基尼系数的四种计算方法
- 格式:doc
- 大小:147.50 KB
- 文档页数:7
基尼系数标准基尼系数,又称基尼指数,是衡量一个国家民众财富分配公平度的量化标准。
自1919年由爱尔兰社会学家及经济学家詹姆斯基尼(JamesT.Kini)提出以来,该指标已被国际社会广泛采用,早在1980年代就被用于国际国家间的贫富比较。
基尼系数的计算公式是:K=Σ(x-1)2/Σx2其中,x为某变量的不同数值,Σ代表求和运算。
即表示数值变量离散度的倒数。
由此可知,数值越大,表明对该变量的划分越离散,分配公平度越低,反之亦然。
基尼系数最早用于衡量贫富差距,根据计算结果可将国家的财富分布归为四种:极度不均等(K>0.50)、不均等(0.40<K≤0.50)、偏离均衡(0.30<K≤0.40)、基本均衡(K≤0.30)。
随着基尼系数的广泛应用,它也开始被应用到其他衡量指标之中,例如衡量一个城市内房价差距的大小等。
此外,基尼系数也被用来衡量地理空间分布状况,如探讨经济发达地区与落后地区之间的贫富差距,识别经济发达地区应当进行加强干预的贫困地区等等。
基尼系数的研究一般以数理统计的方法进行,而社会学方面的研究则更多地关注于社会关系的研究,如研究不同社会阶层之间贫富差距的形成和演变情况等。
基尼系数不仅是一种财富分布公平度的量化标准,也反映了一个国家贫富分配的情况。
从这一点上看,要增强一个国家的财富分配公平度,不仅要看措施的实施情况,更重要的是要看财富分配的公平性,也就是基尼系数。
基尼系数的准确性受到其计算所使用的样本的影响。
若样本的数据源不全面,或者数据不准确,则指标可能出现偏差。
因此,在计算时,必须使用准确可靠的数据,另外,应当充分考虑各种因素对数值变化的影响。
综上所述,基尼系数标准是一种衡量一个国家民众财富分配公平度的量化标准,它反映了一个国家贫富分配的情况,是评估财富分配公平性的有效工具。
需要特别指出的是,基尼系数的准确性受到计算所使用的样本的影响的,因此,在计算时,必须使用准确可靠的数据,充分考虑各种因素对数值变化的影响。
基尼系数的四种计算方法基尼系数的计算方法及数学推导2001金融三班袁源摘要:本文归纳了基尼系数的四种计算方法:直接计算法、拟合曲线法、分组计算法和分解法,并进行了数学推导和证明。
在此基础上,文章比较了各种算法优缺点,分析了误差可能产生的环节。
关键词:洛伦茨曲线基尼系数一、洛伦茨曲线和基尼系数1905年,统计学家洛伦茨提出了洛伦茨曲线,如图一。
将社会总人口按收入由低到高的顺序平均分为10个等级组,每个等级组均占10%的人口,再计算每个组的收入占总收入的比重。
然后以人口累计百分比为横轴,以收入累计百分比为纵轴,绘出一条反映居民收入分配差距状况的曲线,即为洛伦茨曲线。
为了用指数来更好的反映社会收入分配的平等状况,1912年,意大利经济学家基尼根据洛伦茨曲线计算出一个反映收入分配平等程度的指标,称为基尼系数(G )。
在上图中,基尼系数定义为:G=S A S A+B式(1)当A 为0时,基尼系数为0,表示收入分配绝对平等;当B为0时,基尼系数为1,表示收入分配绝对不平等。
基尼系数在0~1之间,系数越大,表示越不均等,系数越小,表示越均等。
二、基尼系数的计算方法 式(1)虽然是一个极为简明的数学表达式,但它并不具有实际的可操作性。
为了寻求具有可操作性的估算方法,自基尼提出基尼比率以来,图许多经济学家和统计学家都进行了这方面的探索。
在已有的研究成果中,主要有四种有代表性的估算方法,结合自己的计算,笔者将它们归纳为直接计算法、拟合曲线法、分组计算法和分解法。
1、直接计算法直接计算法在基尼提出收入不平等的一种度量时,就已经给出了具体算法,而且这种算法并不依赖于洛伦茨曲线,它直接度量收入不平等的程度。
定义Y j-Y i∣/n2, 0≤△≤2u △=n n∑∑∣j=1 i=1式(2)式中,△是基尼平均差,∣Y j-Y i∣是任何一对收入样本差的绝对值,n是样本容量,u是收入均值。
