相变蓄热材料综述
- 格式:doc
- 大小:125.50 KB
- 文档页数:14
相变储热技术研究进展一、本文概述随着全球能源需求的日益增长和环保意识的逐渐加强,高效、环保的能源存储技术成为了研究热点。
相变储热技术作为一种重要的热能存储方式,因其能在特定温度下进行热能的吸收和释放,从而实现对热能的有效管理和利用,受到了广泛关注。
本文旨在全面综述相变储热技术的研究进展,包括其基本原理、材料研究进展、应用领域以及未来的发展趋势。
通过对现有文献的梳理和分析,本文旨在为相关领域的研究者提供有价值的参考,推动相变储热技术的进一步发展和应用。
二、相变储热材料的研究进展相变储热技术作为一种高效、环保的储热方式,近年来受到了广泛关注。
其核心在于相变储热材料(Phase Change Materials, PCMs),这些材料能够在特定的温度下吸收或释放大量的热能,从而实现对热能的储存和利用。
近年来,相变储热材料的研究取得了显著的进展,不仅拓宽了材料种类,还提高了储热效率和稳定性。
在材料种类方面,传统的相变储热材料主要包括无机盐类、石蜡类和脂肪酸类等。
然而,这些材料在某些应用场合下存在导热性差、易泄漏、化学稳定性不足等问题。
因此,研究人员开始探索新型相变储热材料,如高分子材料、纳米复合材料等。
这些新材料不仅具有更高的储热密度和更好的稳定性,还能通过纳米效应、界面效应等提高导热性能,从而满足更广泛的应用需求。
在储热效率方面,研究者们通过改变材料的微观结构、优化复合材料的配比、引入纳米增强剂等方法,有效提高了相变储热材料的储热效率和热稳定性。
一些研究者还将相变储热材料与其他储能技术相结合,如与太阳能、地热能等可再生能源相结合,实现了热能的高效利用和存储。
在应用方面,相变储热材料已广泛应用于建筑节能、工业余热回收、航空航天等领域。
在建筑节能领域,相变储热材料可以用于墙体、屋顶等建筑构件中,通过储存和释放热能来调节室内温度,提高建筑的保温性能。
在工业余热回收领域,相变储热材料可以回收和利用工业生产过程中产生的余热,提高能源利用效率。
上海大学2011-2012学年 秋 季学期研究生课程考试小论文课程名称:先进功能材料 课程编号: 102004812论文题目:相变储能材料综述 成绩: __________________ 任课教师: ________________________________ 评阅日期: __________研究生姓名: 魏敏 _______________ 论文评语: 学号:11721590相变储能材料综述魏敏上海大学 材料科学与工程学院摘要: 相变储能材料就是将暂时不用的能量储存起来,到需要时再释放, 从而缓解能量需求的矛盾, 节约能 源。
本文概述了相变储能的原理、种类和特点、制备方法、性能要求以及在建筑中应用,并指出当前应用 相变储能材料存在的问题以及新的发展方向。
关键词: 相变材料;储能;建筑;节能;引言近年来, 当今社会能源短缺及环境污染成为我们所面临的重要难题。
开发利用可再生能 源对节能和环保具有重要的现实意义。
开发新能源提高能源利用率已成为工业发展的重要课 题。
因此,相变储能材料( phase change material )成为国内外能源利用和材料科学方面 的研究热点。
相变储能技术可以解决能量供求在时间和空间上不匹配矛盾, 也就是可以在能 量多时可以储能, 在需要时释放出来, 从而提高能源利用率。
一些发达国家在推广应用相对 比较成熟的储能技术和储能材料, 以期待不断提高技术性、 经济性和可靠性。
我国也在这方 面进行了积极的研究 [1-3] 。
相变储能材料介绍相变储能原理相变储能材料是指在其物相变化过程中, (冷) 量,从而达到能量储存和释放的目的。
率的设施, 同时由于其相变温度近似恒定, 次重复使用。
