第4讲成像测井应用基础
- 格式:pdf
- 大小:3.88 MB
- 文档页数:62
成像测井简介第一节、地层微电阻率扫描成像测井地层微电阻率扫描成像测井是一种重要的井壁成像方法,它利用多极板上的多排钮扣状的小电极向井壁地层发射电流,由于电极接触的岩石成分、结构及所含流体的不同,由此引起电流的变化,电流的变化反映井壁各处的岩石电阻率的变化,据此可显示电阻率的井壁成像。
自80年代斯伦贝谢公司的地层微电阻率扫描测井(FMS)投入工业应用以来,得到了迅速的发展,如今已是井壁成像的重要测井方法。
我们知道,微电阻率测井贴井壁测量,探测深度浅而垂向分辨率高,因而对井壁附近地层的电性不均匀极为敏感。
因此,人们利用微侧向测井研究冲洗带和裂缝,利用四条微电导率测井曲线确定地层倾角,识别裂缝,研究沉积相等。
但是,这些微电阻率测井无法确定裂缝的产状,无法区分裂缝、小溶洞和溶孔,这些问题都可由微电阻率扫描测井解决。
1、电极排列及测量原理地层微电阻率扫描成像测井采用了侧向测井的屏蔽原理,在原地层倾角测井仪的极板上装有钮扣状的小电极,测量每个钮扣电极发射的电流强度,从而反映井壁地层电阻率的变化。
通常把电流电平转换成灰度显示,不同级别的灰度表示不同的电流电平,这样就可用灰度图来显示井壁底电阻率的变化。
第一代FMS是在地层倾角测井仪两个相邻极板上装上钮扣状电极,每个极板上装有4排27各电极,共有54个电极,每排电极相互错开,以提高井壁覆盖率。
对8.5in的井眼,井壁覆盖率为20%。
为提高井壁覆盖率,第二代仪器在4个极板上都装有两排钮扣电极,每排8个共16个电极,4个极板共64电极,对8.5in井眼,井壁覆盖率达40%,这种仪器在电极上作了很大的改进,把原来的4排电极改为2排电极,能更准确地作深度偏移。
2、全井眼地层微电阻率扫描成像测井(FMI)斯伦贝谢公司在前述仪器基础上,又研制了FMI。
该仪器除4个极板外,在每个极板的左下侧又装有翼板,翼板可围绕极板轴转动,以便更好地与井壁接触。
每个极板和翼板上装有两排电极,每排12个电极,8个极板上共有192个电极,对8.5in井眼,井壁覆盖率可达80%,能更全面精确地显示井壁地层的变化。
成像测井技术目录1电成像测井 (2)1.1 地层微电阻率扫描成像测井技术[1] (2)1.2 阵列感应成像测井技术 (3)1.3方位电阻率成像测井技术 (4)2声波成像测井 (4)2.1超声波成像测井 (5)2.2偶极横波成像测井 (6)3核磁共振成像测井 (6)4成像测井技术的应用 (7)4.1岩性识别 (7)4.2沉积构造识别[4] (10)4.3沉积微相研究[5] (12)4.4裂缝系统的分析 (14)4.5地应力分析[11] (29)5成像测井的发展趋势 (32)参考文献 (33)成像测井技术测井起源于1927年的法国,当时只有测量视电阻率、自然电位、井温等仪器,经过近80年的发展,如今发展成为以电法测井仪、声波测井仪与核磁共振测井仪等系列的测井仪器。
回顾测井技术的发展历程,测井技术经历了从模拟测井到数字测井、数控测井、成像测井的发展历程。
成像测井技术是美国率先推出的具有三维特征的测井技术,是当今世界最新的测井技术。
它是在井下采用阵列传感器扫描测量或旋转扫描测量,沿井眼纵向、径向大量采集地层信息,利用遥传将采集到的地层信息从井下传到地面,通过图像处理技术得到井壁二维图像或井眼周围某一探测范围内的三维图像。
因此,成像测井图像比以往的曲线表达方式更精确、更直观、更方便。
传统的测井只能获取井下地层井眼周向和径向上单一的信息,它适用于简单的均质地层。
而实际上地层是非均质的,尤其是裂缝性油气层的非均质性最为明显,在地层的周向和径向上的非均质性也非常突出。
这促使人们开始利用非均质和非线性理论来设计测井仪器。
成像测井技术就是在此理论基础上发展起来的,它能获取井下地层井眼周向方位上和径向上多种丰富的信息,能够在更复杂、更隐蔽的油气藏勘探和开发方面有效的解决一系列问题:薄层、薄互层、裂缝储层、低孔隙低渗透层、复杂岩性储层评价;高含水油田开发中剩余油饱和度及其分布的确定;固井质量、压裂效果、套管井损坏等工程测井问题以及地层压力、地应力等力学参数的求取等等。
一、电成像测井基本原理电成像测井仪的基本结构是在等间距的多个极板上安装推靠井壁的阵列电极极板,每一个极板上装有多个阵列电极。
测量时由推靠器把极板推靠到井壁上,推靠器极板发射交变电流,电流通过井筒内的钻井液柱和地层构成回路回到仪器上部的回路电极,极板中间的阵列电极向井壁发射电流,记录下每个电极的电流强度及对应的测量电位差,它们反映了井壁电阻率的变化。
经过处理和图像增强,把所测得的微电阻率进行刻度,电阻率值越高,色度越浅,反之,电阻率值越低,色度越深。
由地层岩性、物性或裂缝、孔洞、层理等地质现象引起的电阻率变化转换成不同的色度,可以直观地观察到地层的岩性及几何界面的变化,进一步可以进行地层解释、储集层分析以及识别各种地质构造并进行构造的成因分析。
二、电成像解释模型1.电成像在直井中的解释模型直井中地层相对于井轴是对称的,极板图象以正北方向依次展开,而地层和裂缝等的产状计算如下:式中:θ为倾角,h为峰-峰值,d为井眼直径。
图1直井裂缝参数计算原理如图1所示,在成像测井平面展开图中的正弦曲线上找出最小值,再从平面展开图底部方位标度E、S、W、N中读出方向就可以获取地层倾向。
直井中,正弦曲线的峰-峰值h越大,代表了裂缝倾角越高。
2.电成像在水平井中的解释模型水平井(井斜角大于86°)中井轴周围的地层是各向异性的,图像以相应高边展开。
水平井电成像测井解释地层和裂缝产状。
裂缝在水平井的成像展开图上视倾角低时,真倾角高;但视倾角高时,真倾角不一定低。
因此,利用电成像测井进行水平井裂缝和地层产状解释时,真实产状的计算通过相应的坐标转换并进行井斜校正。
对于井斜角介于0~100°之间的井,在软件中进行角度设置,避免将直井段与水平井段一起处理、多次校正。
显示在井斜角过渡段出现校正错误,层界面角度计算也因此出现了错误。
通过对校正软件的角度设置,显示的处理结果就消除了直井-水平井的处理瓶颈。
三、电成像测井资料在水平井中的应用1.裂缝识别与评价电成像测井中通过深度校正、图象生成、平衡处理、标准化等过程,最终生成高分辨率电阻率成像。