活性炭吸附实验报告.docx
- 格式:docx
- 大小:25.74 KB
- 文档页数:5
1实验目的(1)通过实验进一步了解活性炭的吸附工艺及性能;(2)熟悉整个实验过程的操作;(3)掌握用“间歇法”、“连续流”法确定活性炭处理污水的设计参数的方法;(4)学会使用一级动力学、二级动力学方程拟合分析,对 PAC 的吸附进行动力学分析研究;(5)了解活性炭改性的方法以及其影响因素。
2实验原理2.1活性炭间隙性吸附实验原理活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,己达到净化水质的目的。
活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受到同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。
活性炭的吸附是上述两种吸附综合的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不在变化,而达到平衡,此时的动平衡称为活性炭吸附平衡而此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭的吸附能力以吸附量q表示。
q=V(C0−C)M=XM式中:q ——活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g;V ——污水体积,L;C、C ——分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L;X ——被吸附物质重量,g;M ——活性炭投加量,g。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化称为吸附等温线,通常费用兰德里希经验公式加以表达。
q=K·C 1 n式中:q ——活性炭吸附量,g/g ;C ——被吸附物质平衡浓度g/L;K、n ——溶液的浓度,pH值以及吸附剂和被吸附物质的性质有关的常数。
K、n值求法如下:通过间歇式活性炭吸附实验测得q、C相应之值,将式取对数后变换为下式:lgq=lgK+1n lgC将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为K。
活性炭吸附实验报告一、实验目的活性炭处理工艺是运用吸附的方法来去除异味、色度、某些离子以及难生物降解的有机物。
在吸附过程中,活性炭的比表面积起着主要作用,同时被吸附物质在溶剂中的溶解度也直接影响吸附速率,被吸附物质浓度对吸附也有影响。
此外,PH值的高低、温度的变化和被吸附物质的分散程度也对吸附速率有一定的影响。
本实验采用活性炭间隙和连续吸附的方法确定活性炭对水中某些杂质的吸附能力。
通过本实验,希望达到以下目的:1、加深理解吸附的基本原理;2、掌握活性炭吸附设备操作步骤,包括吸附工作过程和再生过程。
二、实验原理吸附是发生在固-液(气)两相界面上的一种复杂的表面现象,它是一种非均相过程。
大多数的吸附过程是可逆的,液相或气相内的分子或原子转移到固相表面,使固相表面的物质浓度增高,这种现象就称为吸附;已被吸附的分子或原子离开固相表面,返回液相或气相中去,这种现象称为解吸或脱附。
在吸附过程中,被吸附到固体表面上的物质称为吸附质,吸附吸附质的固体物质称为吸附剂。
活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。
活性炭吸附的作用产生于两个方面:一方面由于活性炭内部分子在各个方面都受着同等大小而在表面的分子则受到不平衡的力,这使其他分子吸附于其表面上,此过程为物理吸附;另一方面是由活性炭与被吸附物质之间的化学作用,此过程为化学吸附。
活性炭的吸附是上述两种吸附综合的结果。
当活性炭在溶液中吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡。
此时的动态平衡称为活性炭吸附平衡。
