兼氧FMBR工艺介绍
- 格式:pdf
- 大小:2.45 MB
- 文档页数:19
aao mbr 工艺技术AAO MBR工艺技术是指采用反应聚合膜生物反应器(MBR)结合铝阳极氧化(AAO)工艺的一种废水处理技术。
该技术将MBR工艺和AAO工艺相结合,可以高效地处理各种废水,具有处理效果好、运行稳定等优点。
下面就AAO MBR工艺技术进行详细介绍。
AAO MBR工艺技术的主要工艺流程包括:进水、调节、生物反应、混合装置、预处理、MBR反应区、沉淀区、出水。
具体过程如下:1. 进水:将待处理的废水通过管道引入系统。
2. 调节:对进水进行调节,包括调节温度、pH值等,以便提供良好的生物环境。
3. 生物反应:将调节后的废水进入生物反应区,通过生物反应器中的微生物降解有机物等污染物。
4. 混合装置:通过混合装置使废水与微生物充分接触,促进有机物的生物降解。
5. 预处理:将经过生物反应的废水进行初步的固液分离,去除悬浮颗粒。
6. MBR反应区:将预处理后的废水进入MBR反应区,通过反应聚合膜对废水中的微小颗粒、胶体等进行过滤分离。
7. 沉淀区:将通过反应聚合膜过滤后的清水进入沉淀区,再次进行固液分离,去除漂浮物。
8. 出水:将经过沉淀的废水进行最后的处理,达到排放标准后,即可排放。
AAO MBR工艺技术相比传统的废水处理技术具有以下优点:1. 处理效果好:AAO MBR工艺技术通过反应聚合膜的过滤作用,可以有效去除废水中的微小颗粒、胶体等难以处理的污染物,使处理效果更好。
2. 运行稳定:该工艺技术采用了生物反应器和反应聚合膜相结合的方式,使得整个系统运行更加稳定,处理效果更加稳定可靠。
3. 占地面积小:相比传统废水处理技术,AAO MBR工艺技术占地面积更小,可以节省土地资源。
4. 适用范围广:AAO MBR工艺技术适用于各种废水的处理,可以处理工业废水、生活污水等。
综上所述,AAO MBR工艺技术是一种高效、稳定的废水处理技术。
该技术通过反应聚合膜和生物反应器的相结合,可以高效地去除废水中的难以处理的污染物,达到排放标准,具有广泛的应用前景。
a2o+mbr工艺原理a2o+mbr工艺原理a2o+mbr工艺是一种先进的废水处理技术,结合了A2O(Anoxic-Oxic)工艺和MBR(膜生物反应器)技术。
该工艺通过利用微生物的活性和膜过滤的分离作用,可以高效地去除废水中的有机物和氮磷等污染物,达到出水水质要求。
A2O工艺是一种生物脱氮和除磷的工艺,由缺氧污泥区(Anoxic Zone)和好氧污泥区(Oxic Zone)组成。
在缺氧污泥区,污泥中的硝酸盐还原菌利用废水中的有机物进行脱氮反应,将硝酸盐还原为氮气释放出去。
在好氧污泥区,好氧细菌利用废水中的有机物进行氧化反应,产生二氧化碳和水。
MBR技术则是通过使用微孔膜过滤器来实现液固分离的过程。
在a2o+mbr工艺中,将废水通过微孔膜过滤器进行处理,可以有效地阻止悬浮固体和微生物的进一步传播,使其保留在反应器中。
这种膜过滤器可以有效地去除悬浮固体、细菌、病毒等微生物,以及沉积物和胶体物质。
a2o+mbr工艺的主要原理是通过A2O工艺实现废水的脱氮和除磷,同时利用MBR技术实现废水的液固分离。
通过将污水通过反应器和膜过滤器的结合使用,使废水的处理效果更加高效和稳定。
相比传统的废水处理工艺,a2o+mbr工艺具有以下几个优点:1. 出水水质稳定:a2o+mbr工艺可以更好地控制废水的处理过程,确保出水水质的稳定性。
2. 占地面积小:使用MBR技术可以显著减小废水处理厂的占地面积,特别适用于场地有限的情况。
3. 减少污泥产量:由于膜过滤器的使用,a2o+mbr工艺可以使污泥产量大幅降低,减少了处理后的污泥处理成本。
4. 适应性强:a2o+mbr工艺对水质变化的适应性较强,能够处理高浓度有机物和高氮磷废水。
总之,a2o+mbr工艺通过结合A2O工艺和MBR技术的优势,可以高效、稳定地处理废水,达到环保要求,广泛应用于工业废水和城市污水处理领域。
帮你区分理解:什么是好氧、厌氧、兼氧污水处理技术?好氧处理技术出水水质较好,主要应用于处理中低浓度废水或者作为厌氧处理的后续处理,但能耗高。
厌氧处理技术适用于处理高浓度有机废水,逐步成为环境保护、资源利用的核心方法,但是,反应速度较慢,反应器容积较大。
兼氧处理技术可发挥厌氧去除有机物绝对量高、好氧对有机物去除率高的各自优点,提高总体有机物处理效率。
兼氧处理技术的发展趋势大致有:兼氧微生物降解有机物的机理、兼氧微生物的分离与培养、提高兼氧微生物处理污染物效能研究、兼氧微生物与其他微生物的相互关系。
在利用兼氧方面,水解酸化工艺居于重要地位,是一个典型工艺,多年来得到广泛应用,为我国的污水处理事业做出了重要贡献。
近年来,兼氧处理技术因能克服好氧处理连续曝气能耗高、厌氧处理条件苛刻等缺点而越来越受到人们的重视。
例如,釆用兼氧+好氧生物技术处理屠宰废水效果良好,同时具有污泥量少、投资省、运转费用低、适用范围广的特点。
兼氧微生物可将废水中的大分子有机物分解为易生化的小分子有机物,改善废水的可生化性, 为后续好氧处理创造条件, 提高了生化处理的整体效果。
目前,对好氧微生物、专性厌氧微生物的研究已比较深入,但对兼氧微生物的研究较薄弱。