作为为相变材料一般须满足以下要求 组分材料不易挥发和分解;对多组分材料 无毒、无腐蚀、不易燃易爆 , 且价格低廉; 不同状态间转化时 , 材料体积变化要小 [1]可以从环境中吸收热 (冷) 量或向环境放出热 利用此特性不仅可以制造出各种提高能源利用 可以用来调整控制周围环境的温度, 并且可以多: 储能密度大;能源的转换效率高;稳定性好;单 , 则要求各组分间结合牢固; 不会发生离析现象; 导热系数大 , 以便能量可以及时地储存或取出;相变储能材料的分类相变储能材料的种类繁多,根据不同划分方法可以分成不同的类别。
相变蓄热的特点
相变蓄热的特点
一、相变蓄热介绍
相变蓄热是一种热量蓄存技术,它是利用一种特殊材料在一定温度下的相变来蓄存和运输热量。
这种材料可以在正常温度下处于液态,当受到热量辐射时,材料的温度升高,由液态变为固态,热量就被储存起来。
蓄热的容器可以把储存的热量按需要释放出来,以满足其他用途。
二、相变蓄热的特点
1.高热质量比:相变蓄热材料的热质量比(热量单位与液体体
积单位比值)一般比其它蓄热材料要高,可达1000J/L以上,同等热量单位时,可大大节约容积。
2.抵抗热损失:相变蓄热可以克服传统储热材料中存在的热损耗问题,有效的降低热量的损失,提高热效率。
3.高凝结温度:壳体和蓄热媒体采用相变材料,凝结温度可高达100℃或更高,有效改善传统储热材料中凝结温度低的缺点。
4.安全环保:相变蓄热被广泛用于各种温度和能量储存系统中,被称为最安全的热量储存技术,因为它不会释放出危险的物质,而且易于处理和安装,完全符合环保要求。
- 1 -。
无机相变储热材料的探究赵程程武汉大学化学与分子科学学院 2010级化类一班摘要:介绍Na2SO4·10H20用作相变材料的储能特性,综述了针对Na2SO4·10H20过冷和相分离现象的解决方法以及Na2S04·lOH20某些共晶盐的研究。
关键词:相变材料、十水硫酸钠、共晶盐、过冷相分离引言:Na2S04·10H20是一种典型的无机水合盐相变储能材料。
它属于低温储热材料,有较高的潜热(254kJ/kg)和良好的导热性能、化学稳定性好、无毒、价格低廉,是许多化工产品的副产品,来源广,因合适的相变温度,能用于贮存太阳能、各种工业和生活废热,与其它无机盐(如NaCI)形成的低共熔盐的相变温度可控制在20~30"C范围内。
因此Na2S04·10H20以其优越的性能,成为很具吸引力的储热材料。
实验原理:1.Na2S04·10H20的相变储热循环过程为:Na2S04·10H20(S)+饱和溶液=Na2SO4·10H2O(l)2.过冷:即液相的水溶液温度降低到其凝固点以下仍不发生凝固。
这样就使释热温度发生变动。
在其储热后由结晶态变为液态时,因过冷不结晶就不能释放出所储存的潜热,而且由于过冷,液体随温度降低粘度不断增加,阻碍了分子进行定向排列运动,从而使其在过冷程度很大时形成非晶态物质,相应减小相变潜热。
3.相分离:即指结晶水合盐在使用过程中的析出现象。
当(AB·mH20)型无机盐水合物受热时,通常会转变成含有较少摩尔水的另一类型AB·pH20的无机水合盐,而AB·pH20会部分或全部溶解于剩余的水中。
加热过程中,一些盐水混合物逐渐地变成无水盐,并可全部或部分溶解于水(结晶水)。
若盐的溶解度很高,则可以全部溶解,但如果盐的溶解度不高,即使加热到熔点以上,有些盐仍处在非溶解状态,此时残留的固态盐因密度大沉到容器底部而出现固液相分离。
相变材料的研究进展及其在建筑领域的应用综述内容提示:相变材料是相变物质与传统建筑材料复合而成的一种新型储能建筑材料,本文对相变材料的概念、相变材料的分类、相变材料的筛选和改进、相变材料的制备方法以及封装方法进行了阐述,同时论述了相变材料在建筑领域的应用,并提出了相变材料应用于建筑领域的发展方向。
延伸阅读:建筑材料建筑节能相变材料能源是人类社会生存和发展的血液,在电力供电引起的能源和环境危机越来越被人们关注的情况下,如何开发出新的绿色能源以及提高能源的利用率显得越发重要。