三、实验装置与设备(1) PH计或精密PH试纸、温度计;(2)大小烧杯、漏斗;(3)活性炭吸附柱;(4)自配废水;(5)恒位箱注:A、B都为活性炭活性炭吸附工艺流程图四、实验步骤1、配制水样,使其含COD50~100mg/L;2、用高锰酸盐指数法测定原水的COD含量,同时测水温和PH;3、在活性炭吸附柱中各装入活性炭并进行洗清,至出水不含炭粉为止;4、启动水泵,将配制好的水样连续不断地送入活性炭柱内,控制好流量;5、运行稳定5min后测定并记录各活性炭柱出水COD或浊度、色度;6、连续运行2~3h,并每隔60min取样测定和记录各活性炭柱出水COD、浊度或色度;7、停泵,关闭活性炭柱进、出水阀门,并进行活性炭再生;8、打开反冲洗阀门与反冲洗进水阀门;9、启动水泵,将清水以较大的速度送入活性炭柱内,带走活性炭中的杂质实现再生目的;10、运行5min后,停泵,关闭反冲洗阀门及进水阀门。
活性炭吸附实验实验报告[活性炭吸附实验] 活性炭吸附实验一实验目的1、通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作2、掌握用“间歇”法、“连续流”法确定活性炭处理污水的设计参数的方法二实验原理活性炭吸附过程包括物理吸附和化学吸附。
其基?原理就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。
当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。
当吸附和解吸处于动态平衡状态时,称为吸附平衡。
这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。
重量的活性炭吸附溶质的数量qe,即吸附容量可按下式计算:V(C0?C)qe?m式中 qe—活性炭吸附量,即单位重量的吸附剂所吸附的物质量,mg/g;V—污水体积,L;C0、C—分别为吸附前原水及吸附平衡时污水中的物质浓度,mg/L;m—活性炭投加量,g;在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化曲线称吸附等温线,通常用Fruendlich式加以表达。
qe?K?Cn式中 K、n—是与溶液的温度、pH值以及吸附剂和被吸附物质的性质有关的常数;K、n值求法如下:通过间歇式活性炭吸附实验测得qe、C相应之值,将式上式到对数后变换为下式:1lgqe?lgK?lgCn将qe、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为k。
三实验设备及用具1、振荡器一台;2、分析天平一台;3、分光光度计一台;4、250mL三角烧杯5个;5、100mL容量瓶6个;6、活性炭(粉状和粒状);7、亚甲基兰。
8、活性炭连续流吸附实验装置四实验步骤1、间歇式活性炭吸附实验①配制浓度为50mg/L的亚甲兰溶液于1000mL容量瓶中;②用十倍稀释法依次配制浓度为5mg/L、1mg/L、0.5mg/L、0.1mg/L、0.05mg/L、0.01mg/L的亚甲兰溶液于100mL容量瓶中;③用分光光度计测定其吸光度值(吸附波长为665nm),记录到表1中,绘制标准曲线;④取5个250mL的三角瓶,用天平分别称取100mg、200mg、300mg、400mg、500mg的粉活性炭投入三角瓶中,每瓶中加入100mL50mg/L 亚甲基兰溶液;⑤将三角烧瓶放在振荡器上振荡(震荡器的速度要由小变大,但也不能太大,否则会将活性碳粉粘到瓶壁上),当达到吸附平衡时停止振荡。
活性炭对溶液的吸附实验实验目的:本实验旨在探究活性炭在溶液中的吸附性能,并分析吸附过程中的影响因素。
实验材料:1. 活性炭:用于吸附实验的主要材料。
2. 磁力搅拌器:用于搅拌溶液。
3. 试管:用于混合和观察溶液。
4. 离心机:用于分离溶液和吸附剂。
5. 取样管:用于取出溶液样品。
实验步骤:1. 准备一定浓度的溶液A。
2. 在试管中加入一定量的活性炭。
3. 将溶液A倒入试管中,与活性炭充分混合。
4. 放置试管于磁力搅拌器上,以一定转速搅拌一定时间。
5. 将试管取出,使用离心机分离溶液和活性炭。
6. 通过取样管,取出一定量的溶液样品。
7. 对溶液样品进行分析,如测定溶液中溶质的浓度。
实验数据分析:根据实验结果,我们可以得出几个结论:1. 活性炭对溶液中的溶质具有较强的吸附能力。
2. 吸附效果与活性炭的质量,溶液浓度,搅拌时间等因素密切相关。
进一步讨论:1. 活性炭的吸附性能与其表面积和孔隙结构有关。
表面积越大,孔隙结构越复杂,吸附能力越强。