本文比较此三种技术的原理,梳理技术开发的思路,以期为未来的污水处理技术研发提供借鉴,进一步加强兼氧生物处理技术的研究,提高污水处理效能。
1 好氧处理技术污水的好氧处理过程见图1。
有机物被微生物摄食之后,通过代谢活动,有机物一方面被分解、稳定,并提供微生物生命活动所需的能量;另一方面被转化、合成为新的原生质(或称细胞质)的组成部分,即微生物自身繁殖生长,这就是污水生物处理中的活性污泥或生物膜的增长部分。
图1 污水好氧生物处理过程示意图好氧处理系统中的微生物主要是细菌(以好氧性异养菌为主)和原生动物,此外尚有酵母菌、丝状霉菌、单胞藻类、轮虫、线虫等。
细菌占微生物总数的90%,数量约为108~109个/mL,它们是去除水中有机污染物的主力军。
污水处理MBBR工艺介绍一、什么是MBBR?MBBR工艺是运用生物膜法的基本原理,通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。
由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。
载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。
另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好氧菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。
二、MBBR的原理及特点1、MBBR工艺的原理MBBR工艺原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。
由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。
载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。
另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。
MBBR工艺兼具传统流化床和生物接触氧化法两者的优点,是一种新型高效的污水处理方法,依靠曝气池内的曝气和水流的提升作用使载体处于流化状态,进而形成悬浮生长的活性污泥和附着生长的生物膜,这就使得移动床生物膜使用了整个反应器空间,充分发挥附着相和悬浮相生物两者的优越性,使之扬长避短,相互补充。
与以往的填料不同的是,悬浮填料能与污水频繁多次接触因而被称为“移动的生物膜”。
2、MBBR的优点与活性污泥法和固定填料生物膜法相比,MBBR既具有活性污泥法的高效性和运转灵活性,又具有传统生物膜法耐冲击负荷、泥龄长、剩余污泥少的特点。
(1)填料特点填料多为聚乙烯、聚丙烯及其改性材料、聚氨酯泡沫体等制成的,比重接近于水,以圆柱状和球状为主,易于挂膜,不结团、不堵塞、脱膜容易。
MBR工艺在农村生活污水处理中的应用摘要:近年来,MBR技术逐渐在农村生活污水处理领域崭露头角,其中主要应用的膜组件形式为平板膜及中空纤维膜。
本研究立足于国内采取平板膜和中空纤维膜处理农村生活污水的实际案例,深入比较了这两种膜组件在污水处理效能、预处理条件、膜通量与水生产率、清洁方法以及工艺成本等方面的差异。
同时,也探讨了平板膜和中空纤维膜在农村生活污水处理中的优劣势,这些分析结论对于理解和应用MBR技术于农村生活污水处理具有一定的指导意义。
关键词:MBR工艺;农村;生活污水处理;应用1农村生活污水的水质特征我国农村地区的污水处理主要起源于家庭烹饪和家畜饲养等活动,相较于工业废水,其水质虽然总体较为纯净,但变异幅度却相当显著。
生活污水富含氮和磷元素,通常不包含重金属或有害污染物。
值得注意的是,多数农民在日常生活中还养殖着家禽,这些活动使得在雨水的作用下,未经处理的生活污水径直流入周边的水道,从而对周边水质构成潜在威胁。
2MBR膜处理工艺原理MBR融合了生物学处理与膜分离工艺的独特策略。
生物学环节巧妙地运用了微小生物,它们将水体中的有机物质,包括脂溶性和胶态成分,转化为气体和微生物细胞,作为自身生存的能源。
膜分离技术则如精密的过滤系统,有效地分离了水流和沉淀物,确保出水水质清澈,悬浮物和浑浊度几乎降至零,同时能有效阻挡诸如大肠杆菌等微小生物污染。
MBR技术以酶类微生物或动植物细胞作为催化媒介,通过化学反应和生物转化过程进行运作。
它依赖于滤膜这一关键组件,既能隔离反应生成物,又能保持催化剂的活性,实现连续不断的反应流程。
在此过程中,好氧微生物被有目的地培养,以分解污水中的溶解性污染物。
同时,硝化细菌在MBR中起着至关重要的角色,它们将氨氮转化为硝酸盐,消除令人不适的气味。
最后,高效固液分离步骤通过膜技术完成,确保了污水处理的高效率。
3MBR工艺在农村生活污水处理中的应用3.1预处理MBR技术中的预处理环节具有决定性的影响,其精细操作能显著优化工艺表现并延长膜元件的使用寿命。
MBR系列膜-生物反应器膜片使用说明书中美环境工业技术有限公司MBR系列膜—生物反应器膜片使用说明书一、简介膜—生物反应器工艺(MBR工艺)是膜分离技术与生物技术有机结合的新型废水处理技术,它利用膜分离设备将生化反应池中的活性污泥和大分子有机物质截留住,省掉二沉池。