(参考《》)现阶段,人们关心比较多的新能源是太阳能,但是太阳能利用和废热回收存在时间和空间上的不匹配的问题。
相变储能材料可以从环境中吸收能量和向环境释放能量,较好地解决了能量供求在时间和空间上不匹配的矛盾,有效地提高了能量的利用率。
同时相变储能材料在相变过程中温度基本上保持恒定,能够用于调控周围环境的温度,并且能重复使用[1]。
相变储能材料的这些特性使得其在电力移峰填谷、工业与民用建筑和空调的节能、纺织品以及军事等领域有着广泛的应用前景。
1相变材料的研究进展1middot;1相变材料的分类相变材料是可将一定形式的能量在高于其相变温度时储存起来,而在低于其相变温度时释放出来加以利用的储能材料。
它主要由主储热剂、相变点调整剂、防过热剂、防相分离剂、相变促进剂等组分组成[2]。
相变材料种类很多,从所储能量的特点看,分为储热材料和储冷材料两类[2]。
从储能材料储能的方式看,可分为显热储能、潜热储能和化学反应储能3类[3]。
其中,潜热储能是利用相变材料的相变潜热来储热,储能密度大,储热装置简单、体积小,而且储热过程中储热材料近似恒温,可以较容易地实现室温的定温控制,特别适用于建筑保温节能领域[4]。
从蓄热的温度范围看,可分为高温、中温和低温3类。
高温相变材料主要是一些熔融盐、金属合金;中温相变材料主要是一些水合盐、有机物和高分子材料;低温相变材料主要是冰和水凝胶[5]。
ISSN1672-9064CN35-1272/TK作者简介:孔凡鑫(1991~),研究生毕业,助理工程师。
相变储能材料应用于供热管道保温的可行性综述孔凡鑫(山东大学山东济南250100)摘要简述传统供热管道保温材料的发展和现有保温材料的优缺点;介绍相变储能材料的发展过程,分析相变储能材料应用供热管道保温材料的优点,展望未来相变储能材料在供热领域的发展。
关键词供热保温材料相变储能材料可行性中图分类号:TK27文献标识码:A文章编号:1672-9064(2019)02-037-02建筑能耗占社会总能耗的33%,供热是其中一项巨大的建筑工程。
供热管道是北方集中供热的主要载体,管道所处环境复杂多变,有高温、振动、潮湿、室外暴露等等情况。
如何做到最大化保温,减少管道热损失,是供热需要研究的主要内容之一,不同质量的保温材料质量往往参差不齐,近年来维护成本非常高,寻找简便高效的保温材料成为重中之重。
1传统管道保温材料的发展与性能(1)传统保温材料的发展。
石棉、膨胀蛭石、膨胀珍珠岩、超细玻璃棉、橡塑保温管、聚氨酯硬质泡沫都属于传统使用的保温材料:50年代主要是硅藻土制品和石棉碳酸镁板或石棉白石石板;60年代主要采用膨胀蛭石制品、玻璃棉制品、轻型粘土砖及矿渣棉沥青、泡沫混凝土;70年代主要采用膨胀珍珠岩制品兼用膨胀蛭石制品;80年代主要采用硅酸钙绝热制品[1];90年代橡塑保温管开始试制,21世纪初开始新兴于市场;21世纪后广泛采用超细玻璃棉、橡塑保温管、聚氨酯硬质泡沫作为供热管道保温材料[2]。
(2)传统保温材料的应用环境与特点。
石棉、膨胀蛭石、膨胀珍珠岩3种保温材料在保温管道中已经使用的比较少,原因在于产量少、有毒、体积大、不易检修等原因,目前已广泛被超细玻璃棉、橡塑保温管和聚氨酯硬质泡沫、耐热聚乙烯(PE-RT )、PE-RT Ⅱ替代。
超细玻璃棉目前主要应用于室外架空管道,优点是,容重小、耐腐蚀、价格便宜,缺点是雨水浸湿后导热系数增大、施工过程扎手、暴露空气后易磨损,目前市场应用份额减少。
相变材料有哪些相变材料是一种具有特殊性能的材料,它可以在温度或压力变化时发生相变,从而实现吸热或放热的效果。
相变材料被广泛应用于建筑、汽车、服装、医疗等领域,具有重要的经济和社会意义。
本文将介绍相变材料的种类和应用领域。
一、蓄热相变材料。
蓄热相变材料是一种可以吸收和释放热量的材料,它可以在温度变化时吸收或释放大量的热量,从而实现热能的储存和利用。
蓄热相变材料广泛应用于建筑领域,可以用于调节室内温度,减少能耗,提高建筑的节能性能。
