基的合理布置和设计参数。
其次,可以根据试验结果判断桩基的稳定性,从而采取相应的加固措施。
最后,可以通过试验结果对桩基的设计方法和理论进行验证和完善,提高桩基设计的准确性和可靠性。
桩基抗拔试验是土木工程中常用的一种试验方法。
通过对试验桩施加水平力,可以评估桩基的抗拔能力。
试验的过程需要记录下水平力和位移等数据,并进行分析计算,得出桩基的抗拔力矩和抗拔能力。
试验结果对于工程项目的设计和施工具有重要意义,可以帮助工程师确定桩基的合理布置和设计参数,保证工程的安全可靠性。
基桩抗拔检测报告《基桩抗拔检测报告》一、检测目的和依据基桩抗拔检测是为了评估基桩在受力状态下的抗拔性能,并根据相关国家标准和规范对其进行评价。
本次检测的依据主要包括《地基与地下工程基础设计规范》等相关标准。
二、检测对象和方法本次检测的对象是某工程项目中的基桩。
检测方法主要采用静力荷载试验,通过施加水平荷载来模拟实际使用条件下基桩的受力情况,并通过记录荷载-位移曲线,得出基桩的抗拔性能参数。
三、检测过程1. 检测准备:检测前,首先对基桩进行了清理和测量,确保基桩表面无明显污物和损坏,并且记录了基桩的尺寸、埋深等相关信息。
2. 试验装置搭建:根据试验需求,搭建起稳定的试验装置,保证水平荷载能够准确施加到基桩上。
3. 荷载施加:通过液压设备施加水平荷载,并根据试验方案逐渐增大荷载,直到基桩发生一定位移,或者达到规定试验荷载。
4. 数据记录与分析:在施加荷载的过程中,实时记录基桩的位移与荷载大小,并绘制荷载-位移曲线。
收集完整的试验数据后,进行数据处理和分析,得出基桩的抗拔性能参数。
四、检测结果及评价根据试验结果,得到了基桩的抗拔性能参数,包括极限抗拔荷载和相对沉降等指标。
通过与相关标准进行比较和评价,可以得出基桩抗拔性能的合格与否。
五、结论与建议本次基桩抗拔检测结果显示,该工程项目中的基桩具有良好的抗拔性能,并满足设计要求。
但为了进一步确保基桩的稳定性,建议在施工过程中加强对基桩的施工质量控制和监测,以及定期进行抗拔性能检测。
六、检测总结基桩抗拔检测是基础工程中的重要环节,对确保工程的安全和稳定性具有重要意义。
通过本次检测,可以充分评估基桩的抗拔性能,并得出合理的结论和建议,为后续的施工及工程实施提供参考依据。
抗拔桩和抗压桩的机理分析及承载力计算文章编号:100926825(2020 092020 8202抗拔桩和抗压桩的机理分析及承载力计算收稿日期:2020 211223简介:张正雨(19822,男,硕士,国家一级注册结构工程师,浙江大学建筑设计研究院,浙江杭州310027尹晔(19822,男,工程师,杭州市高速公路管理局,浙江杭州310016张正雨尹晔摘要:通过分析抗拔桩与抗压桩桩周土在桩身部位及桩端部位应力路径的不同,阐述了抗拔桩和抗压桩不同的荷载传递机理,在计算黏土地基中钻孔灌注桩的抗拔承载力时,针对抗压桩和抗拔桩侧阻在桩身部位和桩端部位土体应力的不同,引入了两个侧阻折减系数,并通过实例验证了公式的可行性。
关键词:抗拔桩,抗压桩,侧阻,增强效应,应力路径中图分类号:TU473.1文献标识码:A现今,随着高层建筑和基础工程的大量涌现,桩基的使用越来越多。
对于抗压桩的荷载传递机理及承载力的计算,前人已做了大量的研究[1]。
大量的文献证明[2,3],抗拔桩和抗压桩的荷载作用机理是有所不同的,它们的桩侧摩阻力也是有所差异的。
深入研究抗拔桩的受力性状,剖析它与抗压桩之间存在的差异,能更好的指导抗拔桩的施工和设计,这是本文研究的意义所在。
1土的应力路径与桩的荷载传递机理1.1桩身部分土层的应力路径无论是抗拔桩还是抗压桩,土体单元在受到剪切后,水平有效应力都不再是主应力,主应力的方向发生了旋转。