活性污泥浓度因此大大提高,水力停留时间(HRT)和污泥停留时间(SRT)可以分别控制,而难降解的物质在反应器中不断反应、降解。
因此,膜—生物反应器工艺通过膜分离技术大大强化了生物反应器的功能,与传统的生物处理方法相比,具有生化效率高,抗负荷冲击能力强,出水水质稳定,占地面积小,排泥周期长,易实现自动控制等优点,是目前最有前途的废水处理新技术之一。
二十世纪九十年代以来,在日本、法国、加拿大等国得到了广泛的研究与应用。
中美环境工业技术有限公司应用于膜—生物反应器工艺的核心器件—聚丙烯中空纤维膜片。
工艺流程1.传统活性污泥法原废水→格栅集水池→均质池→出水2.膜—生物反应器法原废水→格栅集水池→膜—生物反应器→出水3.工艺流程图材质:聚丙烯外径:450μm膜壁厚:40~45μm膜孔径:0.1~0.2μm透气率:≥7.0×10-2cm3/cm2·s·cmHg纵向强度:12MPa孔隙率:40~50%净化水浊度:≤0.2NTU三、膜片性能参数1.设计通量MBR-08型: 0.8~1.2 t/d 2.膜片面积MBR-08型:8m2/片3.操作压力: -0.01 ~ -0.03MPa4.膜片及框架结构(见下图)膜片可按一片、二片或三片成一个单元(如上图所示)框架材质UPVC塑料或A3钢防腐单元间距75~90mm膜架与生化池壁距≥400mm框架与框架间距≥500mm单框架处理量≤200m3/d五、膜片的亲水膜片在使用前需对膜片进行亲水处理,处理方法为:用95%的工业酒精浸泡约2分钟(注意:不要把两边集水管浸在酒精中),然后用清水浸泡冲洗10分钟。
脱氮除磷工艺汇总MBR工艺脱氮除磷MBR是一种结合膜分离和微生物降解技术的高效污水处理工艺。
在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善.MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善.所以MBR工艺一般和SBR系列/AAO等工艺组合使用. 五种常见组合工艺:SBR—MBR工艺A2O—MBR工艺3A—MBR工艺A2O/A-MBR工艺A(2A)O—MBR工艺SBR—MBR工艺:将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身和SBR工艺两种程序运行都互有帮助。
由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附和降解有机物的能力较强,同时也具有较好的硝化能力.此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。
与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR的循环时间;同时,序批式的运行方式可以延缓膜污染。
A2O-MBR工艺:由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O—MBR工艺,可进一步拓展MBR的应用范畴。
在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。
A2O—MBR工艺中高浓度的MLSS、独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。
工业园区污水处理厂工艺优选研究高伟明韶关市城镇污水处理管理中心摘要:工业园区污水对当地造成污染问题日益严重,同时,工业园区污水面临处理难度大、效果不稳定等问题,如何根据园区现状选择合适的处理工艺显得尤为重要。
通过比较A2O工艺、好氧MBR和兼氧FMBR三种工艺的效果、投资、成本、运行管理等,以期为类似的园区工业水处理工艺选择提供参考。
关键词:工业园区污水;工艺比较;A2O工艺;好氧MBR;兼氧FMBR1引言韶关市东莞(韶关)产业转移工业园需新建座2000吨/日规模的污水处理厂,园区企业排放污水经该污水处理厂处理后,出水水质满足《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准以及广东省地方标准《水污染物排放限值》(DB44/26-2001)中较严者。
为此,通过对园区污水厂的进水水质分析以及工艺优选,以期为该工业园区污水厂建设提供参考。
2水质特点污水生物处理是以污水中所含污染物作为营养源,利用微生物的代谢作用使污染物被降解,污水得以净化。
因此对污水成分的分析以及判断污水能否采用生物处理是设计污水生物处理工程的前提。
污水可生物处理的衡量指标:①BOD5/CODcr是污水生物处理工程中常用的两个水质指标,用BOD5/CODcr值评价污水的可生化性是广泛采用的一种最为简易的方法,一般情况下,BOD5/CODcr值越大,说明污水可生物处理性越好。
根据业主提供的进水BOD、COD浓度和一般生活污水特征,BOD5/CODcr≥150/400=0.38,可生化性较好。
②BOD5/TN是鉴别能否采用生物脱氮的主要指标,由于反硝化细菌是在分解有机物的过程中进行反硝化脱氮的,在不投加外来碳源条件下,污水中必须有足够的有机物(碳源),才能保证反硝化的顺利进行,一般认为,BOD5/TN≥4,即可认为污水碳源可供反硝化菌利用,若碳源不足时考虑添加适当碳源。