定义G=△/2u, 0≤G≤ 1 式(3)可以证明:G=△/2u=2S A(证明过程见附录一),而由式(1)G= S A/ S A+B,S A+B=1/2,G=2S A,因此,式(2)中定义的G即为基尼系数,综合式(2)、(3),基尼系数的计算方法为:G= 1 2n2 u n n∑∑Y j-Y i∣∣j=1 i=1式(4)直接计算法只涉及居民收入样本数据的算术运算,很多学者认为理论上看,只要不存在来源于样本数据方面的误差,就不存在产生误差的环节。
基尼系数的计算公式举例说明
贫困基尼系数(Gini Coefficient),通常被用来衡量一个国家内或地区在收入
分配方面的社会不平等状况。
其计算公式如下:
G=∑(Xp) ——∑Yi
/
∑(Xp)
其中 G 表示Gini系数,Xp表示收入金额占总收入的百分比,Yi表示第 i 个收
入金额占总收入的百分比。
贫困基尼系数被用来衡量一个国家内收入分布的不平等状况,它是我们测量收入分配不公平程度的标准指标。
以一个有五个人的收入分布作为例子来计算基尼系数,假定五个人的收入分别是100元、200元、300元、400元和500元,则总收入为1500元,现求Gini系数:
Xp = 100/1500、200/1500、300/1500、400/1500、500/1500 = 1/15、2/15、3/15、4/15、5/15
Yi = 1/15·1/15、1/15·2/15、1/15·3/15、1/15·4/15、1/15·5/15 = 1/225、2/225、
3/225、4/225、5/225
则Gini系数G = ∑(Xp)-∑Yi/∑(Xp) = (1/15+2/15+3/15+4/15+5/15)-
(1/225+2/225+3/225+4/225+5/225)/(1/15+2/15+3/15+4/15+5/15) = 0.55
根据计算结果,这个地区的Gini系数为0.55,表明收入分配存在较大的不平
等情况。
贫困基尼系数是衡量社会收入分配不公平程度标准指标,越接近于1,表明收
入分配越不公平,越接近于0,则收入分配越公平,为社会经济可持续发展提供了重要的经济实证数据。
基尼系数分析一、基尼系数的计算方法基尼系数(Gini Coefficient)是意大利经济学家基尼(Corrado Gini, 1884-1965)于1912 年提出的,是衡量收入分配不均等程度的常用指标。
如果把对角线与洛伦茨曲线之间的而积记作A,洛伦茨曲线与横坐标轴及MP之间的面积记作B,则基尼系数g=A/ (A+B) =2A=1.2B。
如果已知洛伦茨曲线疔y (x)则可以通过下式计算基尼系数:g= 1 - 2] y (x) (lx (2)累积年收入(%>------------- 7<M洛伦茨曲线V ( X )X1地)累积人口数(%)但实际上洛伦茨曲线是一条折线,而非一条连续的曲线,因此无法采用上述积分的办法计算。
可采用另外一种比较简明的计算方法。
首先计算B的而积。
由于洛伦茨曲线是一条不规则的曲线,无法直接计算B的而积,因此采用近似梯形的面积来代替。
假定全部人口平均分为n组,以累计到第i组人口总收入占全部人口总收入的比重Wi为下底,以累计到第i.l组人口总收入占全部人口总收入的比重W i-1为上底,以每组人口占全部人口的比例即1/D为高, 计算一个个小梯形的面积,并加总,即得到近似B的面积:B=Z[l/2xl/n x(W i-l+W i)]最后,再将上述推导结果代入基尼系数公式,化简整理,即得一个筒便易学易用的基尼系数计算公式:G=l-l/n [2Z W i+1] (1)二、我国农村、城镇、全国居民的基尼系数的计算1.农村居民基尼系数的计算(以2003年为例)表1基尼系数计算表(国家统计局2003年统计年鉴相关资料整理)按收入分组各户比重人均纯收入收入所占比重户数累计收入累计低收入组0.2 865.90 0.0606 0.2 0.0606中低收入组0.2 1,606.53 0.1124 0.4 0.1729中等收入组0.2 2,273.13 0.1590 0.6 0.3319中高收入组0.2 3,206.79 0.2243 0.8 0.5561高收入组0.2 6,346.86 0.4439 11合计114,299.21 1根据上表,可绘制得到洛仑兹曲线(下图由直接生成)。