此外,蓄热相变材料还可以应用于太阳能集热系统、汽车空调系统等领域,具有重要的应用前景。
二、相变储能材料。
相变储能材料是一种可以吸收和释放热量的储能材料,它可以在温度变化时吸收或释放大量的热量,从而实现热能的储存和利用。
相变储能材料广泛应用于太阳能储能系统、风能储能系统、电网储能系统等领域,可以提高可再生能源的利用效率,减少能源浪费,具有重要的环保和经济意义。
三、相变散热材料。
相变散热材料是一种可以吸收和释放热量的散热材料,它可以在温度变化时吸收或释放大量的热量,从而实现热能的散热和利用。
相变散热材料广泛应用于汽车发动机散热系统、电子产品散热系统、工业生产散热系统等领域,可以提高散热效率,延长设备使用寿命,具有重要的技术和经济价值。
四、相变储存材料。
相变储存材料是一种可以吸收和释放热量的储存材料,它可以在温度变化时吸收或释放大量的热量,从而实现热能的储存和利用。
相变储存材料广泛应用于冷藏冷冻系统、医药储存系统、食品储存系统等领域,可以提高储存效率,延长产品保质期,具有重要的健康和安全意义。
总之,相变材料具有重要的应用价值,可以在建筑、能源、环保、医疗等领域发挥重要作用,对于促进经济发展和改善人民生活具有重要意义。
希望相关领域的科研人员和工程师能够深入研究和开发相变材料,推动其应用和推广,为社会发展和人类福祉做出更大的贡献。
相变蓄热技术
相变蓄热技术是一种利用物质相变过程中释放或吸收的潜热来储存和释放热能的技术。
它通过物质在相变温度范围内的相变过程来实现热能的存储和释放,具有高能量密度、高储热效率和长周期稳定性等优势。
在相变蓄热技术中,常用的相变材料包括蓄热蜡、蓄热盐和相变金属等。
这些物质在相变温度范围内可以在固态和液态之间进行相变,释放或吸收大量的热能。
当储热材料吸收热能时,它会从固态转变为液态,吸收潜热;当需要释放储存的热能时,储热材料会从液态转变为固态,释放潜热。
相变蓄热技术在能源储存和利用方面具有广泛的应用。
例如,在建筑领域中,可以利用相变蓄热材料来调节室内温度,减少能源消耗;在太阳能和风能等可再生能源领域,可以利用相变蓄热技术来平衡能源的供需差异,提高能源利用效率;在工业生产过程中,可以利用相变蓄热技术来回收和利用废热,提高能源利用率。
相变蓄热技术的发展和应用还面临一些挑战,例如相变材料的选择和设计、储热系统的设计和控制等方面。
然而,
随着技术的不断进步和应用的推广,相变蓄热技术有望成为未来能源存储和利用的重要手段之一,为能源领域的可持续发展做出贡献。
相变储热换热器文献综述1引言在工业生产中,为了实现物料之间热量传递过程的一种设备,统称为换热器。
它是化工、炼油、动力、原子能和其他许多工业部门广泛应用的一种通用工艺设备。
对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要。
通常在化工厂得建设中,换热器约占总投资的10~20%。
在石油炼厂中,换热器约占全部工艺设备投资的85~40%。
在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝等。
换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递给温度较低的流体,以满足工艺上的需要。
由于使用的条件不同,换热设备又有各种各样的形式和结构。
另外,在化工生产中,有时换热器作为一个单独的化工设备,有时则把它作为某一个工艺设备中的组成部分。
其他如回收排放出去的高温气体中的废热所用的废热锅炉,有时在生产中也是不可缺少的。
总之,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。
2换热器发展历史简要回顾二十世纪20年代出现板式换热器,并应用于食品工业。
以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。