剪应力越大,旋转角就越大。
Roscoe (年[4]提出,在排水剪中:τσ′v =K ・tg φ(1其中,τ为施加的剪应力;σ′v 为竖向有效应力;K 为材料的常数;φ为σv ′和大主应力之间的夹角。
水平有效应力σ′r 的变化取决于土的应力应变性能,室内三轴试验证明[5]:一定密度的砂土,围压越小,剪胀越明显。
当围压渐增到一定值时,砂土则表现为常体积,当围压增大时,则表现为剪缩。
对于一定密度的正常固结黏土,三轴剪切试验中都表现为剪缩,且围压越大,剪缩越明显。
一、桩参数桩外径d(m)桩内径d1(m)周长u(m)保护层厚度(mm)0.2500.78535A j(m2)A p1(m2)除去保护层d0(m)0.049062500.18换算截面模量W0(m3)换算截面惯性矩I0(m4)桩身配筋率ρg钢筋面积As(m2)0.0015917540.0001432580.65%318.91二、桩顶荷载效应组合值水平力标准值(kN)竖向力压力标准值(kN)竖向力拉力标准值(kN)51710三、土层参数素填土C(kPa)Ф(度)抗拔系数 λi10150.7q sik(kPa)q pk(kPa)L(m)25150 1.7四、单桩竖向极限承载力标准值Q uk=Q sk+Q pk=uΣq sik L i+q pk A j=40.7kN五、单桩抗拔极限承载力标准值T uk=λi q sik u i L i=23.4kN 六、单桩水平承载力特征值(由水平位移控制)桩身配筋率ρg>0.65%混凝土弹性模量C30 Ec(N/mm2)钢筋弹性模量HRB335Es(N/mm2)αE=E s/E c30000200000 6.67桩身抗弯刚度EI(kN*m2)桩身计算宽度b0(m)36530.7875桩顶水平位移允许值X0a(m)水平抗力比例系数m(MN/m4)桩的水平变形系数α(m-1)灌注桩计算0.01141.25桩深取值(m )换算埋深αh (m )桩顶水平位移系数Vx1.82.253.9=13.63kN七、单桩水平承载力特征值(由桩身强度控制)桩身配筋率ρg <0.65%桩截面模量塑性系数γm混凝土弹性模量C30ft (N/mm 2)桩顶最大弯矩系数V M 桩身换算截面积A n (m 2)21.430.560.050869635桩顶竖向力影响系数拉力ζN桩顶竖向力影响系数压力 ζN 10.5压力时单桩水平承载力特征值 R ha =11.21kN 拉力时单桩水平承载力特征值 R ha =9.86kNnt m NgMt m haA f NWf R 1)2225.1(75.00axhax EIR 0375.0。
抗拔桩检测⽅案知识讲解如有侵权请联系⽹站删除南京⾄⾼淳城际轨道禄⼝机场⾄溧⽔段试验段⼟建⼯程(DS7-TA05标)桩基检测⽅案编制:审核:审批:中铁⼗四局集团有限公司⼆○⼀四年⼗⽉⼆⼗⽇桩基检测⽅案1⼯程概况1.1⼯程名称:南京⾄⾼淳城际轨道禄⼝机场⾄溧⽔段试验段⼟建⼯程(DS7-TA05标)1.2建设单位:南京地铁建设有限责任公司1.3建设地点:⾦龙路站~⽆想⼭站1.4⼯程概况:本标段⼆站⼀区间,⾦龙路站、⽆想⼭站和⾦龙路站~⽆想⼭站区间。
⾦龙路站采⽤Φ1000钻孔灌注桩,混凝⼟等级为C35P8⽔下,有效桩长5m。
设计抗拔承载⼒特征值为:1000KN(KBZ1~9a、15~22a)、2400KN(KBZ10~14)。
⾦龙路站桩数总计127根。
⽆想⼭站采⽤Φ1000钻孔灌注桩,混凝⼟等级为C35P8⽔下,有效桩长5m。
设计抗拔承载⼒特征值为:1000KN(KBZ1~KBZ5)、2400KN(KBZ6~KBZ25)。
⽆想⼭站桩数总计90根。
⽆想⼭站抗拔桩平⾯布置见图2-2。