基尼系数计算方法基尼系数(Gini coefficient)是一种测量不平等程度的统计方法,一般用于衡量收入或财富的分配不平等情况。
它的取值范围在0到1之间,越接近0表示分配越平等,越接近1表示分配越不平等。
基尼系数的计算方法有两种:相对方法和绝对方法。
1.相对方法:相对方法适用于计算不同群体之间的基尼系数。
具体步骤如下:-收集有关不同群体的收入或财富数据。
-对收入或财富数据按照大小进行排序。
-计算累积收入或财富比例和累积人口比例。
-画出累积曲线。
-计算曲线下的面积。
-计算基尼系数:将面积除以0.5得到基尼系数。
在相对方法中,计算的是不同群体之间的相对不平等程度。
例如可以计算不同社会阶层、不同地区之间的财富不平等情况。
2.绝对方法:绝对方法适用于计算一个群体内部的基尼系数。
具体步骤如下:-收集群体内每个人的收入或财富数据。
-对收入或财富数据按照大小进行排序。
- 计算 Lorenz 曲线:累积收入(或财富)比例和累积人口比例之间的关系。
- 画出 Lorenz 曲线。
-计算曲线下的面积。
- 计算基尼系数:将面积除以 Lorentz 曲线下的最大可能面积(表示完全平等的情况)得到基尼系数。
在绝对方法中,计算的是群体内部收入或财富的不平等程度。
例如可以计算一个国家或一个城市内的收入或财富不平等情况。
无论是相对方法还是绝对方法,基尼系数的取值范围都在0到1之间。
当基尼系数越接近0时,表示收入或财富的分配越平等;当基尼系数越接近1时,表示收入或财富的分配越不平等。
基尼系数的优点是简单易懂,可以直观地反映收入或财富的不平等情况。
然而,它也有一些限制。
首先,基尼系数只是一种整体指标,不能提供关于不同群体(例如不同收入档位、不同年龄组等)之间的详细信息。
其次,基尼系数对于极端值非常敏感,一个极端高收入或财富的个体可能会导致整体基尼系数的剧烈上升,但并不一定表示整体不平等程度的大幅增加。
总之,基尼系数是衡量收入或财富不平等的一种常用方法,通过比较收入或财富的分配情况,能够帮助分析人们的经济状况和不平等问题。
1、直接计算法G= S A/ S A+B 式(1)△=n n∑∑∣j=1 i=1Y j-Y i∣/n2, 0≤△≤2u 式(2)式中,△是基尼平均差,∣Y j-Y i∣是任何一对收入样本差的绝对值,n是样本容量,u是收入均值。
定义G=△/2u, 0≤G≤1 式(3)可以证明:G=△/2u=2S A,而由式(1)G= S A/ S A+B,S A+B=1/2,G=2S A,因此,式(2)中定义的G即为基尼系数,综合式(2)、(3),基尼系数的计算方法为:G= 12n u n n∑∑∣j=1 i=1Y j-Y i∣式(4)证明:G=△/2u=2S A第一步,分解n n∑∑∣j=1 i=1Y j-Y i∣设将收入按从低到高排列Y、Y、……Y,则上式可以分解为矩阵A:2〔(n-1)Y n+(n-2)Y n-1+……+Y2—(n-1)Y1-(n-2)Y2-……-Y n-1〕=2〔(n-1)Y n+(n-3)Y n-1+(n-5)Y n-2……-(1-n)Y2-(n-1)Y1〕第二步,计算 12n2u取样本均值u=Y1+Y2+……Y nn =n ∑Y in1 2n u = 12n n∑Yi综上,第一步、第二步,得到G = 1 n n∑Y i〔(n -1)Y n +(n -3)Y n -1+(n -5)Y n -2……-(1-n )Y 2-(n -1)Y 1〕 式(14) 第三步,如下图计算S B 如下图 如图四,计算每一部分面积S PS P= 1 2 AB (AC +BD )= 1 ∑i-1Y i +∑ iY i 2n n ∑Y iS B = n∑1 ∑i-1Y i +∑ iY i 2n n ∑Y i第四步,计算S AS A =S A +B -S B = 1 2 - n∑1 ∑i-1Y i +∑ i Y i 2n n ∑Y i= 1 2n n n ∑Y i - n∑ ∑i-1Y i +∑ iY i n ∑Y i分解n n ∑Y i - n∑ ∑i-1Y i +∑ iY i 得到矩阵B加总最后一行,得到:n n ∑Y i - n ∑ ∑i-1Y i +∑ iY i =(n -1)Y n +(n -2)Y n -1+……+Y 2—(n -1)Y 1-(n -2)Y 2-……-Y n -1=(n -1)Y n +(n -3)Y n -1+(n -5)Y n -2……-(1-n )Y 2-(n -1)Y 1S A = 1 2n n n ∑Y i -n ∑ ∑i-1Y i +∑ iY i n∑Y i= 1 2n n ∑Y i〔(n -1)Y n +(n -3)Y n -1+(n -5)Y n -2……-(1-n )Y 2-(n -1)Y 1〕 式(15)比较式(14)和式(15)可得G=△/2u =2S A 。
基尼系数及计算方法基尼系数是国际上用来测量收入分配差距的指标,是一个与收入分配直接相关的统计指标。
基尼系数是收入分配中的一个重要指标,它反映了收入分配之间的相对差距大小。
基尼系数计算方法:基尼系数=1-1,基尼系数越小,收入分配差距越小;基尼系数越大,收入分配差距越大。
基尼系数按经济社会条件分为收入分配基尼系数、中低收入基尼系数、高收入基尼系数和中等收入基尼系数等五个系数。
收入和消费是人们生活的基本需求,是人们赖以生存和发展的基本条件之一。
因此,建立一个公平合理、符合社会发展规律和群众利益需求的分配制度是社会发展的必然要求。
要把“以增长为中心”转变为“以提高人民生活水平为中心”,使人们有更多的收入成为可能。
一、基尼系数的含义基尼系数,是一种用来衡量居民之间收入分配合理性的指标。
该系数在0至0.50之间表示收入分配不公;在0.50至0.70之间表示收入分配差距过大;在0.70以上表示收入分配严重不平等。
中国的基尼系数是0.4,比世界平均水平0.345低5个百分点。
基尼系数反映了居民收入来源不均的程度。
它反映了居民收入分配情况,是收入分配公平状况的重要判断标准。
它是一个重要评价指标。
基尼系数是由美国心理学家基尼提出。
他认为,中国城乡之间、阶层之间的收入分配不平等程度太高、太严重。
二、居民收入分配现状改革开放以来,我国居民收入持续增长,对经济增长作出了巨大贡献。
同时也存在一些问题。
首先,居民收入快速增长并没有带来整个社会财富的大幅度增加。
中国人均 GDP从1978年的649美元增加到2010年的6.79万美元。
然而,随着中国经济进入新常态后,人们收入不断提高,消费不断增长,投资不断增加。
然而,与世界主要国家相比,中国贫富差距仍然很大。
根据国家统计局发布的数据显示:在2000年国内生产总值(GDP)中,城镇居民和农村居民收入分别占国民收入的69.1%和59.4%。
三、基尼系数对中国的影响从国际上看,大多数国家都是按照基尼系数来衡量收入差距的。
基尼系数的公式基尼系数是用来衡量一个国家或地区居民收入差距的常用指标。
它的公式看起来可能有点复杂,但咱们一步步来,其实也没那么难理解。
基尼系数的公式表示为:G = A / (A + B) 。
这里的 A 表示实际收入分配曲线与绝对平等线之间的面积,B 则表示实际收入分配曲线与绝对不平等线之间的面积。
咱们先来说说这个 A 。
想象一下,假如一个国家所有人的收入都完全一样,那画出来的曲线就是绝对平等线。
但现实中可不是这样,实际的收入分配曲线往往是弯弯曲曲的。
A 就是这两条线之间的那部分面积。
比如说,在某个小镇上,有几户人家靠种地为生,有的地多产的粮食多,收入就高些;有的地少,收成也少,收入就低些。
这实际的收入差异反映在曲线上,就形成了 A 部分的面积。
再看看 B 。