本项目BOD5/TN≥150/35=4.3,满足上述条件。
50t/d生活污水处理**蓝**净化设备**2008年7月10日目录一、工程概述1二、工程设计依据1三、工程设计原则1四、设计、施工范围及服务24.1设计范围24.2施工范围及服务2五、设计参数2六、主处理工艺说明36.136.2脱氮工艺36.3膜生物反应器<MBR>工艺36.4除臭工艺4七、工艺流程57.1流程图57.2处理构筑物、设备的作用67.3主要处理单元及设备6八、电气自控9九、运行班制及人员安排109.1人员编制109.2主要管理设施109.3运行的技术管理109.4检修和维护109.5事故或故障处理措施11十、主要构筑物、设备11十一、运行成本12十二、处理效果、效益分析14 12.1处理效果分析1412.2环境效益和影响分析14十三、售后服务及设备保修14目的14售后服务15保修、服务15回访的形式15十四、报价16一、工程概述根据贵公司提供的200人产生的生活污水约50m3/d.现建设污水处理站,使污水经处理达标后作为中水回用.这样,既满足了环境保护的要求,又保护了水环境,消除了污染.二、工程设计依据1、中华人民**国《城市污水再生利用城市杂用水水质》<GB18920-2002>;2、给水排水工程和废水处理工程建设有关技术规范;3、《室外排水设计规范》<97年版>[GBJ 14-87]4、《通用用电设备配电设计规范》[GB50055-93]5、《电力装置的继电保护和自动装置设计规范》[GB50062-92]6、《给水排水工程钢筋混凝土水池结构设计规程》[SH3076-1996]7、《给水排水工程构筑物结构设计规范》[GB50069-2002]8、《工业企业界噪声标准》[GB 12348-1990]上述规范如有更新,以最新的国家标准及规范为准.三、工程设计原则1、本方案严格执行国家有关环境保护的各项规定.2、采用先进污水处理工艺,确保处理出水的各项指标达到设计要求.通过环保部门验收.3、考虑自动化控制,以便于工人操作,简化管理和减轻工人的劳动强度.4、设计时充分考虑污水处理系统配套设备的减振、降噪、除臭设施,从而避免对环境造成二次污染.5、污水处理过程中产生的少量剩余污泥定期由外协单位清出外运.四、设计、施工范围及服务4.1设计范围本工程的设计范围为:污水处理站的工艺、设备、电气与自控、通风等专业的全部内容.4.2 施工范围及服务a、污水处理系统的设计、施工;b、污水处理设备及设备内的配件均由我公司负责提供.c、我公司负责污水处理站内的全部安装工作.包括污水处理设备内的电器接线.d、我公司负责污水处理设备的调试,直至合格.e、我公司免费培训操作人员,协同编制操作规程,同时做有关运行记录.为今后的设备维护、保养,提供有力的技术保障.五、设计参数污水水量、水质及排放标淮1、水量按照每人每天排水量为250L/人·d计算污水水量为:Q = 50m3/d每小时设计处理量:q=2.5m3/h2、进出水水质因未提供废水水质情况,进水水质按照经验值确定.出水水质执行《城市污水再生利用城市杂用水水质》<GB18920-2002>标准.六、主处理工艺说明6.16.2 脱氮工艺本工程采用改良的A/O工艺进行脱氮处理.利用膜生物反应器代替O段,更结合了生物膜法脱氮的优点.膜生物反应器内可形成同步硝化反硝化的作用.由于污泥浓度高,污泥颗粒大.在污泥颗粒内部微环境造成一定的缺氧区,使得生物反应器的微生物可进行一定程度的反硝化脱氮;膜生物反应器具有传统工艺所难以达到的高负荷,具有高效的去除含碳有机物和脱氮的功能.膜生物反应器进行定期排泥,因排泥间隔时间较长,所含的NO3-N浓度较高.通过污泥回流和污泥池混合液回流为缺氧池提供足够数量的微生物,并使缺氧池得到一定量的硝酸盐.污水在缺氧阶段,通过厌氧、兼氧菌的作用,NO3-N浓度由于反硝化作用而大幅下降,同时由于在反硝化过程中利用了碳源有机物,污水的COD和BOD5均有所下降;一部分NH4-N被用来进行细菌的微生物合成.6.3膜生物反应器<MBR> 工艺MBR是一种将高效膜分离技术与传统活性污泥法相结合的新型高效污水处理工艺,它用具有独特结构的浸没式膜组件置于曝气池中,经过好氧曝气和生物处理后的水,由泵通过滤膜过滤后抽出.它与传统污水处理方法具有很大区别,取代了传统生化工艺中二沉池和三级处理工艺.由于膜的存在大大提高了系统固液分离的能力,从而使系统出水水质和容积负荷都得到大幅度提高,出水可达到杂用水标准,经后续处理后可达到景观用水标准.由于膜的过滤作用,微生物被完全截留在生物反应器中,实现了水力停留时间与活性污泥泥龄的彻底分离,消除了传统活性污泥法中污泥膨胀问题.膜生物反应器具有对污染物去除效率高、硝化能力强,可同时进行硝化、反硝化、脱氮效果好、出水水质稳定、剩余污泥产量低、设备紧凑、操作简单等优点.目前广泛应用于生活污水和各种可生化工业废水的处理及回用中.MBR工艺优点:a、处理水质优良、出水稳定、SS<3mg/L、同时可截留水中的细菌和大肠杆菌.b、由于污泥泥龄长,从而可以大大提高难降解有机物的去除率.c、可以在高容积负荷、低污泥负荷、长泥龄条件下运行,产生剩余污泥量少,从而降低了污泥处理设施的费用.d、设备高度集成,占地面积小,自动化程度高、易于维护管理.本项目采用最新品种膜——平板膜,其优点:a.浸没放置,膜组件稳定置放于反应池中;b.