2. 溶液浓度越高,溶质与活性炭的接触面积越大,吸附效果越好。
3. 搅拌时间越长,溶质与活性炭的接触时间越长,吸附效果越显著。
实验应用:活性炭的吸附性能使其在很多方面有着广泛的应用:1. 水处理:活性炭可以去除水中的有机污染物和异味。
2. 空气净化:活性炭可以吸附空气中的甲醛、苯等有毒有害物质。
3. 医药领域:活性炭可以用于药物的吸附和分离。
总结:通过本实验,我们深入了解了活性炭对溶液的吸附性能,并研究了吸附过程中的影响因素。
活性炭在环境保护、水处理、医药等领域有着广泛的应用前景。
一、实验目的1. 了解活性炭的吸附特性及其在水处理中的应用。
2. 掌握活性炭吸附实验的基本原理和操作方法。
3. 研究活性炭对有机污染物的吸附效果,为实际水处理工程提供参考。
二、实验原理活性炭是一种具有高度发达的孔隙结构和巨大比表面积的吸附材料,广泛应用于水处理、空气净化等领域。
活性炭的吸附作用主要包括物理吸附和化学吸附两种形式。
物理吸附是指吸附质分子与活性炭表面分子间的范德华力作用,而化学吸附是指吸附质分子与活性炭表面分子间的化学键作用。
本实验采用间歇式静态吸附法,通过改变活性炭的投放量和吸附时间,研究活性炭对有机污染物的吸附效果。
三、实验仪器与材料1. 仪器:锥形瓶、分光光度计、磁力搅拌器、电子天平、温度计、pH计、移液管等。
2. 材料:活性炭、亚甲基蓝溶液、蒸馏水、氢氧化钠、盐酸等。
四、实验步骤1. 准备溶液:将亚甲基蓝溶液稀释至一定浓度,配制一系列不同浓度的溶液。
2. 准备活性炭:将活性炭用蒸馏水洗涤,去除杂质,然后在105℃下烘干至恒重。
3. 吸附实验:将活性炭粉末加入到锥形瓶中,加入一定量的亚甲基蓝溶液,置于磁力搅拌器上,设定不同吸附时间,观察溶液颜色变化。
4. 测定吸附效果:取吸附后的溶液,用分光光度计测定吸光度,计算吸附量。
5. 计算吸附等温线:以吸附量为纵坐标,溶液浓度为横坐标,绘制吸附等温线。
五、实验数据与分析1. 吸附量随吸附时间的变化:实验结果表明,活性炭对亚甲基蓝的吸附量随吸附时间的延长而增加,在一定时间内达到吸附平衡。
2. 吸附等温线:根据实验数据,绘制吸附等温线,发现活性炭对亚甲基蓝的吸附符合Langmuir吸附等温式。
3. 影响吸附效果的因素:实验结果表明,活性炭的吸附效果受温度、pH值、溶液浓度等因素的影响。
六、结论1. 活性炭对亚甲基蓝具有良好的吸附效果,可作为水处理中的吸附材料。
2. 活性炭的吸附效果受温度、pH值、溶液浓度等因素的影响,实际应用中需根据具体情况调整吸附条件。
活性炭静态吸附实验报告活性炭吸附实验报告实验3 活性炭吸附实验报告一、研究背景:1.1、吸附法吸附法处理废水是利用多孔性固体(吸附剂)的表面吸附废水中一种或多种溶质(吸附质)以去除或回收废水中的有害物质,同时净化了废水。
活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。
活性炭具有比表面积大、高度发达的孔隙结构、优良的机械物理性能和吸附能力,因此被应用于多种行业。
在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。
除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性能。
将活性炭作为重要的净化剂,越来越受到人们的重视。
1.2、影响吸附效果的主要因素在吸附过程中,活性炭比表面积起着主要作用。
同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。
此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。
1.3、研究意义在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。
活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。
二、实验目的本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。
希望达到下述目的:(1)加深理解吸附的基本原理。
(2)掌握活性炭吸附公式中常数的确定方法。
(3)掌握用间歇式静态吸附法确定活性炭等温吸附式的方法。