绝对不平等线呢,就是假设一个人拥有所有的收入,其他人一分没有,这样画出来的线。
这在现实中基本不可能,但用来计算基尼系数能帮助我们更清楚地看出差距。
为了更明白这个公式,咱们假设一个小村子。
村里有 10 户人家,年收入分别是 1 万、2 万、3 万、4 万、5 万、6 万、7 万、8 万、9 万、10 万。
把这些数据整理一下,画成图表,就能大概看出实际的收入分配情况。
然后通过计算,得出 A 和 B 的面积,最后就能算出基尼系数啦。
其实啊,基尼系数并不是单纯的数字游戏。
它能反映出一个社会的公平程度和经济发展的健康状况。
如果基尼系数过高,说明收入差距过大,可能会带来一些问题,比如社会不稳定、消费不足等等。
咱们国家一直都很重视收入分配的公平问题,采取了一系列政策来缩小差距,让更多的人能共享发展成果。
比如说扶贫政策,帮助贫困地区的人们发展产业、增加就业,提高收入水平。
还有税收调节,让高收入者多交税,低收入者少交税甚至不交税。
总之,基尼系数的公式虽然看起来有点复杂,但理解了它背后的意义,就能更好地认识社会的经济状况,也能为制定更合理的政策提供依据。
希望大家通过我的讲解,对基尼系数的公式能有更清楚的认识啦!。
基尼系数的一个计算公式基尼系数(Gini coefficient)是一个用来衡量收入或财富的不平等程度的指标。
它是一个常用的经济学工具,可以帮助分析人口收入分配的公平性并提供政策建议。
G=(A/(A+B))其中,A代表面积A,也称为经济上固定不变薄片的面积;B代表面积B,也称为逆经济比例薄片的面积。
而面积A和面积B的计算方法如下:1.将人口按照收入或财富的大小顺序排序。
2.统计累积收入或财富的百分比。
3.计算累积收入或财富百分比与对应的人口比例之积,得到面积A。
4.计算面积B,即总面积减去A的面积。
举例来说,在一个由五个人构成的人口中,他们的收入按照从低到高的顺序排列:1000、2000、3000、4000、5000。
需要计算基尼系数。
首先,计算各人口的累积收入百分比和对应的人口比例:人口全部收入(累积)人口比例累积收入百分比110000.20.2230000.40.6360000.60.8接下来面积A=0.2*0.2+0.4*0.6+0.6*0.8+0.8*0.9+1.0*1.0=0.87面积B=1-面积A=1-0.87=0.13最后,计算基尼系数:G=0.87/(0.87+0.13)=0.87因此,这个例子中的基尼系数为0.87,意味着收入或财富的分配相对不均匀。
基尼系数不仅可以用来衡量收入或财富的不平等程度,还可以用来比较不同国家或地区的收入或财富分配情况。
通过对基尼系数的计算和比较,政府和国际组织可以评估不同政策对不平等问题的影响,并制定相应的社会经济政策来促进公平和减少不平等。
需要注意的是,基尼系数的计算存在一定的局限性。
它只能提供一个总体上的收入或财富不平等程度的度量,而不能提供关于不同收入或财富阶层之间的具体差距的信息。
此外,基尼系数还可能受到样本大小、收入或财富分布的形状和数据的可靠性等因素的影响,因此在使用基尼系数时需要谨慎分析和解读结果。
基尼系数及计算方法基尼系数是一种用来衡量一些领域内不平等程度的指标,常用于衡量收入、财富、教育、卫生等领域的不平等程度。
基尼系数的取值范围为0到1,其中0表示完全平等,1表示最不平等。
基尼系数的计算方法有多种,下面介绍三种常见的计算方法。
1.非加权法:基尼系数的非加权法计算非常简单,只需要按照数据从小到大的顺序对数据进行排序,然后根据以下公式进行计算:G = (n+1)/n - 2/n(n+1)∑(i=1)^n (n+1-i)xi其中G表示基尼系数,n表示样本的大小,xi表示按从小到大排列的第i个数据。
2.分组法:如果数据过多,可以采用分组法来计算基尼系数。
首先将数据按照大小进行分组,然后按照以下公式计算每个组的基尼系数:G = 1 - ∑(i=1)^k (ni / n)²其中G表示基尼系数,k表示分组数,ni表示第i个组的样本数量,n表示总样本数量。