低压〕抽吸或重力〔出水,系统工作压力小,电耗低;c.气液两相流扰动;d.长时间稳定运行;e.膜不易污染、膜清洗频率低、清洗操作方便;膜片可单张更换.6.4 除臭工艺为消除设备运行中如果产生的异味,保持学院内环境,本工程考虑除臭工艺.考虑到运行费用、操作、效果等方面,选择生物除臭法.由穿孔管构成的空气分布系统位于生物土壤底部,收集的臭气缓慢的在土壤介质中扩散,向上穿过土壤介质,并暂时的吸附在载体表面或吸附在微生物表面,或吸附在薄膜水层中,然后臭气被微生物吸收,参与微生物代谢,臭气被转化成CO 2和H 2O.土壤扩散层由粗、细石子及黄沙组成,可以使臭气均匀分布.七、 工艺流程7.1流程图流程说明:污水通过污水管网汇集到污水处理站,流经机械格栅,机械格栅自动捞除大颗粒的悬浮物及杂质;后流入污水调节池内,在调节池内进行水质、水量调节,由污水提升泵将污水提升至缺氧.污水在缺氧池内与回流和混合液混合,经过反硝化处理.然后进入MBR 反应池.MBR 反应池内装沉浸式平片膜,反应池中的微生物将污水中的可生化污染物进行降解.膜单元部分主要用于固液分离,微生物固体可有效地被截留在反应器中,保证了出水水质的稳定,并有效提高反应器中污泥浓度.MBR 池中的污泥一部分排入污泥消化池,一部分回流入缺氧池,为缺氧段提供硝酸盐,达到脱氮的目的.MBR 反应池出水可直接进入清水池,投加消毒剂进行消毒杀死毒菌,并去除色度,各项水质指标达标后,停留或直接打入中水管网进行回用.污水 污泥 药剂 空气污泥收集到污泥池,消化后机械掏挖外运.上清液回流入调节池.7.2 处理构筑物、设备的作用1、机械格栅污水中含有较大颗粒和悬浮杂质,为保护处理系统设备正常运行、防止管路堵塞,池内设置机械格栅1台,对颗粒和悬浮杂质进行有效拦截,经过机械格栅拦截后的污水自流入调节池.2、调节池用于调节污水水量和均匀水质,以提高系统的抗冲击性能,配污水提升泵,由液位计自动控制水泵的启闭,将污水提升到缺氧池.3、缺氧池缺氧池有两个功能:首先是反硝化以获得不含硝酸盐的污泥进而提高好氧池的释磷效率,其次是利用好氧池中的硝酸盐来除磷.具有良好的脱氮功能.4、膜生物反应器<MBR>膜生物反应器,具有一种独特结构的浸入平片式膜反应器,它设置于曝气池内,经过好氧曝气和生物处理后的水经过滤膜过滤由泵抽出进入回用清水池,由于它的出水不受污泥沉降条件的影响,可使池内保持高容积负荷、长泥龄的条件下运行,这样大大提高生物氧化的工艺条件,提高了有机物降解效率,同时省去了二沉池,达到出水优良,稳定的效果.5、清水池在清水池中对MBR出水进行消毒.清水池也起到了存储回用水作用.6、污泥浓缩池存放剩余污泥,对污泥进行消化.7.3主要处理单元及设备1、格栅井尺寸 0.9m×0.6m×2.0m结构钢砼配B-300栅除污机1台B300格栅除污耙齿栅1mm,设备宽度300mm,耙齿不锈钢.2、调节池尺寸 4.3m×2.0m×3.0m有效容积 20m3停留时间 8.0h结构钢砼潜污泵2台<一用一备>型号:型号:QDX3-10-0.25,流量3m3/h,扬程10m,功率0.25kW,带自耦装置GAK-80,将污水提升到反应池.4、一体式污水处理装置4.1 缺氧池反应池尺寸 2.0m×2.4m×2.5m反硝化速率 0.05kgNO-N/〕kgMLVSS·d〔3有效容积 10m3停留时间 4.0h潜水搅拌机1台型号:Q1.5/8-400/3-740,功率1.5kW,推力600N4.2 MBR反应池反应池尺寸 2.5m×2.4m×2.5m总有效容积 12.5m3停留时间 5.0h混合液回流比 100%污泥泵1台型号:QDX3-10-0.25,流量3m3/h,扬程10m,功率0.25kW,带自耦装置GAK-80,用作将剩余污泥排入污泥池.间歇工作.混合液回流泵1台型号:QDX3-10-0.25,流量3m3/h,扬程10m,功率0.25kW,带自耦装置GAK-80,用作将剩余污泥排入污泥池.4.3污泥池污泥池尺寸 1.2m×1.0m×2.5m有效容积 2.5m3上清液自流入调节池.经消化后的污泥体积能够约为原来的50%以下,所以仅需间隔一段时间进行机械掏挖.4.4清水池尺寸 1.2m×1.0m×2.5m有效容积 2.5m3停留时间 1h储存回用水.清水泵2台<1用1备>型号:QDX3-10-0.25,流量3m3/h,扬程10m,功率0.25kW.4.5 设备房尺寸 3.5m×2.4m×2.5m有效面积 8.4m24.6 MBR膜组件数量 2组每组膜面积70m2,组件膜总面积140 m24.7 抽吸泵数量 2台<1用1备>型号 25ZX3.2-20流量 3.2m3 /h扬程20m功率0.75kW4.8 三叶罗茨鼓风机数量 2台<1用1备>型号SR65风量 2.02m3 /min风压0.03MPa装机功率 2.2kW运行功率 1.62kW4.9 二氧化氯发生器数量 1台型号HB50功率 0.37kW4.10 PLC控制柜八、电气自控1、电源接到控制电柜.2、采用操作控制柜地面集中控制方式,带PLC微电脑全自动控制.控制板面设计为模拟屏,通过PLC可编程序控制器集中显示并自动控制所有设备的运转情况.各设备亦可单台控制.为便于操作,有关设备设置现场开关.现场控制箱上有手动挡,自动挡开关.当处在手动挡状态时,操作人员可在现场启动、关闭设备.