(4)利用绘制的吸附等温曲线确定吸附系数:K、1/n。
K为直线的截距,1/n为直线的斜率三、主要仪器与试剂本实验间歇性吸附采用三角烧瓶内装人活性炭和水样进行振荡方法。
3.1仪器与器皿:恒温振荡器1台、分析天平1台、分光光度计1台、三角瓶5个、1000ml容量瓶1个、100ml容量瓶5个、移液管 3.2试剂:活性炭、亚甲基蓝四、实验步骤(1)、标准曲线的绘制1、配制100mg/L的亚甲基蓝溶液:称取0.1g亚甲基蓝,用蒸馏水溶解后移入1000ml容量瓶中,并稀释至标线。
活性吸附法实验报告一、实验目的本实验旨在通过活性吸附法去除水中的某种有机物,探究活性吸附剂对水质净化的效果以及活性吸附法在水处理中的应用。
二、实验原理活性吸附法是利用具有活性表面的吸附剂吸附水中的有机物质,从而达到净化水质的目的。
活性吸附剂通常具有多孔结构,表面积大,能提供更多的吸附位点。
有机物质在水中以分子或离子形式存在,通过活性吸附剂表面的吸附位点吸附,并形成吸附层。
当吸附剂达到饱和时,需进行再生或更换。
三、实验步骤1. 准备实验所需材料和仪器:活性炭、水样、烧杯、量筒、磁力搅拌器、玻璃棒等;2. 将一定量的活性炭样品放入烧杯中;3. 用量筒准确量取一定体积的水样;4. 将水样倒入烧杯中,开启磁力搅拌器;5. 在规定的时间内进行搅拌,使活性炭与水样充分接触;6. 关闭磁力搅拌器,等待活性炭沉淀;7. 取下上清液,称量残留液的体积;8. 分析上清液中有机物的去除率。
四、实验结果根据实验步骤进行操作后,我们得到了一组实验数据。
下表是不同活性炭用量下的有机物去除率。
活性炭用量(g)有机物去除率(%)1 852 953 98五、实验分析从实验结果可以看出,活性炭的用量对有机物的去除率有明显影响。
随着活性炭用量的增加,有机物去除率逐渐提高。
这是因为活性炭具有较大的表面积和丰富的孔隙结构,能够提供更多的吸附位点,增加有机物与活性炭的接触面积,从而提高有机物的去除率。
在本实验中,当活性炭用量为3g时,有机物去除率达到了98%,接近100%,说明活性吸附法对某种有机物质具有较好的去除效果。
然而,活性吸附剂的使用成本较高,并且在饱和后需要进行再生或更换,增加了运行成本。
因此,在实际应用中需要权衡成本与效果之间的关系,选择合适的活性吸附剂用量。
六、实验总结通过本次实验,我们进一步了解了活性吸附法在水处理中的应用,以及活性炭对水中有机物的去除效果。
在实验过程中,我们注意到活性炭用量对有机物去除率有明显影响,适当增加活性炭用量可以提高有机物的去除率。
一、实验目的1. 熟悉吸附实验的基本原理和方法。
2. 掌握活性炭吸附实验的操作步骤和数据处理方法。
3. 分析活性炭吸附实验的影响因素,并优化吸附条件。
二、实验原理吸附是指吸附剂表面吸附质的过程。
活性炭作为一种常用的吸附剂,具有发达的孔隙结构和较大的比表面积,能有效去除水中的有机污染物、重金属离子等。
本实验采用活性炭吸附实验,研究活性炭对水中有机污染物的吸附效果。
三、实验仪器与试剂1. 仪器:锥形瓶、振荡器、滤纸、电子天平、移液管、比色计等。
2. 试剂:活性炭、有机污染物溶液、去离子水、pH缓冲溶液等。
四、实验步骤1. 配制一定浓度的有机污染物溶液,作为实验样品。
2. 称取一定量的活性炭,放入锥形瓶中。
3. 将配制好的有机污染物溶液加入锥形瓶中,搅拌均匀。
4. 将锥形瓶放入振荡器中,在一定温度下振荡一定时间。
5. 振荡结束后,用滤纸过滤溶液,测定滤液中的有机污染物浓度。
6. 计算活性炭对有机污染物的吸附率,并绘制吸附等温线。
7. 分析影响吸附效果的因素,并优化吸附条件。
五、实验结果与分析1. 吸附等温线根据实验数据,绘制活性炭对有机污染物的吸附等温线,如下所示:吸附等温线图由图可知,活性炭对有机污染物的吸附过程符合Langmuir吸附模型。
在低浓度范围内,吸附速率较快;在高浓度范围内,吸附速率较慢。
2. 影响吸附效果的因素(1)吸附剂用量:实验结果表明,随着吸附剂用量的增加,吸附率逐渐提高。
但吸附剂用量达到一定值后,吸附率变化不大。
(2)振荡时间:实验结果表明,在一定时间内,随着振荡时间的增加,吸附率逐渐提高。
但振荡时间达到一定值后,吸附率变化不大。
(3)pH值:实验结果表明,pH值对吸附效果有一定影响。
当pH值为中性时,吸附效果最佳。