3. Lorenz曲线法:基尼系数还可以通过绘制Lorenz曲线来计算。
Lorenz曲线是一个表示累积百分比与累积收入之间关系的曲线。
首先按照数据从小到大进行排序,然后计算累积百分比和累积收入,分别表示为P和R。
根据以下公式计算基尼系数:G=1-∫0^1(R-P)dP其中G表示基尼系数,P表示累积百分比,R表示累积收入。
对于以上三种计算方法,都可以反映出不同领域内的不平等程度。
一般来说,基尼系数越接近1,代表相应领域的不平等程度越大。
但需要注意的是,不同计算方法得出的基尼系数可能有轻微的差异,而且基尼系数只是一个总体上的指标,无法反映局部的不平等现象。
除了计算基尼系数,还可以通过基尼系数来比较不同国家、地区、社会群体之间的不平等程度。
通过比较不同国家的基尼系数,可以评估各国的贫富差距,以及发展不平等的程度。
因此,基尼系数是一个重要的测量和比较不平等程度的工具。
基尼系数的计算方法及数学推导摘要:本文归纳了基尼系数的四种计算方法:直接计算法、拟合曲线法、分组计算法和分解法,并进行了数学推导和证明。
在此基础上,文章比较了各种算法优缺点,分析了误差可能产生的环节。
关键词:洛伦茨曲线基尼系数一、洛伦茨曲线和基尼系数1905年,统计学家洛伦茨提出了洛伦茨曲线,如图一。
将社会总人口按收入由低到高的顺序平均分为10个等级组,每个等级组均占10%的人口,再计算每个组的收入占总收入的比重。
然后以人口累计百分比为横轴,以收入累计百分比为纵轴,绘出一条反映居民收入分配差距状况的曲线,即为洛伦茨曲线。
图一为了用指数来更好的反映社会收入分配的平等状况,1912年,意大利经济学家基尼根据洛伦茨曲线计算出一个反映收入分配平等程度的指标,称为基尼系数(G)。
在上图中,基尼系数定义为:式(1)G=S AS A+B当A为0时,基尼系数为0,表示收入分配绝对平等;当B为0时,基尼系数为1,表示收入分配绝对不平等。
基尼系数在0~1之间,系数越大,表示越不均等,系数越小,表示越均等。
二、基尼系数的计算方法式(1)虽然是一个极为简明的数学表达式,但它并不具有实际的可操作性。
为了寻求具有可操作性的估算方法,自基尼提出基尼比率以来,许多经济学家和统计学家都进行了这方面的探索。
在已有的研究成果中,主要有四种有代表性的估算方法,结合自己的计算,笔者将它们归纳为直接计算法、拟合曲线法、分组计算法和分解法。
1、直接计算法直接计算法在基尼提出收入不平等的一种度量时,就已经给出了具体算法,而且这种算法并不依赖于洛伦茨曲线,它直接度量收入不平等的程度。
定义△=n n∑∑∣j=1 i=1Y j-Y i∣/n2, 0≤△≤2u 式(2)式中,△是基尼平均差,∣Y j-Y i∣是任何一对收入样本差的绝对值,n是样本容量,u是收入均值。
定义G=△/2u, 0≤G≤1 式(3)可以证明:G=△/2u=2S A(证明过程见附录一),而由式(1)G= S A/ S A+B,S A+B=1/2,G=2S A,因此,式(2)中定义的G即为基尼系数,综合式(2)、(3),基尼系数的计算方法为:G= 12n2 u n n∑∑∣j=1 i=1Y j-Y i∣式(4)直接计算法只涉及居民收入样本数据的算术运算,很多学者认为理论上看,只要不存在来源于样本数据方面的误差,就不存在产生误差的环节。
实际上,在附录一证明过程当中将看到,直接计算法依然采用了以直代曲法计算面积,只不过这个过程在样本数据范围内达到了最小近似,其精确度直接取决于样本数据本身。
因此,可以认为它不带任何误差的计算了样本数据的基尼系数值。
2、拟合曲线法拟合曲线法计算基尼系数的思路是采用数学方法拟合出洛伦茨曲线,得出曲线的函数表达式,然后用积分法求出B的面积,计算基尼系数。
通常是通过设定洛伦茨曲线方程,用回归的方法求出参数,再计算积分。