当处在自动挡状态时,由PLC自动控制系统设备的运转,实现无人值守.但现场发生情况,手动停止按钮仍然可以关闭系统,即实行手动优先原则.3、所有设备的运行状况和所有监测仪表的状态<运行、关闭、故障>在PLC 电控柜面板显示.4、根据监测仪表传递的信号,自动控制相应设备的动作.5、备用设备之间可定时自动切换.6、对于间歇运行的设备,通过编程定时运行.7、相关设备实现联动功能.8、出现异常情况,自动报警功能.九、运行班制及人员安排9.1人员编制本处理站生产部门可分为污水处理组和污泥处理组.参照环保局有关规定按岗配置,结合该污水处理站实际情况,确定本废水处理站的工作人员为2人,每班1人.管理人员1人<可兼职>.9.2主要管理设施本工程主要的管理设施包括:1、本工程主体构筑物.2、本工程中的各配电线路及机电设备.3、本工程设施的自控、监控、检查、观测等附属设备.4、本工程的通讯、照明线路.9.3运行的技术管理1、运行采用三班制度.2、定时巡视生产现场,发现问题及时处理并做好记录.3、根据进水水质、水量变化,及时调整运行条件.做好日常水质化验、分析,保存记录完整的各项资料.4、及时整理汇总、分析运行记录,建立运行技术档案.5、及时清理栅渣和运送污泥,减小对环境的影响.6、建立处理构筑物和设备、设施的维护保养工作及维护记录的存档.7、建立信息系统,定期总结运行经验.9.4检修和维护1、维护和检修内容各构〕建〔筑物、机电设备以及其它生产管理设施等.2、维护期限各机电设备根据其使用操作说明书及维修手册的规定,定期进行维护.所有生产管理设施需每年普查,进行维护和检修工作.9.5事故或故障处理措施个别设备发生故障时,其检修以不影响整个工程的运行为原则,单独检修完成后,再投入正常使用.1、若设备处于自动控制状态时发生故障,需立即将其切换至现场手动控制,待修复后重新投入正常控制.2、控制系统发生故障时,各台实行中央控制的设备均切换至现场手动控制,待系统恢复正常再重新投入中央控制正常运行.十、主要构筑物、设备主要构筑物主要设备十一、运行成本污水处理、回用成本为一名工作人员工资、污水处理电费以及药剂消耗费用三部分组成.<水量按满负荷50m3/d,系统运行按365天/年>.1、电耗电耗设备装机功率:9.27kW运行功率:6.0kW;间歇工作按照每天2h工作时间计算.则每m3污水处理并回用的耗电成本:0.6×6.0/2.5= 1.44元/m32、人工费系统设2名工作人员,1名兼职.工资按每年每人5000元计,则每m3污水处理工资成本:5000×1/〕160×365〔 = 0.09元/m33、消毒剂药剂费及混凝剂药剂费用二氧化氯制取成本为0.002元/克,消毒剂投加量为15g/m3,则消毒剂药剂费为:0.002×15 = 0.03元/m3;每吨污水的处理、回用成本1.44+ 0.09+ 0.03 = 1.56元/ m3十二、处理效果、效益分析12.1处理效果分析12.2 环境效益和影响分析污水处理场建成后,每年可消减COD4.56吨,BOD2.56吨,SS2.56吨,氨氮50.46吨,对减少污染改善环境将发挥重要作用.经消化后的污泥清掏后外运,不会对宾馆造成二次污染.十三、售后服务及设备保修目的及时了解净水处理成套设备整体运行情况和单位设备质量性能,出现产品质量问题尽快到达现场排除故障.在设备使用过程中多与业主沟通,多听取业主的意见和要求,保证不因设备质量问题而影响业主的使用;按建设部规定的工程保修期限和合同规定的设备保修要求,对交付的工程进行回访保修.保证不因施工质量问题而影响顾客的使用,达到重合同守信用,满足顾客的要求.售后服务本公司严格按照IS9001:2000的质量体系,提供设计、制造、安装、调试一条龙服务.本公司对质量实行质量承诺制度,接受用户的监督.安装调试期间,我公司免费为用户代培操作工,至单独熟练操作为止.同时,免费为用户提供有关操作规程及规章制度.按设计标准及设计参数对设备及处理指标进行验收考核,达不到标准负责限期整改,直至达标为止.保修、服务提供本工程完善的设备操作维护手册,包括设备的介绍、工艺运行过程、设备的操作维护、日常管理及运行记录等全套资料.在试运行开始之前,对设备管理人员进行上岗培训.在业主验收合格后12个月内免费上门维修,协助优化工程进行.在接到用户报修通知4小时内给予答复,48小时内售后服务人员到现场,及时解决设备有运行中出现的问题.保修期满后,定期对工程进行回访,免费提供技术咨询服务,工程实行终身维修,保修期满后只收取成本费.回访的形式上门听取顾客的意见和要求,并观察现场;定期不定期召开顾客座谈会,听取意见和要求;、函件了解顾客意见和要求;顾客对设备问题的投诉,要热情接待,作好记录,建立投诉台帐,通知项目部安排人力、物力及时处理,并由项目质安员跟踪验证,取得顾客认可.1、本公司严格按照IS9001:2000的质量体系,提供设计、制造、安装、调试一条龙服务,并负责培训熟练的操作人员,提供操作手册及维修手册.2、本公司对质量实行质量承诺制度,接受用户的监督.3、工程验收合格后,整套设备保修一年,动力设备按国家标准保修期保养,保修期后如发生故障,我公司负责排除,随叫随到,并进行定期回访.4、本公司免费提供相关技术资料及技术咨询.长期、及时,优惠向用户提供备品备件.5、本公司对产品进行"三包"和设备在运行时出现问题,本公司在接到24-36小时内赶到现场解决.6、公司承诺的膜组件使用寿命为3年以上.十四、报价。