(4)温度:实验结果表明,在一定温度范围内,随着温度的升高,吸附率逐渐提高。
但温度过高时,吸附率反而下降。
六、实验结论1. 活性炭对有机污染物具有良好的吸附效果,吸附过程符合Langmuir吸附模型。
实验五活性炭吸附试验活性炭是一种具有高度孔隙结构的碳材料,具有高比表面积和多孔结构,并具有良好的吸附性能。
它由于其特殊的气孔结构和化学性质,广泛应用于水处理、空气净化、有机物去除、金属离子吸附等领域。
本实验旨在通过活性炭吸附试验来研究其在水处理中的效果。
实验装置:1.活性炭:颗粒径为0.3~0.5mm的活性炭。
2.试剂:酚酞指示剂、盐酸、苯酚溶液。
3.实验设备:吸附瓶、滴定管、恒温水浴。
实验流程:1.将约50ml的苯酚溶液(质量浓度为10mg/L)倒入干燥的吸附瓶中。
2.向吸附瓶中加入适量的活性炭,摇匀后盖上盖子。
3.将吸附瓶中的溶液放入恒温水浴中,保持温度在28℃左右。
4.在水浓度为10-20mg/L时,每隔10分钟取出瓶子,取出20ml的吸附液,用滴定管滴入酚酞指示剂。
然后用0.01mol / L的盐酸溶液滴定至颜色由绿变至粉色,并记录所需的滴定量。
5.通过比较滴定前后pH值的变化,可以计算出吸附后的苯酚浓度。
实验结果:苯酚吸附曲线如图所示。
当吸附时间延长时,苯酚降解速度越快,吸附后的苯酚浓度逐渐降低,吸附容量逐渐增加,但饱和吸附容量有限。
当苯酚浓度为15mg/L时,吸附后液体中的苯酚浓度下降了50%以上。
当苯酚浓度为20mg/L时,吸附后液体中的苯酚浓度下降了约40%。
因此,活性炭有非常好的吸附效果,在处理水中的有机物方面可以发挥很大的作用。
实验结论:本实验通过对活性炭吸附实验的研究,证明了活性炭对苯酚的吸附能力很强。
在水处理过程中,通过使用活性炭可以使水中的污染物浓度大幅降低,促进水环境的改善。
因此,活性炭可以广泛应用于水处理、空气净化、有机物去除、金属离子吸附等多个领域。
1实验目的(1)通过实验进一步了解活性炭的吸附工艺及性能;(2)熟悉整个实验过程的操作;(3)掌握用“间歇法”、“连续流”法确定活性炭处理污水的设计参数的方法;(4)学会使用一级动力学、二级动力学方程拟合分析,对PAC 的吸附进行动力学分析研究;(5)了解活性炭改性的方法以及其影响因素。
2实验原理2.1活性炭间隙性吸附实验原理活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,己达到净化水质的目的。
活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受到同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。
活性炭的吸附是上述两种吸附综合的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不在变化,而达到平衡,此时的动平衡称为活性炭吸附平衡而此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭的吸附能力以吸附量q表示。
q=V(C0−C)M=XM式中:q ——活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g;V ——污水体积,L;C0、C ——分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L;X ——被吸附物质重量,g;M ——活性炭投加量,g。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化称为吸附等温线,通常费用兰德里希经验公式加以表达。
q =K ·C 1n式中:q ——活性炭吸附量,g/g ;C ——被吸附物质平衡浓度g/L ;K 、n ——溶液的浓度,pH 值以及吸附剂和被吸附物质的性质有关的常数。
K 、n 值求法如下:通过间歇式活性炭吸附实验测得q 、C 相应之值,将式取对数后变换为下式:lgq =lgK +1nlgC将q 、C 相应值点绘在双对数坐标纸上,所得直线的斜率为1/n ,截距则为K 。
实验五 活性炭吸附实验一 实验目的本实验采用活性炭间歇和连续吸附的方法通过本实验确定活性炭对水中所含某些杂质的吸附能力。
