陶瓷基体材料和高性能陶瓷基复合材料(1)
- 格式:ppt
- 大小:13.44 MB
- 文档页数:344
陶瓷基复合材料论文2015年5月5日摘要:陶瓷基复合材料主要以高性能陶瓷为基体.通过加入颗粒、晶须、连续纤维和层状材料等增强体而形成的复合材料。
如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
陶瓷基复合材料的研究还处于较初级阶段,我国对陶瓷基复合材料的研究则刚刚起步不久。
关键词:陶瓷基复合材料基体增强体强韧化机理制备技术前言:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
正文一、陶瓷基复合材料基本概述陶瓷基复合材料的基体为陶瓷。
如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
化学键往往是介于离子键与共价键之间的混合键。
陶瓷基复合材料中的增强体通常也称为增韧体。
从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。
碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件;其它常用纤维是玻璃纤维和硼纤维。
纤维增强陶瓷基复合材料是改善陶瓷材料韧性的重要手段。
目前常用的晶须是SiC和A12O3,常用的基体则为A12O3,ZrO2,SiO2,Si3N4以及莫来石等。
晶须具有长径比,含量较高时,桥架效应使致密化困难,引起了密度的下降导致性能下降。
颗粒代替晶须在原料的混合均匀化及烧结致密化方面均比晶须增强陶瓷基复合材料要容易。
常用的颗粒也是SiC、Si3N4和A12O3等。
陶瓷基复合材料发展迟滞,发展过程中也遇到了比其它复合材料更大的困难。
陶瓷基复合材料综述引言:陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。
因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。
如航空发动机的推重比为10时,涡轮前进口温度达1650C, 在这样高的温度下,传统的高温合金材料已经无法满足要求【11,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。
研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂过程中通过裂纹偏转、纤维断裂和纤维拔出等机理吸收能量,既有效的增强了材料的强度和韧性,又保持了基体材料低膨胀、低密度的特点。
摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的性能、分类及其应用,以及各类陶瓷基复合材料的优点、缺点。
重点介绍了陶瓷基复合材料的增韧机理、制备工艺(包括粉末冶金法、浆体法、反应烧结法、液态浸渍法、直接氧化法等)。
最后对陶瓷复合基材料的发展前景及发展方向做了展望。
1、陶瓷基复合材料概述陶瓷分为普通陶瓷和特种陶瓷。
普通陶瓷就是我们日常用的陶瓷、建筑陶瓷、化学陶瓷、电瓷及其他工业用瓷。
虽然陶瓷外表美观,耐腐蚀,但是它塑性差,易碎,是其致命缺点。
而另一种陶瓷:特种陶瓷则刚好解决了这个缺点,让陶瓷的发展有了无限的空间。
特种陶瓷包括功能陶瓷和结构陶瓷。
是一种复合材料。
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展从而得到有优良韧性的纤维增强陶瓷基复合材料。
2、陶瓷基基复合材料的基体与增强体(2) 增强体:陶瓷基复合材料中的增强体,通常也称为增韧体。
陶瓷基复合材料引言。
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。
它具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此被广泛应用于航空航天、汽车制造、化工等领域。
本文将介绍陶瓷基复合材料的组成、性能和应用,并对其未来发展进行展望。
一、陶瓷基复合材料的组成。
陶瓷基复合材料通常由陶瓷基体和增强材料组成。
陶瓷基体可以是氧化铝、碳化硅、氮化硅等陶瓷材料,而增强材料则可以是碳纤维、玻璃纤维、陶瓷颗粒等。