1.5检测项⽬及数量:《建筑基桩检测技术规范》JGJ106-2014《建筑地基基础处理技术规范》JGJ79-2012《建筑基桩技术规范》JGJ94-2008《建筑地基基础检测规程》DGJ32/TJ 142-2012《建筑地基基础设计规范》GB50007-2011《钻孔灌注桩成孔、地下连续墙成槽质量检测技术规程》DGJ32/TJ117-2011《南京轨道交通⼯程建设质量检测项⽬和频率规定》2014年版本⼯程设计图纸1.7检测任务:低应变检测:通过低应变动测对试桩完整性进⾏检测,以确定试桩的完整性和可靠性。
抗拔检测:测试试验桩单桩竖向抗拔最⼤值,提供单桩竖向抗拔承载⼒极限值和特征值;测定单桩竖向荷载作⽤下的荷载和变形;判定单桩竖向抗拔承载⼒是否满⾜设计要求。
2检测⽅法2.1静载抗拔检测2.1.1检测装置及安装⽰意图试验装置主要包括千⽄顶加载部分和桩顶位移观测两部分。
抗拔桩抗拔试验检测方案一、工程概况本工程主体结构西起,东至,包括敞开U型槽段和暗埋段两个部分,其中敞开U型槽段范围为K1+538~K1+735及K2+640~K2+848共405m,暗埋段范围为K1+735~K2+640共905m。
根据设计,暗埋段结构完成后覆土厚度至少为5m。
隧道结构位于段因结构顶为桥覆土较浅,为满足结构抗浮要求,设计在U型槽及段结构底板底设置了抗拔桩。
全标段共计抗拔桩201根,抗拔桩为直径800mm的钻孔灌注桩。
根据设计要求,抗拔桩应进行单桩竖向抗拔静载试验,单桩竖向抗拔极限承载力标准值为2500KN,检测抽取数量不少于总桩数的1%,且不少于3根。
抗拔桩单桩竖向抗拔静载试验将由业主指定的第三方检测单位实施,根据第三方检测单位要求特制定本方案。
二、编制依据1、基坑、隧道结构设计图纸及相关试验检测设计联系单。
2、业主指定的第三方试验检测方案。
3、地质勘查报告。
4、业主及监理的相关要求。
5、其他关于桩基检测的行业标准及规范。
三、试验1、试验桩的施工要求为避免静载试验平台位于基坑底部影响基坑整体安全,将试验平台设置于现状施工地坪标高,鉴于此,将需做抗拔静载试验选取的3根抗拔桩桩顶接顺至地面,具体桩长长度由现场试验桩基定位确定。
2、第三方检测单位试验前相关意见试验抗拔桩属抽检性质,抽检桩将根据实际施工情况及施工部位等因素综合确定,故具体单桩地表极限抗拔竖向承载力换算值将在试验桩位置确定后再行计算。
此外,根据地质勘查报告地表表层5m内土层为杂填土或素填土,未有相应的地质参数,根据工程经验判断其抗摩阻力极小,故忽略不计。
3、试验前的准备工作根据第三方检测单位的抗拔桩试验方案要求,项目部将安排实施如下工作内容:(1)、抗拔试验采用支承台,支承台要求高出施工地面1m,试验桩桩顶面平整与施工地面平齐,工程支承台顶面为水平,并保证试验桩周围4m半径范围内场地平整。
工程支承台大小根据试验极限要求并参考现场地质条件,拟采用3m×2m×1m(长×宽×高)的钢筋混凝土结构,混凝土强度等级C30,支承台内设置3层Φ12mm@100×100mm的钢筋网片,钢筋保护层为5cm(后见附图所示),支承台底基础用0.5m塘渣层压实处理,处理面积为4m×3m。
地下室抗浮中抗拔桩如何验算与设计抗浮设计中常用的抗浮措施有结构配重、抗拔桩、抗浮锚杆等。
结构配重包括地下室顶板配重和地下室底板配重,原则上于抗浮荷载不太大的情况;当浮力较大时一般采用抗拔桩和抗浮锚杆等较小构件抗浮。
不同的抗浮措施有其各自的优缺点,适合不同的水文地质、工程地质条件。
当地质条件较差较佳或基础埋深不能增加时,极大结构工程师采用的抗浮措施是抗拔桩或抗浮锚杆。
此外不同的抗浮措施上部对上部结构中也会产生一定的影响,例如对高、低层间的沉降和结构底板内力的分布等,从而影响工程造价和建筑物用到的使用功能。