希望达到下述目的:(1)加深理解吸附的基本原理;(2)掌握活性炭吸附公式中常数的确定方法.二 实验原理活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。
在吸附过程中,活性炭比表面积起着主要作用。
同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。
此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。
活性炭对水中所含杂质的吸附既有物理吸附现象,也有化学吸着作用。
有一些被吸附物质先在活性炭表面上积聚浓缩,继而进入固体晶格原子或分子之间被吸附,还有一些特殊物质则与活性炭分子结合而被吸着。
当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。
当吸附和解吸处于动态平衡状态时,称为吸附平衡。
这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。
如果在一定压力和温度条件下,用m 克活性炭吸附溶液中的溶质,被吸附的溶质为x 毫克,则单位重量的活性炭吸附溶质的数量e q ,即吸附容量可按下式计算mx q e = (1) e q 的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 值有关。
一般说来,当被吸附的物质能够与活性炭发生结合反应、被吸附物质又不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,e q 值就比较大。
描述吸附容量e q 与吸附平衡时溶液浓度C 的关系有Langmuir 、BET 和Fruendlieh 吸附等温式。
在水和污水处理中通常用Fruendlich 表达式来比较不同温度和不同溶液浓度时的活性炭的吸附容量,即ne KC q 1= (2) 式中:e q ——吸附容量(mg/g);K ——与吸附比表面积、温度有关的系数;n ——与温度有关的常数,n>1;C ——吸附平衡时的溶液浓度(mg/L)。
活性炭吸附铬实验报告
实验目的:
本实验旨在通过活性炭吸附铬的方法,探究活性炭对铬的吸附性能及其影响因素。
实验原理:
铬是一种有毒有害物质,在环境中广泛存在。
活性炭是一种常用的吸附剂,具有较大的比表面积和孔隙度,可以吸附多种有机和无机物质。
在本实验中,我们将使用活性炭对铬进行吸附,并研究其吸附性能的影响因素。
实验材料和设备:
活性炭(50g)
去离子水(250ml)
铬酸钠溶液(10mL)
pH试纸
电子天平
玻璃漏斗
滴定管
恒温水浴器
离心机
显微镜
实验步骤:
1.将50g活性炭加入到一个干燥的烧杯中,用去离子水润湿活性炭,搅拌均匀。
2.将铬酸钠溶液加入到另一个烧杯中,用pH试纸测试其pH值,调节至7左右。
3.将pH为7的铬酸钠溶液缓慢滴加到活性炭上,同时不断搅拌,直到活性炭表面完全被覆盖。
4.将混合物转移到离心管中,离心5分钟,去除上层的液体。
5.用去离子水洗涤离心管中的固体沉淀物,使其干燥。
6.在显微镜下观察沉淀物的形态和大小。
7.用滴定管取出一部分沉淀物,加入到已知体积的去离子水中,用pH试纸测试其pH值。
根据铬的标准电极电位(E°),计算出溶液中铬的质量浓度。
实验结果:
通过显微镜观察,我们发现活性炭对铬的吸附效果非常好,几乎可以将所有的铬都吸附在表面上。
而对于不同的pH值,吸附效果也有所不同。
当pH值较低时,吸附效果较好;当pH值较高时,吸附效果较差。
水处理实验技术实验报告学校名称河海大学准考证号033109275026 姓名王宝佳课程代号60057 实验名称活性炭吸附试验实验日期2010.11 批报告日期成绩教师签名一、实验目的1.通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作。
2.掌握用“间歇法”、“连续流”法确定活性炭处理污水的设计参数的方法。
二、实验原理活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,已达到净化水质的目的。
活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受到同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。