MBR 工艺处理维生素C 制药废水的中试实验冯 斐 周文斌(南昌大学环境科学与工程学院,江西330029)汤贵兰(厦门大学化学化工学院,福建361005)严 滨 蒋林煜(厦门三达环境工程公司,福建361000)摘要 主要介绍了某维生素制造企业废水系统运行情况以及M BR 改造工艺的启动方法和在不同工艺条件下的运行情况。
通过比较2种工艺条件,确定污泥浓度控制在8000mg ΠL ,溶解氧控制在2mg ΠL ,水力停留时间14h ,系统对C OD Cr 的平均去除率能达到90120%,氨氮的平均去除率能达到89195%。
关键词 维生素C 废水 启动运行 M BR0 引言维生素C 生产制造工艺复杂,无论是莱氏法还是两步发酵法,在发酵、提取、洗涤、萃取等工序都在产生大量的废水,且成分复杂,处理难度高,含有难生物降解和抑菌性有毒有害物质。
这也必然造成废水处理工艺的复杂和运行管理的困难。
为探索维生素C 生产废水的治理,为此在河北某维生素生产企业进行了为期60d 的M BR 工艺改造中试实验。
1 废水处理系统111 废水工艺流程和说明目前废水总量为20000m 3Πd ,废水根据生产工艺及辅助工序大体分为3部分:冲洗混合废水,高浓度生产废水和低浓度废水。
废水水质见表1。
表1 废水水质表mg ΠL (pH 除外)项目水量Π(m 3・d -1)COD Cr 氨氮SS pH 冲洗混合废水1000250020~305006~7高浓度废水10001000020~402004~6低浓度废水18000300080~12030006~9 根据废水水质情况,具体工艺流程如图1。
图1 废水处理流程图112 废水处理系统运行情况以及存在问题系统整体运行中,UAS B 运行情况良好,C OD Cr 去除率能达到90%,冲洗混合废水运行情况也良好,经过厌氧和好氧组合后进入调节池2的出水C OD Cr 浓度在500mg ΠL 左右。
调节池2废水C OD Cr 浓度基本在2000~3000mg ΠL 。
240吨/天垃圾渗滤液处理技术方案第一章概述水是人类生存的基本条件,人类生活离不开水,工农业生产发展更离不开水;我国是一个干旱缺水严重的国家。
淡水资源总量为28000亿立方米,占全球水资源的6%,仅次于巴西、俄罗斯和加拿大,居世界第四位,但人均只有2300立方米,仅为世界平均水平的1/4、美国的1/5,在世界上名列121位,是全球13个人均水资源最贫乏的国家之一。
因此,我国未来水资源形势是非常严峻的,水已经成为制约国民经济发展和人民生活水平提高的重要因素。
近年来,随着对水危机认识的提高,我国城市污水再生利用已被各级领导高度重视。
垃圾渗滤液作为一种高浓度有机废水,随着城市化进程的发展,垃圾填埋场的增加,如何有效的对垃圾渗滤液出水进行有效的处理及达标排放,防止对周围地下水、土壤、大气、生物等多方面均会造成严重的二次污染,已经成为当前亟待解决的重要课题。
MBR是高效膜分离技术与活性污泥法相结合的新型污水处理技术。
它可以取代活性污泥法中的二沉池,进行固液分离。
膜生物反应器技术具有许多其他生物处理工艺无法比拟的明显优势,主要是以下几点:能够高效地进行泥水分离,出水水质良好、稳定,出水悬浮物和浊度接近于零,可直接回用。
生化效率高,耐冲击负荷强,氨氮去除率高。
遭受负荷或毒性物质冲击发生污泥膨胀时,细菌不会随水流失,当来水水质正常后,系统可快速恢复正常工作。
剩余污泥少,大大减小污泥处理费用和二次污染。
容积负荷高,占地面积小。
模块化设计易于扩容。
系统采用PLC控制,可实现全程自动化控制和远程监控。
第二章设计依据1设计规模及进、出水水质1.1设计规模根据第三章第八节计算,综合考虑生产及生活排水量较小(<5t/d),因此本工程渗沥液设计处理规模确定为:240m3/d。
1.2设计进、出水水质参考国内外大量生活垃圾卫生填埋场的污水处理站渗沥液进水水质,设计进水水质如下表;另根据环评、尾水的排放的要求出水水质出水水质采用《生活垃圾填埋场污染控制标准》(GB16889—2008)中表2规定的水污染物排放浓度限值。
富平县1万吨污水处理厂设计方案金达莱环保园区江西金达莱环保股份有限公司二〇一五年七月目 录第一章概述 (2)1.1项目概况 (2)1.2工程规范及设计标准 (2)1.3设计原则 (2)1.4设计范围 (3)第二章设计内容 (4)2.1设计规模 (4)2.2进出水水质水量 (4)第三章工艺的比选 (5)3.1工艺选择原则及要求 (5)3.2主要污染物的去除分析 (5)3.3处理方案比选 (9)第四章工程设计 (17)4.1处理工艺流程 (17)4.2工艺参数设计 (18)4.3主要设备清单及构筑物表 (22)第五章公用设施设计 (24)5.1污水厂总平面布置 (24)5.2建筑结构设计 (24)5.3电气及仪表设计 (24)第六章经济技术指标 (26)6.1占地面积 (26)6.2直接运行费用 (26)第七章服务承诺 (27)附图:1、工艺流程图2、平面布置简图3、效果图企业简介江西金达莱环保股份有限公司,成立于2004年10月,下设:研发中心、设计院、中型实验大厅、实验工厂等多个部门,拥有2万平方米的室外研究场所和多媒体学术交流中心,占地面积50亩,在江苏宜兴市设立了占地50亩的设备制造厂,是目前国内屈指可数的大型环保产业研发、生产基地之一,系国家环境科技创新体系的一个重要组成部分:z中国环保产业协会副会长单位z电子电镀废水处理和资源化工程技术中心(国家环保部授予的国内唯一)z博士后科研工作站”(人保部批准设立)z高新技术企业z中国环境保护产业骨干企业公司集研发、设计、设备制作和集成、系统运营管理、售后跟踪服务及环境咨询为一体,持有“AAA资信等级证书”、“国家环境工程废水专项工程设计甲级”、“国家环境污染治理设施运营三甲(工业废水、有机废水、工业固体废物)”、“国家生态建设与环境工程咨询甲级”及建筑企业环境工程专业承包等多项资质。