抗拔桩有等截面抗拔桩,扩底抗拔桩。
(1)等截面抗拔桩破坏模式归纳起来有沿桩土界面的剪切破坏、桩侧受热的倒锥形破坏和复合破坏3种(见下图)。
桩土界面的剪切破坏是界面既定工程中最常见的破坏模式,桩侧土体的倒锥形破坏往往发生在软岩中的短粗灌注桩,复合破坏发生在硬质粘土中的灌注桩,且桩侧面较为粗糙,桩与土体界面的粘结力较大,倒锥形部分的土体自重不至于破坏桩土界面的粘结力。
对等曲面抗拔桩抗拔力计算通常采用缆线沿桩、土界面的剪切破坏模式。
(2)扩底抗浮桩扩底抗浮桩相对于等曲率抗浮桩最小值而言,其受力机理更复杂,由于目前形成的基本共识包括:①扩底抗浮桩上浮时,桩应力摩阻力与扩大头挤压上部土体消除的侧的发展并不同步,在扩大头上部侧摩阻力以后发展到极限时,扩大头端部对土体的挤压应力只发展一小部分,同时,该部分应力还将随着桩体变形的增加而不断增大。
②扩底抗浮桩极限抗浮力随深度变化有一临界值h,当桩长>h时,桩长的增加并不能导致极限抗浮力的显著增加,当桩长<h时,极限抗浮力随桩长的增加而快速增大。
③扩底抗浮桩破坏时,其破裂面较等截面抗浮桩复杂,其破裂面不仅与土体性质、埋深和施工方法有关,还与扩大叶紫珠形式有关,主要用途其主要破裂面类型包括圆柱形破裂面、喇叭形破裂面及圆柱形冲剪式破裂面等。
因此对扩底抗浮桩抗拔力计算方法有圆柱面剪切法、圆柱形破裂面法和裂痕喇叭形破裂面法(见下图)。
抗拔桩和抗压桩静载试验及结果分析随着我国城市建设和施工技术的发展,各种高层建筑和大型地下工程迅猛发展,鉴于竖向承载和变形的要求,桩基础成为工程上首选的深基础形式。
近年对于桩基础中抗压桩的受力性能已有较多研究,而抗拔桩的受力性能更多的是参考抗压桩经验,文中通过理论知识及实验分析,对试桩分别进行单桩竖向抗压与抗拔静载试验,从而分析对比两种桩型的受力情况及其差异性,得出了不同的荷載作用机理。
成果可作设计施工参考。
标签:抗压桩;抗拔桩;载荷试验;受力性状;异同性建筑物基础中采用的抗拔桩和抗压桩虽然荷载传递过程相似,但荷载的作用方向则相反,抗压桩指向岩土体,抗拔桩背离岩土体,这就使得抗拔桩与抗压桩在承载力构成、参数取值和破坏性质等方面均存在差异。
相对于抗压桩,抗拔桩的研究尚不够深入。
迄今为止,抗拔桩设计方法仍处于借鉴抗压桩设计方法阶段,即引入一个经验抗拔系数进行设计,使得抗拔桩的理论研究远远落后于工程实践。
因此,研究抗压桩和抗拔桩的受力性状是十分重要的,剖析二者存在的差异性,才能更好地指导桩基设计和施工。
1、单桩竖向抗压静载试验单桩竖向静载试验是指将竖向荷载均匀的传至建筑物基桩上,通过实测单桩在不同荷载作用下的桩顶沉降,得到静载试验的曲线或等曲线,然后根据曲线推求单桩竖向抗压承载力特征值等参数。
目前,绝大多数静载试验是为工程验收提供依据,大多数为工程验收提供依据的静载试验,可按设计要求确定最大加载量,不进行破坏试验,即加载至预定最大试验荷载后终止加载。
目前大多数试验采用压重平台反力装置,将大于最大试验荷载的荷重在试验开始前一次性加上平台,试验时采用油压千斤顶分级加载,堆载则采用混凝土块作荷重,压重宜在检测前一次加足,并均匀稳固地放置于平台上,如图 1 所示。
试验加载采用慢速维持荷载法,即逐级加载,每级荷载达到稳定标准后施加下一级荷载,直至达到最大试验荷载,然后分级卸载至零,若桩身破坏则试验结束。
2、单桩竖向抗拔静载试验根据设计与规范要求,最大试验荷载3000kN,场地地基承载力较小,不满足反力条件,故需要在试验桩两侧各补1根反力桩,试验前需要进行主梁的刚度计算,确保满足最大试验荷载要求,加载方式为慢速法。