这些材料通过复合加工技术,如热压、注射成型等,将陶瓷基体与增强材料紧密结合,形成具有优异性能的复合材料。
二、陶瓷基复合材料的性能。
1. 耐磨性,陶瓷基复合材料具有优异的耐磨性,可以在高速、高负荷条件下保持较长的使用寿命,因此被广泛应用于机械设备的零部件制造。
2. 耐腐蚀性,由于陶瓷基复合材料具有优异的化学稳定性,可以在酸、碱等腐蚀性介质中长期稳定运行,因此在化工领域得到广泛应用。
3. 高强度,陶瓷基复合材料在高温、高压条件下依然保持优异的强度和刚性,因此被广泛应用于航空航天领域。
4. 高温稳定性,陶瓷基复合材料在高温条件下依然保持稳定的性能,因此被广泛应用于发动机、燃气轮机等高温设备的制造。
三、陶瓷基复合材料的应用。
1. 航空航天领域,陶瓷基复合材料被广泛应用于航空发动机、航天器外壳等高温、高压零部件的制造。
2. 汽车制造领域,陶瓷基复合材料被应用于汽车刹车片、离合器片等零部件的制造,以提高其耐磨性和耐高温性能。
3. 化工领域,陶瓷基复合材料被应用于化工设备的制造,以提高其耐腐蚀性和耐高温性能。
四、陶瓷基复合材料的发展展望。
随着科学技术的不断进步,陶瓷基复合材料将会在性能和应用范围上得到进一步提升。
未来,我们可以期待陶瓷基复合材料在新能源领域、生物医药领域等新兴领域的广泛应用,为人类社会的发展做出更大的贡献。
结论。
陶瓷基复合材料具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此在航空航天、汽车制造、化工等领域得到广泛应用。
陶瓷基复合材料综述陶瓷基复合材料是指以陶瓷材料为基体,通过添加其他材料或者通过热处理等方式形成的一种具有复合结构的新型材料。
陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。
本文将对陶瓷基复合材料的制备方法、性能以及应用方面进行综述。
一、陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法可以分为两大类:一种是在陶瓷基体中添加其他材料,如纳米颗粒、纤维、碳纳米管等;另一种是通过热处理等方式改变陶瓷基体的结构和性能。
其中,添加其他材料的方法主要包括浸渍法、溶胶凝胶法、等离子熔融法等;热处理方法主要包括烧结、热压、热等静压等。
二、陶瓷基复合材料的性能陶瓷基复合材料具有许多独特的性能,其主要包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性。
其中,高温稳定性是指材料在高温下仍然能够保持物理和化学性能的稳定性。
高硬度则是指材料的硬度较高,能够抵抗外界的划痕和磨损。
高抗磨损性则是指材料能够在摩擦和磨损等条件下保持其表面的完整性和光洁度。
化学稳定性则是指材料对酸、碱、盐等化学介质的稳定性较好,不易发生腐蚀和溶解。
三、陶瓷基复合材料的应用方面由于陶瓷基复合材料具有优异的性能,因此在许多领域都得到了广泛的应用。
其中,陶瓷基复合材料在航空航天领域中被广泛应用于火箭发动机喷管、刹车盘等高温部件中。
此外,在能源领域,陶瓷基复合材料可以用于制备高效的催化剂、光催化剂和固态电解质等。
在汽车制造领域,陶瓷基复合材料可以应用于汽车刹车系统、传动系统和发动机部件等。
此外,陶瓷基复合材料还可以用于制备耐磨、耐蚀和高温结构件,如轴承、密封件和切割工具等。
综上所述,陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。
通过添加其他材料或者通过热处理等方式改变陶瓷基体的结构和性能,可以制备出具有不同功能和应用的陶瓷基复合材料。
由于其广泛的应用前景,陶瓷基复合材料在材料科学领域中受到了广泛的研究和开发。
陶瓷基复合材料的性质及其应用前景陶瓷基复合材料是一种新型的复合材料,它由陶瓷基体和增强材料组成。
其特点是硬度高、强度大、耐高温、耐腐蚀、绝缘性能好等。
由于其独特的性质,陶瓷基复合材料在航空航天、汽车制造、电子和电力工业等领域都有广泛的应用。
一、陶瓷基复合材料的组成陶瓷基复合材料由陶瓷基体和增强材料组成。
其中,陶瓷基体通常采用氧化物陶瓷或碳化物陶瓷,而增强材料则可以选择纤维材料、颗粒材料、层板材料等。
陶瓷基复合材料的制备方法很多,主要包括热压、热等静压、拉伸成型等。