30年代初,瑞典首次制成螺旋板换热器。
接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。
30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。
在此期间,为了解决强腐蚀性介质的换热问题,人们对新材料料制成的换热器开始注意。
60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。
此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。
70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。
复合相变储能材料
以下是对复合相变储能材料的简要概述,仅供参考:
复合相变储能材料是一种特殊的材料,它能够吸收和储存大量的热能,并在需要时释放这些能量。
这种材料由两种或多种材料组成,它们在相变时会发生物相变化,从而吸收和释放热量。
复合相变储能材料的优点在于其高效、可重复使用、无污染和节能。
由于其能够在需要时提供稳定的热源,因此被广泛应用于各种领域,如建筑、汽车、航空航天、新能源等。
在建筑领域,复合相变储能材料被用于实现建筑的节能。
在夏季,太阳辐射强烈,建筑物的温度升高,但这种材料可以将多余的热量储存起来,并在需要时释放出来,使得建筑物内部保持舒适。
在冬季,它也可以将室内热能储存起来,减少供暖需求。
在汽车领域,复合相变储能材料被用于提高汽车的燃油效率和减少废气排放。
这种材料可以吸收和储存发动机产生的多余热量,减少热量损失,从而提高燃油效率。
同时,它也可以将多余的热量转化为电能,为汽车提供额外的动力。
在航空航天领域,复合相变储能材料被用于为卫星和空间站提供稳定的能源。
在这些空间环境中,太阳能电池板产生的电能是不稳定的,而复合相变储能材料可以储存和释放稳定的电能,保证卫星和空间站的正常运行。
此外,复合相变储能材料也被用于新能源领域,如太阳能和风能。
通过将这种材料应用于太阳能热水器或风力发电系统中,可以有效地储存和释放能量,提高能源利用效率。
总之,复合相变储能材料作为一种高效、可重复使用、无污染和节能的材料,在各个领域都有着广泛的应用前景。
随着科技的不断发展,这种材料将会在未来的能源和环保领域发挥更加重要的作用。
相变虚热材料综述 蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有 大量气体的存在,使材料体积变化较大,因此尽管它们有很大的相变热,但在实际应用中很少被选用,固一固相变和固一液相变是实际中采用较多的相变类型。根据材料性质的不同,一般来说相变蓄热材料可分为:有机类、无机类及混合类相变蓄热材料。其中,石蜡类、脂酸类是有机类中的典型相变蓄热材料;结晶水合盐、熔融盐和金属及合金等是无机类中的典型相变蓄热材料。混合类又可分为:有机混合类、无机混合类及无机一有机混合类。 根据使用温度范围的不同,潜热蓄热材料(相变蓄热)又可分为分为高、中、低温三种. 1低温相变蓄热材料 低温相变蓄热材料主要有无机和有机两类无机相变材料主要包括结晶水合盐、熔融盐、金属或合金.结晶水合盐通常是中、低温相变蓄能材料中重要的一类,具有价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性等优点.但在使用过程中会出现过冷、相分离等不利因素,严重影响了水合盐的广泛应用决过冷的办法主要有两种,一种是加入微粒结构与盐类结晶物相类似的物质作为成核剂.例如,Dr.Telkes经过千余次试验后发现在Na2SO。·10HzQ中加入硼酸能明显地降低过冷度;另一种是保留一部分固态相变材料,即保持一部分冷区,使未融化的一部分晶体作为成核剂,这种方法文献上称为冷指(Cold finger)法,虽然操作简单,但行之有效∞J.