活性炭的吸附是上述两种吸附综合的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不在变化,而达到平衡,此时的动平衡称为活性炭吸附平衡,二此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭的吸附能力以吸附量q表示。
式中q —活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g;V—污水体积,L;C0、C —分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L;X —被吸附物质重量,g;M —活性炭投加量,g;在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化称为吸附等温线,通常费用兰德里希经验公式加以表达。
式中q —活性炭吸附量,g/g;C —被吸附物质平衡浓度g/L;K、h—溶液的浓度,pH值以及吸附剂和被吸附物质的性质有关的常数。
K、h值求法如下:通过间歇式活性炭吸附实验测得q、C一一相应之值,将式取对数后变换为下式:将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n截距则为k。
由于间歇式静态吸附法处理能力低、设备多,故在工程中多采用连续流活性炭吸附法,即活性炭动态吸附法。
活性炭吸附实验报告一、实验目的本次实验的主要目的是探究活性炭对不同物质的吸附性能,了解影响活性炭吸附效果的因素,如吸附时间、溶液浓度、温度等,并通过实验数据计算活性炭的吸附量和吸附效率。
二、实验原理活性炭是一种具有高度孔隙结构和巨大比表面积的吸附材料。
其吸附作用主要基于物理吸附和化学吸附两种机制。
物理吸附是由于活性炭表面的分子间作用力(范德华力)而引起的,对各种物质均有一定的吸附能力,但吸附强度相对较弱。
化学吸附则是由于活性炭表面的官能团与被吸附物质之间发生化学反应而产生的,具有较强的选择性和特异性。
在一定条件下,活性炭对溶液中的溶质分子进行吸附,当达到吸附平衡时,吸附量与溶液的初始浓度、吸附时间、温度等因素有关。
通过测定溶液在吸附前后的浓度变化,可以计算出活性炭的吸附量和吸附效率。
三、实验材料与仪器1、实验材料活性炭:颗粒状,粒度为 20-40 目。
待吸附物质:甲基橙溶液、亚甲基蓝溶液、苯酚溶液。
其他试剂:盐酸、氢氧化钠、蒸馏水等。
2、实验仪器分光光度计:用于测定溶液的吸光度,从而计算溶液的浓度。
电子天平:用于称量活性炭的质量。
恒温振荡器:用于控制实验温度和搅拌溶液,以保证吸附过程的均匀性。
移液管、容量瓶、锥形瓶等玻璃仪器。
四、实验步骤1、活性炭的预处理将活性炭用蒸馏水洗涤数次,以去除表面的杂质和粉尘。
在 105℃的烘箱中烘干至恒重,备用。
2、标准曲线的绘制分别配制不同浓度的甲基橙溶液、亚甲基蓝溶液和苯酚溶液。
用分光光度计在各自的最大吸收波长处测定溶液的吸光度,绘制标准曲线。
3、吸附实验准确称取一定量的预处理后的活性炭,放入锥形瓶中。
加入一定体积和浓度的待吸附溶液,将锥形瓶放入恒温振荡器中,在设定的温度和转速下进行吸附。
在不同的时间间隔(如 5min、10min、20min、30min、60min 等)取出一定量的溶液,用分光光度计测定其吸光度,根据标准曲线计算溶液的浓度。
4、数据处理根据吸附前后溶液的浓度变化,计算活性炭的吸附量(q)和吸附效率(η)。
实验3 活性炭吸附实验报告
一、 研究背景:
1.1、吸附法
吸附法处理废水是利用多孔性固体(吸附剂)的表面吸附废水中一种或
多种溶质(吸附质)以去除或回收废水中的有害物质,同时净化了废水。
活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,
经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。活性炭具有比表面积
大、高度发达的孔隙结构、优良的机械物理性能和吸附能力,因此被应用于
多种行业。在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三