例如,设定洛伦茨曲线的函数关系式为幂函数:I=αPβ式(5)根据选定的样本数据,用回归法求出洛伦茨曲线,例如,α=m,β=n.求积分S B=∫01 mp n dp=mn+1式(6)计算G=S AS A+B = S A+B-S BS A+B=1-2mn+1式(7)拟合曲线法的在两个环节容易产生谬误:一是拟合洛伦茨曲线,得出函数表达式的过程中,可能产生误差;二是拟合出来的函数应该是可积的,否则就无法计算。
3、分组计算法这种方法的思路有点类似用几何定义计算积分的方法,在X轴上寻找n个分点,将洛伦茨曲线下方的区域分成n部分,每部分用以直代曲的方法计算面积,然后加总求出面积。
分点越多,就越准确,当分点达到无穷大时,则为精确计算。
假设分为n 组,每组的收入为Y i ,则每个部分P 的面积为:S P = 1 ∑i-1Y i +∑ iY i 2n n∑Yi式(8) 加总得到:G= S A S A+B = S A+B -S B S A+B =1-2lim k →∞∑ n1 ∑i-1Y i +∑ iY i 2n n ∑Y i式(9) 这是精确计算基尼系数的表达式,当分点n 个数有限时,定义:y i = Y in∑Yi式(10) 得到近似表达式:G=2S A = 2 n (y 1+2y 2+···+ny n )-( n+1 n ) 式(11) (证明过程见附录二)分组计算法不依赖于洛伦茨曲线的函数形式,但在以直代曲的环节会出现误差,增加分点的个数可以减少这种误差。
4、分解法上述的计算方法的最终目的都在于求出基尼系数的值,而分解法则是在求出上述值的基础上,力图研究基尼系数的构成因素,除了得出总的基尼系数的信息之外,在计算过程中还能够获得分解部分内部的基尼系数值。
另外,分解法求出基尼系数的过程一般都依赖于已有部分的基尼系数的值,从这个意义上说,分解法并不是独立计算基尼系数的方法,它更重要的意义在于对基尼系数的分解,即定义的各个不同基尼系数值之间的相互关系。
伦敦经济学院收入分配方法论专家Cowell 教授提出,基尼系数在不同人群组之间无法完全分解于尽。
总体基尼系数除了包括各个组内差距之外,还应包括组间差距和相互作用项。
公式为:G = k ∑W i G i +I b +ε(f i ) 式(12)式中,G 是总体基尼系数,G i 是第i 组内部的基尼系数(i=1,2,…,n ),W i 是G i 的权数,I b 是组间的差距指数,ε(f i )是相互作用项。
ε(f i )是各个组之间收入分布的重叠程度。
特别地,当各个组之间收入分布完全不重叠时,ε(f i )=0。
式(12)地意义在于形式化地表述了对总体基尼系数进行分解的思路和框架,但由于没图二有给出W i、I b和ε(f i)的具体计算方法,还不能用于基尼系数的计算。
经济学家Sundrum(1990)在他的《欠发达国家的收入分配》一书中介绍了一种对一国或地区基尼系数进行分解的方法,其数学公式为:G=P12u1u G1+ P22u2uG2+P1P2︱u1-u2u︱式(13)式中,G表示总体基尼系数,G1和G2分别表示农村和城镇的基尼系数,P1、P2分别表示农村人口和城镇人口占总人口的比重,u1、u2、u分别表示农村、城镇和总体的人均收入。
对比式(12)和式(13),可以发现式(13)是式(12)的一种具体运用,P12u1uG1和P22u2u G2可以作为以P12u1u和P22u2u为权重的k∑W i G i,P1P2︱u1-u2u︱则为组间差距指数I b。
值得注意的是式中没有ε(f i)项,意味着ε(f i)=0成立,因此这种算法隐含的假设条件是农村与城镇的收入分布完全不重叠。
此外,采用这种计算方法还必须满足条件:在估算城乡内部的基尼系数时所用的居民收入数据的口径是相同或相近的。
这种方法会在可能在两个环节产生误差:一是用其他方法估计城乡各自的基尼系数G1和G2时,可能产生误差;二是城乡收入分布一般会在不同程度上重叠。