为了解决相分离的问题,防止残留固体物沉积于容器底部,人们也研究了一些方法,一种是将容器做成盘状,将这种很浅的盘状容器水平放置有助于减少相分离;另一种更有效的方法是在混合物中添加合适的增稠剂,防止混合物中成分的分离,但并不妨碍 相变过程。 有机相变材料主要包括石蜡,脂肪酸及其他种类.石蜡主要由不同长短的直链烷烃混合而成,可用通式C。H抖:表示,可以分为食用蜡、全精制石蜡、半精制石蜡、粗石蜡和皂用蜡等几大类,每一类又根据熔点分成多个品种.短链烷烃的熔点较低,随着碳链的增长,熔点开始增长较快,而后逐渐减慢,再增长时熔点将趋于一致。V.H.Moreos等人研究了将不同形状的翅片管用于潜热蓄热系统中增强换热睁引,L.F.Cabeza等人研究了将高导热率粉末、碳纤维植入相变材料中以增强导热率,该法同时也能有效地减少石蜡相变时的容积变化[103.脂肪酸的性能特点与石蜡相似[1卜12],其分子通式为GH。。O:.大部分的脂肪酸都可以从动植物中提取,其原料具有可再生和环保的特点,是近年来研究的热点.其他还有有机类的固一固相变材料,如高密度聚乙烯,多元醇等.这种材料发生相变时体积变化小,过冷度轻,无腐蚀,热效率高,是很有发展前途的相变材料 复合相变材料材料的复合化可将各种材料的优点集合在一起,制备复合相变材料是潜热蓄热材料的一种必然的发展趋势。 复合相变材料的支撑目前,国内外学者研制的支撑材料主要有膨胀石墨、陶瓷、膨润土、微胶囊等.膨胀石墨是由石墨微晶构成的疏松多孔的蠕虫状物质,它除了保留了鳞片石墨良好的导热性外,还具有良好的吸附性[1引.陶瓷材料有耐高温、抗氧化、耐化学腐蚀等优点,被大量地选做工业蓄热体.主要的陶瓷材质有石英砂、碳化硅、刚玉、莫来石质、锫英石质和堇青石质等.膨润土有独特的纳米层问结构,采用“插层法”将有 机相变材料嵌入其层状空间,制备有机/无机纳米复合材料,是开发新型纳米功能材料的有效途径,微胶囊相变材料口阳是用微胶囊技术制备出的复合相变材料。在微胶囊相变材料中发生相变的物质被封闭在球形胶囊中,有效地解决了相变材料的泄漏、相分离及腐蚀等问题,有利于改善相变材料的应用性能,并可拓宽相变蓄热技术的应用领域。 中温相变蓄热材料 太阳能热利用与建筑节能等领域对相变蓄热材料的需求,使低温范围蓄热材料具有广泛的应用前景;高温工业炉蓄热室、工业加热系统的余热回收装置以及太空应用,推动了高温相变蓄热技术的迅速发展.因此,国内外对制冷、低温和高温相变蓄热材料(PCM)做了相当多的研究,但中温PCM则较少使用.不过,近年来相关领域的发展给中温PCM的应用创造了很大的空间。 高温相变蓄热材料 高温相变材料的热物性相变材料的热物性主要包括:相变潜热、导热系数、比热容、膨胀系数、相变温度等直接影响材料的蓄热密度、吸放热速率等重要性能,相变材料热物性的测量对于相变材料的研究显得尤为重要。 高温相变材料通常具有一定的高温腐蚀性,通常需要对其进行封装。微封装的相变材料具有许多优点,促使人们对此进行研究。Heine等人研究了4种金属对熔点在235~857℃的6种熔融盐的耐腐蚀性能。Lane对不同的材料在不同尺寸下封装的优点和缺点进行分析,并对材料的兼容性进行了研究.由于用途广泛,很多个人和公司。如BASF已加入了相变材料微封装 的研究行列。微封装相变材料在不同热控制领域的潜在应用将受到其成本的限制,但对于太空应用,热控制性能远重于其成本。一些研究人员认为,相变材料微封装技术将是太空技术的一个里程碑 高温相变复合材料的研究进展 将相变材料同耐腐蚀性好的常规材料复合是高温相变材料的研究方向之一.目前,高温相变复合材料可分为陶瓷基和金属基两大类.邹向采用陶瓷技术将碳酸盐共熔物蓄热介质与陶瓷基体复合在一起,制成一种新型高温相变复合材料.该材料的致密度和高温相变潜热分别达到了理论值的90%和70%,使用温度可达800℃;王华等人采用融浸工艺,将性能优良的高温熔融盐分别与不同的金属基复合,得到一种新型高温相变复合材料.