二、陶瓷基复合材料的性质1. 高硬度由于陶瓷基复合材料的基体是陶瓷,因此具有非常高的硬度。
事实上,某些陶瓷基复合材料的硬度可以接近金刚石,达到20GPa以上。
这一优异的性能意味着它们可以耐受高度的磨损和冲击,适用于大多数需要高耐久性的应用领域。
2. 高强度在增强材料的加入下,陶瓷基复合材料具有很高的强度和刚性。
因此,它们可以承受非常大的载荷,并在极端条件下工作。
这种性质使它们成为航空航天、汽车制造和电力工业等相关领域中理想的结构材料。
3. 耐高温陶瓷基复合材料具有非常好的耐高温性能。
在高温环境下,它们保持不失效、不变形等特性。
因此,它们被广泛应用于航空航天、汽车制造等需要高温稳定性能的领域。
4. 耐腐蚀陶瓷基复合材料还具有良好的耐腐蚀性能。
在强酸、强碱、高浓度的腐蚀性环境下,它们仍然可以保持稳定。
这一性质使它们成为化工、电力工业领域中的理想材料。
5. 绝缘性能好陶瓷基复合材料具有很好的绝缘性能,因此广泛运用于电子和电力工业中。
它们可以承受高电压、高电流的特性,同时在工作过程中不会导电或产生电磁干扰。
三、陶瓷基复合材料的应用前景由于其优异的性能和多功能性,陶瓷基复合材料在多个领域都有很广泛的应用前景。
以下是一些典型应用案例:1. 航空航天陶瓷基复合材料可以用于制作飞机、火箭、导弹的部件,如机身、引擎、导向器等。
因为它们的低重量、高强度和耐高温性质可以降低飞行设备的质量和提高操作效率。
陶瓷基复合材料概述陶瓷基复合材料的基本构成包括陶瓷基体和增强相。
陶瓷基体是复合材料的主要组成部分,其主要作用是提供材料的整体力学性能和化学稳定性。
常见的陶瓷基体材料包括氧化铝、碳化硅、氮化硼等。
增强相通常由纤维、微颗粒或涂层等形式存在,其主要作用是增强材料的力学性能。
常用的增强相材料包括碳纤维、硅碳纤维、碳化硅颗粒等。
陶瓷基复合材料的制备方法主要包括增强相预浸料注浆成型、陶瓷基体浸渍和化学气相沉积等。
增强相预浸料注浆成型是指将增强相(如碳纤维布或纱线)经过预处理后,浸渍在浆料中,制备成具有一定形状和大小的增强相预浸料;陶瓷基体浸渍是将陶瓷基体浸泡在含有滞留剂的浆料中,使其吸附一定量的浆料,然后经过干燥和烧结等工艺得到复合材料;化学气相沉积是利用化学反应在陶瓷基体表面生成陶瓷薄膜,然后在其表面沉积增强相。
陶瓷基复合材料具有许多优越的性能,例如高温强度、高刚度、低热膨胀系数、优良的耐腐蚀性和较高的抗摩擦性能等。
这些性能使得陶瓷基复合材料在高温、高压、强腐蚀等恶劣条件下能够更好地发挥作用。
此外,陶瓷基复合材料还具有良好的抗热冲击性能和较低的密度,使其具备轻量化设计的优势。
陶瓷基复合材料在航空航天领域有广泛的应用。
例如,在航空发动机的制造中,使用陶瓷基复合材料可以减轻发动机重量、提高燃烧效率和减少燃料消耗。
此外,在航空航天器的外壳、导向系统和推进系统中也常使用陶瓷基复合材料,以提高材料的耐高温性能和抗氧化性能。
在汽车制造领域,陶瓷基复合材料可以用于发动机部件、制动系统和排气系统等关键部位,以提高汽车的安全性能、降低能源消耗和减少尾气排放。
陶瓷基复合材料的高温性能和耐腐蚀性能使其成为替代传统金属材料的理想选择。
在能源领域,陶瓷基复合材料可以用于核能装置、燃料电池和太阳能电池等设备,以提高能量转化效率和延长设备寿命。
陶瓷基复合材料的高温稳定性和化学稳定性使其在能源应用中具有重要的地位。
此外,陶瓷基复合材料还可用于电子器件、石油化工、医疗器械和船舶制造等领域。
陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。
它具有优异的耐高温、耐腐蚀、耐磨损、绝缘性能和较高的强度和硬度,因此在航空航天、汽车、机械等领域有着广泛的应用前景。
首先,陶瓷基复合材料的制备方法有多种,包括热压法、热等静压法、注射成型法等。
其中,热压法是一种常用的制备方法,通过将陶瓷粉末和增强材料粉末混合后,经过模具成型,再进行高温高压烧结而成。
这种方法制备的陶瓷基复合材料具有较高的密度和强度,适用于要求较高性能的领域。
其次,陶瓷基复合材料的增强材料多样,常见的有碳纤维、硅碳化物、氧化锆等。
这些增强材料能够有效提高陶瓷基复合材料的强度和韧性,使其具有更广泛的应用前景。
同时,通过合理选择和设计增强材料的类型和比例,可以使陶瓷基复合材料具有更优异的性能。