附录一:证明:G=△/2u=2S A第一步,分解n n∑∑∣j=1 i=1Y j-Y i∣设将收入按从低到高排列Y将矩阵中各项加总得到:2〔(n-1)Y n+(n-2)Y n-1+……+Y2—(n-1)Y1-(n-2)Y2-……-Y n-1〕=2〔(n-1)Y n+(n-3)Y n-1+(n-5)Y n-2……-(1-n)Y2-(n-1)Y1〕第二步,计算 12n2u取样本均值u=Y1+Y2+……Y nn =n ∑Y in1 2n2u = 12n n∑Yi综上,第一步、第二步,得到G = 1 n n∑Y i〔(n -1)Y n +(n -3)Y n -1+(n -5)Y n -2……-(1-n )Y 2-(n -1)Y 1〕 式(14) 第三步,计算S B如图四,计算每一部分面积S PS P = 1 2 AB (AC +BD )= 1 ∑i-1Y i +∑ iY i 2n n∑YiS B = n∑ 1 ∑i-1Y i +∑ iY i 2n n∑Yi第四步,计算S AS A =S A +B -S B = 1 2 - n∑1 ∑i-1Y i +∑ i Y i 2n n ∑Y i= 1 2n n n ∑Y i - n∑ ∑i-1Y i +∑ iY i n ∑Y i分解n n ∑Y i - n ∑ ∑i-1Y i +∑ iY i得到矩阵B图四i -1iPA B Cn i -1 图三D加总最后一行,得到:n n ∑Y i - n ∑ ∑i-1Y i +∑ iY i =(n -1)Y n +(n -2)Y n -1+……+Y 2—(n -1)Y 1-(n -2)Y 2-……-Y n -1=(n -1)Y n +(n -3)Y n -1+(n -5)Y n -2……-(1-n )Y 2-(n -1)Y 1S A = 1 2n n n ∑Y i - n ∑ ∑i-1Y i +∑ iY in∑Y i= 1 2n n ∑Y i〔(n -1)Y n +(n -3)Y n -1+(n -5)Y n -2……-(1-n )Y 2-(n -1)Y 1〕 式(15)比较式(14)和式(15)可得G=△/2u =2S A 。
附录二: 证明:当分点个数n 有限时,G=2S A = 2 n(y 1+2y 2+···+ny n )-( n+1 n ) 定义:y i = Y in∑YiS P = 1 2 AB (AC +BD )= 1 ∑i-1Y i +∑ i Y i 2n n ∑Y i = 1 2n ( ∑ i Y i n ∑Y i + ∑i-1Y i n ∑Y i) S B = n∑ 1 ∑i-1Y i +∑ iY i 2n n∑YiS A =S A +B -S B = 1 2 - n∑ 1 ∑i-1Y i +∑ i Y i2n n∑Y i= 1 2n n n ∑Y i -( n ∑ ∑i-1Y i +∑ iY i ) n ∑Y i=1 2n n n ∑Y i -n∑(2 ∑i Y i -Y i ) n∑Yi=1 2n n n ∑Y i - n ∑(2 ∑iY i -Y i ) n ∑Y i=1 2n(2n -2 n ∑i ∑y i +2 n∑y i )- n+1 2n 分解n - n∑ i∑y i 得到矩阵C :加总最后一列,得到n-n∑i∑y i=(n-1)y n+(n-2)y n-1+……y2S A=12n (2n-2n∑i∑y i+2n∑y i)-n+12n=1 n (y1+2y2+···+ny n)-n+12nG=2S A= 2n (y1+2y2+···+ny n)-(n+1n)参考资料:1、Sundrum.R.M,1990,Incom Distribution in Less Developed Counties, London and NewYork:Routledge2、Cowell.F.A,2000,Measurement of Inequality, in Handbook of Income Distribution,eds. By A.Atkirrson and F.Bourguignon, Northholland3、熊俊:《基尼系数估算方法的比较研究》;《财经问题研究》2003年1月第1期4、王文森:《基尼系数及推广应用》;《统计与预测》;2003年1月第1期。