级处理,以除去水中的有机物。除此之外,活性炭还被用于制造活性炭口罩、
家用除味活性炭包、净化汽车或者室内空气等,以上都是基于活性炭优良的
吸附性能。将活性炭作为重要的净化剂,越来越受到人们的重视。
1.2、影响吸附效果的主要因素
在吸附过程中,活性炭比表面积起着主要作用。同时,被吸附物质在溶
剂中的溶
解度也直接影响吸附的速度。此外,pH 的高低、温度的变化和被吸附物质
的分散程度也对吸附速度有一定影响。
1.3、研究意义
在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,
以除去水中的有机物。活性炭处理工艺是运用吸附的方法来去除异味、某些
离子以及难以进行生物降解的有机污染物。
二、实验目的
谢谢欣赏
谢谢欣赏
本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附
能力。希望达到下述目的:
(1)加深理解吸附的基本原理。
(2)掌握活性炭吸附公式中常数的确定方法。
(3)掌握用间歇式静态吸附法确定活性炭等温吸附式的方法。
(4)利用绘制的吸附等温曲线确定吸附系数:K、1/n。K为直线的截距,1/n
为直线的斜率
三、主要仪器与试剂
本实验间歇性吸附采用三角烧瓶内装人活性炭和水样进行振荡方法。
3.1仪器与器皿:
恒温振荡器1台、分析天平1台、分光光度计1台、三角瓶5个、1000ml
容量瓶1个、100ml容量瓶5个、移液管
3.2试剂:活性炭、亚甲基蓝
四、实验步骤
(1)、标准曲线的绘制
1、 配制100mg/L的亚甲基蓝溶液:称取0.1g亚甲基蓝,用蒸馏水溶解后移
入1000ml容量瓶中,并稀释至标线。
2、 用移液管分别移取亚甲基蓝标准溶液5、10、20、30、40ml于100ml容
量瓶中,用蒸馏水稀释至100ml刻度线处,摇匀,以水为参比,在波长470nm
处,用1cm比色皿测定吸光度,绘出标准曲线。
(2)、吸附等温线间歇式吸附实验步骤
谢谢欣赏
谢谢欣赏
1、用分光光度法测定原水中亚甲基蓝含量,同时测定水温和PH。
2、将活性炭粉末,用蒸馏水洗去细粉,并在105℃下烘至恒重。
3、在五个三角瓶中分别放入100、200、300、400、500mg粉状活性炭,加
入200ml水样。4、将三角瓶放入恒温振荡器上震动1小时,静置10min。
5、吸取上清液,在分光光度计上测定吸光度,并在标准曲线上查得相应的浓
度,计算亚甲基蓝的去除率吸附量。
五、注意事项
1、实验所得的qe若为负值,则说明活性炭明显的吸附了溶剂,此时应调换
活性炭或调换水样。
2、在测水样的吸光度之前,应该取水样的上清液然后再分光光度计上测相
应的吸光度。
3、连续流吸附实验时,如果第一个活性炭柱出水中溶质浓度值很小,则可
增大进水流量或停止第二、三个活性炭柱进水,只用一个炭柱。反之,如果
第一个炭柱进出水溶质浓度相差无几,则可减少进水量。
4、进入活性炭柱的水中浑浊度较高时,应进行过滤去除杂质。
六、实验结果与分析
6.1实验结果
亚甲基蓝浓度与吸光度
序号 1 2 3 4 5
浓度mg/l
吸光度A1
亚甲基蓝标准曲线
y = 0.0052x + 0.0497
R2 = 0.9982
0.25
谢谢欣赏
谢谢欣赏
活性炭间歇吸附试验记录
lgK 1/n K n
吸附等温线
(1)根据测定数据绘制吸附等温线;
(2)根据Freundlich 等温线,确定方程中常数K,n;
活性炭投加量m 吸光度A 原亚甲基蓝浓度C0/(mg/L) 吸附平衡后 亚甲基蓝
浓度C/(mg/L) 平均值 logC C0-C (C0-C)/m Log(C0-C)/m
100mg
200mg
300mg
400mg
500mg
谢谢欣赏
谢谢欣赏
(3)讨论实验数据与吸附等温线的关系。
思 考 题
1.吸附等温线有什么现实意义?
(1)宏观地总括吸附量、吸附强度、吸附状态等作为吸附现象方面的特性;
(2)判断吸附现象的本质,如属于分配(线性),还是吸附(非线性);
(3)用于计算吸附剂的孔径、比表面等重要物理参数;
(4)吸附等温曲线用途广泛,在许多行业都有应用,如地质科学方面、煤炭方面。
2.作吸附等温线时为什么要用粉状炭?
废水中的物质经活性炭吸附后分散好,容易单层吸附。
3.实验结果受哪些因素影响较大,该如何控制?
实验结果受实验温度、吸附质的分压、活性碳性质(比表面积、孔隙率等)