一、桩基承载力的计算公式1. 单桩承载力计算公式:Qs = Qsk + Qp其中,Qs为单桩承载力;Qsk为极限承载力;Qp为桩身抗拔力。
2. 极限承载力计算公式:Qsk = 1.2×γD×L×fck其中,γ为桩身材料重度;D为桩径;L为桩长;fck为桩身材料抗压强度标准值。
3. 桩身抗拔力计算公式:Qp = 0.8×γD×L×fck其中,Qp为桩身抗拔力;其他参数与极限承载力计算公式相同。
二、桩基沉降的计算公式1. 桩基沉降计算公式:S = (Qs - Qp)×δp / (A×E)其中,S为桩基沉降;δp为桩身材料变形模量;A为桩身截面积;E为桩身材料弹性模量。
2. 桩基沉降计算公式(简化):S = (Qs - Qp)×δp / (πD²/4)其中,其他参数与桩基沉降计算公式相同。
三、桩基首灌混凝土计算公式1. 钻孔灌注桩首盘方量计算公式:V = (H1 - H2)×πD²/4 + πd²/4×h1其中,V为首盘方量;H1为桩孔底至导管底端距离;H2为导管初灌埋深;D为桩孔直径;d为导管内径;h1为桩孔内混凝土达到埋置深度时,导管内混凝土柱平衡导管外压力所需的高度。
2. 钻孔灌注桩首盘方量计算公式(简化):V = πD²/4×(H1 - H2) + πd²/4×h1其中,其他参数与钻孔灌注桩首盘方量计算公式相同。
四、桩基施工进度计算公式1. 桩基施工进度计算公式:P = (N × D × L) / (T × 24 × 60)其中,P为桩基施工进度;N为桩基数量;D为桩径;L为桩长;T为施工时间(小时)。
2. 桩基施工进度计算公式(简化):P = N × D × L / (T × 24)其中,其他参数与桩基施工进度计算公式相同。
常州市轨道交通1号线文化宫站文化宫地块桩基试桩方案编制:审核:审批:XXX有限公司二○一五年十二月六日一、编制依据《建筑基桩检测技术规范》JGJ106-2014《建筑地基基础处理技术规范》JGJ79-2012《建筑基桩技术规范》JGJ94-2008《建筑地基基础检测规程》DGJ32/TJ 142-2012《建筑地基基础设计规范》GB50007-2011《钻孔灌注桩成孔、地下连续墙成槽质量检测技术规程》DGJ32/TJ117-2011本工程设计图纸二、工程概况拟建的文化宫地块地下空间工程于常州市中心广场人防工程原址兴建,普遍设三层地下室,基坑平面呈梯形,基坑东西向长约150m,南北向长约170m,基坑周长约590m,总面积约21000m2。
整个基坑因施工需要划分为东西A、B两个分区,西侧A区面积为14624m2,东侧B区面积为6343m2。
既有中心广场人防综合工程平面呈不规则梯形,普遍设一层地下室,局部两层地下室。
根据既有部分纸质资料,中心广场地下室底板埋深约-7.5m~-8.2m(相对标高),对应绝对标高约-1.0m~-1.7m。
中心广场人防工程于上世纪兴建,为框架结构,顶板为板柱结构,顶、底板厚550mm。
水文地质情况:常州市北临长江,南濒太湖,区内地表水系极为发育,为太湖上游高水网区。
根据地下水埋藏条件,本区域地下水类型主要为潜水和承压水。
⑴潜水潜水主要埋藏于 1 填土、2 粉土、2 淤泥质粉质粘土层层中,局部区域以上层滞水形式存在,其主要补给源为大气降水、人工用水、地表迳流,主要以蒸腾作用排泄,勘察期间测得潜水稳定水位埋深为1.00~3.20m,稳定水位标高约为3.95~0.30m,平均水位标高(黄海标高)为2.35m。
本地区潜水水位年变化幅度约为±0.5m。
⑵承压水本次勘察深度范围内揭示的承压水分为第Ⅰ层承压水和第Ⅱ层承压水。
第Ⅰ层承压水主要埋藏于51、52、53、82、83层粉土、粉砂中,其主要补给源为大运河和长江水的侧向补给,排泄途径亦相同,水量较丰富。