该金属基相变复合材料具有高的吸热一放热率、高蓄热密度等优点.他们还进行了高温熔融盐相变蓄热材料与不同高性能陶瓷复合的研究,成功制备出燃料工业炉用高温相变复合材料. 相变蓄热系统的数值模拟 目前,文献中提出的模型较多,但因系统结构、传热方式和相变材料的差异,模型的通用性较差.以下选出的文献中对高温相变蓄热系统的数值模拟具有代表性的研究.邢玉明等人采用焓方法建立了以控制体单元为对象的单管相变蓄热模型,并对系统进行了数值分析,得到了循环工质气体出口温度、相变材料容器最高温度和平均壁温等参数的瞬态变化曲线,数值计算与试验结果吻合良好;王华等人建立了球形相变蓄热复合材料的放热模型,采用焓增法研究了相变材料的相变潜热、基体的导热系数、复合材料的尺寸以及复合蓄热材料与流体间的传热系数等因素对放热过程的 影响;Gong等人[29]建立了以管侧为传热流体、壳侧填充相变材料的管壳式换热器的蓄一放热模型,研究了蓄热过程和放热过程对相变蓄热系统效率的影响.采用有限元法对导热型融解进行数值分析.结果表明,导热型相变材料的蓄热系统的传热流体以同侧布置较好;CostaE舡3妇认为,热惯性、系统不稳定、热损失、密度的变化、假定热物性为常数等因素造成理论值和实验值偏差较大;也有人认为相变材料内部发生的物理性变化,传热数学模型很复杂,对整个相变系统来说但各项变系统内的的传热和传质可以忽略,或总结成经验系数,传热数学模型很简单 相变蓄热的热力学优化 BjurstrorJl和Carlson首次将验证性因素分析引入相变蓄热系统,结果表明,效率比人们预想的要低的多,只有12%,与显热蓄热系统的效率相当,从而激励人们对热力学优化进行更进一步的研究.Adebiyic353对圆柱型单元蓄热系统进行了研究,结果表明,虽然相变材料的蓄热密度大,但是效率可能低于显热蓄热系统;王剑峰等人[3阳建立了组合式柱内封装相变材料熔化一固化循环相变蓄热系统的物理模型,用有限差分法进行了数值模拟求解,结果表明,组合相变材料可以提高相变速率15%~25%;Lucia等人n7]对以导热为主和以对流为主的蓄热过程进行了分析,结果表明,当相变材料的相变温度Tc为环境温度L和热源温度T“的几何平均值时,效率最高. 相变蓄热技术的应用 人们对相变蓄热技术的研究虽然只有几十年的历史,但它的应用十分广泛,已成为日益受到人们重视的一种新兴技术。该技术主要有以下几个 方面的应用。 工业过程的余热利用 工业过程的余热既存在连续型余热又存在间断型余热。对于连续型余热,通常采取预热原料或空气等手段加以回收,而间断型余热因其产生过程的不连续性未被很好的利用,如有色金属工业、硅酸盐工业中的部分炉窑在生产过程中具有一定的周期性,造成余热回收困难,因此,这类炉窑的热效率通常低于30%。相变蓄热突出的优点之一就是可以将生产过程中多余的热量储存起来并在需要时提供稳定的热源,它特别适合于间断性的工业加热过程或具有多台不同时工作的加热设备的场合,采用热能储存系统利用相变蓄热技术可节能15%~45%。根据加热系统工作温度和储热介质的不同,应用于工业加热的相变蓄热系统可分为蓄热换热器、蓄热室式蓄热系统和显热/潜热复合蓄热系统三种形式。蓄热换热器适用于间断性工业加热过程,是一种蓄热装置和换热装置合二为一的相变蓄热换热装置。它采取管壳式或板式换热器的结构形式,换热器的一侧填充相变材料,另一侧则作为换热流体的通道。当间歇式加热设备运行时,烟气流经换热器式蓄热系统的流体通道,将热量传递到另一侧的相变介质使其发生固液相变,加热设备的余热以潜热的形式储存在相变介质中。当间歇式加热设备从新工作时,助燃空气流经蓄热系统的换热通道,与另一侧的相变材料进行换热,储存在相变材料中的热量传递到被加热流体,达到预热的目的。相变蓄热换热装置一个特点是可以制造成独立的设备,作为工业加热设备的余热利用设备使用时,并不需要改造加热设备本身,只要在设备的管路上进行改造就可以方便地使用。蓄热室式蓄热系统在工业加热设备的余热利用系统