另外,陶瓷基复合材料的应用领域广泛,例如在航空航天领域,可以用于制造发动机零部件、导弹外壳等高温、高压、高速工作的零部件;在汽车领域,可以用于制造发动机缸套、刹车盘等耐磨损、耐腐蚀的零部件;在机械领域,可以用于制造轴承、刀具等需要耐磨损、耐高温的零部件。
最后,陶瓷基复合材料在实际应用中还面临着一些挑战,如制备工艺复杂、成本较高、易受到裂纹和断裂等。
因此,需要进一步研究和改进制备工艺,提高制备效率和降低成本,同时加强对陶瓷基复合材料的性能评价和监测,以确保其在各个领域的可靠应用。
综上所述,陶瓷基复合材料具有广阔的应用前景和发展空间,通过不断的研究和创新,相信它将在未来的材料领域发挥越来越重要的作用。
陶瓷复合材料陶瓷复合材料是一种由陶瓷基体和增强材料组成的复合材料,具有轻质、高强度、耐高温、耐腐蚀等优良性能。
陶瓷复合材料在航空航天、汽车制造、电子通讯、医疗器械等领域有着广泛的应用。
本文将就陶瓷复合材料的制备工艺、性能特点及应用领域进行介绍。
首先,陶瓷复合材料的制备工艺包括原料选择、预处理、成型、烧结等步骤。
在原料选择方面,通常采用氧化铝、碳化硅、氮化硅等陶瓷材料作为基体,再加入碳纤维、硅碳纤维、碳化硅纤维等增强材料。
预处理阶段主要包括原料混合、成型和烧结等工序。
成型工艺通常采用压制、注塑、浸渍等方法,以确保复合材料具有一定的形状和尺寸。
烧结工艺则是通过高温处理使陶瓷基体和增强材料充分结合,形成具有一定结构和性能的复合材料。
其次,陶瓷复合材料具有优异的性能特点。
首先,陶瓷基体具有高硬度、耐磨损、耐高温、耐腐蚀等特点,能够满足在恶劣环境下的使用要求。
其次,增强材料如碳纤维、硅碳纤维等具有高强度、高模量、低密度等特点,能够有效提高复合材料的力学性能。
此外,陶瓷复合材料还具有良好的耐磨损、耐冲击、抗疲劳等性能,适用于各种复杂工况下的使用需求。
最后,陶瓷复合材料在航空航天、汽车制造、电子通讯、医疗器械等领域有着广泛的应用。
在航空航天领域,陶瓷复合材料可用于制造飞机发动机零部件、导弹外壳等,以提高设备的性能和可靠性。
在汽车制造领域,陶瓷复合材料可用于制造发动机零部件、制动系统、悬挂系统等,以降低汽车自重、提高燃油效率。
在电子通讯领域,陶瓷复合材料可用于制造基站天线、微波器件等,以提高设备的工作频率和传输性能。
在医疗器械领域,陶瓷复合材料可用于制造人工关节、牙科修复材料等,以提高医疗器械的使用寿命和安全性。
综上所述,陶瓷复合材料具有制备工艺简单、性能优异、应用广泛等特点,是一种具有广阔发展前景的新型材料。
随着科学技术的不断进步和应用需求的不断增加,相信陶瓷复合材料将在未来得到更加广泛的应用和推广。
陶瓷基复合材料陶瓷基复合材料是一种将陶瓷作为基体,同时添加其他材料形成的复合材料。
它具有优异的高温性能、耐磨性、耐腐蚀性和机械性能,广泛应用于航空航天、汽车、电子、能源和化工等领域。
本文将重点介绍陶瓷基复合材料的特点、制备方法和应用。
陶瓷基复合材料的特点有以下几个方面。
首先,它具有很高的耐高温性能。
陶瓷基复合材料可以在高温下长时间工作,不会烧结或软化,因此在航空航天和汽车引擎等高温环境中得到广泛应用。
其次,它具有优异的耐磨性。
陶瓷基复合材料的硬度和抗磨损性能远远超过金属材料,可以用于制造耐磨件,如轴承、机械密封件等。
此外,它还具有较高的抗腐蚀性能和较低的摩擦系数,可以用于制造化学装置和摩擦副。
陶瓷基复合材料的制备方法主要包括烧结法和浸渍法。
烧结法是将陶瓷粉末和其他材料混合后,通过高温加热使其熔结成型。
这种方法适用于制备纯陶瓷基复合材料,如氧化铝基陶瓷复合材料。
浸渍法是将陶瓷基体浸渍于其他材料溶液中,然后通过热处理使其形成复合材料。
这种方法可以制备各种类型的陶瓷基复合材料,如碳纤维增强陶瓷基复合材料和碳化硅增强陶瓷基复合材料。
陶瓷基复合材料在各个领域中都有广泛的应用。
在航空航天领域,它可用于制造发动机组件、航空轴承、导弹和卫星零部件等。
在汽车领域,它可用于制造发动机缸套、刹车片、活塞环等。
在电子领域,它可用于制造电子散热器、半导体器件等。
在能源领域,它可用于制造核燃料颗粒、核电站部件等。
在化工领域,它可用于制造化学反应器、蒸馏柱等。
综上所述,陶瓷基复合材料具有优异的高温性能、耐磨性、耐腐蚀性和机械性能,广泛应用于航空航天、汽车、电子、能源和化工等领域。
随着科技的进步和材料制备技术的发展,陶瓷基复合材料的应用前景将更加广阔。