公司执行ISO9001国际质量管理体系以及ISO14001环境管理体系,并已通过国际权威机构认证。
一体化MBR 处理设备工艺计算书一、设计参数本设计处理污水为普通生活污水,污水来源为普通居民日常生活产生的污水,污水必须经过化粪池处理后方可进入本处理系统。
污水来源:普通生活污水(餐饮业废水进入前需经隔油池预处理)设计水量:10t/d设计水质:常规生活污水水质,具体指标见下表:设计进水水质二、MBR 工艺介绍MBR 处理工艺流程图1、隔油池拦截污水中的动植物油脂,避免油脂附着于填料表面抑制生物膜生长,避免油脂堵塞MBR 膜。
2、化粪池利用沉淀和厌氧发酵原理去除生活污水中悬浮性有机物的处理设备。
3、过滤调节池拦截过滤污水中大块浮渣、塑料瓶、塑料袋等杂物垃圾,防止设备堵塞,同时调节水量、生活污水 餐饮污水水质、水头。
4、兼氧池将废水中各种复杂有机物分解转化为简单、稳定的化合物,仅少量有机物被转化而合成为新的细胞组成部分。
兼氧反应起到削减污染物浓度的作用,为好氧反应做准备,同时好氧池混合液回流进行反硝化反应脱氮。
5、好氧池好氧池的作用是让活性污泥进行有氧呼吸,进一步把有机物分解成无机物。
同时起到硝化的作用。
6、MBR池MBR池是膜生物反应池,其有效的截留作用,可保留世代周期较长的微生物,可实现对污水深度净化,同时硝化菌在系统内能充分繁殖,其硝化效果明显,对深度除磷脱氮提供可能。
7清水池MBR清水产生池,为MBR反洗、化学清洗提供清水,同时也起到消毒池的作用。
三、工艺计算隔油池、化粪池选型根据现场实际情况确定,此处不做计算。
1、过滤调节池一般调节池的水力停留时间为6-8小时,有效容积3-4m3,推荐采用钢筋砼结构。
若现场实在没有建设位置可考虑采用碳钢箱体结构。
2、兼氧池设备尺寸:Ø2000×1.0m有效水深:1.7m有效容积:2.8m3水力停留时间:5小时4、好氧池设备尺寸:Ø2000×2.0m有效水深:1.6m有效容积:5.3m3水力停留时间:10小时填料:柔性填料2.7m3填料规格:ø120×800填料安装规格:距离池底500mm,浸没深度300mm,安装间距300×300mm 曝气系统:底部曝气头曝气气水比:15:1,总需氧量0.15m3/min风机:HC30S曝气头:LP-215安装:安装间距500mm×500mm回流排空泵WQ10-10-0.75注:1、根据工艺好氧池混合液回流至兼氧池,本工程中为降低污泥清掏量,直接回流至化粪池;2、所选风机为整套系统曝气供风,氧化池风量为0.15m3/min,其余为MBR池提供。
兼氧FMBR工艺介绍 1.1 兼氧FMBR工艺原理介绍 兼氧FMBR处理工艺是一种将膜分离技术与生物处理单元相结合的污水处理工艺,近年来倍受关注。兼氧FMBR工艺对生活污水、高浓度有机污水、难降解有机污水具有非常高的处理效率,本项目是生活污水,污水污染物含量高、可生化性好,非常适宜采用本处理工艺。兼氧FMBR系统示意见下图:
图1 兼氧FMBR系统示意图 兼氧FMBR工艺实现菌体共生,同步处理不同污染物,大幅提高系统适应能力、处理效率。 C----有机污泥“零”排放(低能耗) P----气化除磷降解(低能耗) N----厌氧氨氧化脱氮(低能耗) 突破好氧MBR工艺(能耗高、易堵膜)的瓶颈 兼氧FMBR的主要特点: 兼氧FMBR污泥以兼性厌氧菌为主,有机物的降解主要是通过形成较高浓度的污泥在兼性厌氧性菌作用下完成的。大分子有机污染物是被逐步降解为小分子有机物,最终氧化分解为二氧化碳和水等稳定的无机物质。 由于兼性厌氧菌的生成不需要溶解氧的保证,所以降低了动力消耗。曝气的主要作用是对膜丝进行冲刷、震荡,同时产生的溶解氧正好被用来氧化部分小分子有机物和维持出水的溶解氧值。 a) 兼氧FMBR工艺对CODcr的去除 兼性厌氧微生物在有氧的条件下,将污水中的一部分有机物用于合成新的细胞,将另一部分有机物进行分解代谢以便获得细胞合成所需的能量,其最终产物是CO2和H2O等稳定物质。在合成代谢与分解代谢过程中,溶解性有机物(如低分子有机酸等)直接进入细胞内部被利用,而非溶解有机物则首先被吸附在微生物表面,然后被胞外酶水解后进入细胞内部被利用。 b) 兼氧FMBR工艺对氮的去除 在兼氧FMBR处理工艺系统中,兼有通过以下三种途径完成对氮的去除: I硝化-反硝化 膜区曝气气提作用,反应器内形成循环流动,使水在好氧区和缺氧区循环交替流动,形成好氧、缺氧连续交替不断的生物降解作用,在好氧条件下利用污水中硝化细菌将氮化物转化为硝酸盐,然后在缺氧条件下利用污水中反硝化细菌将硝酸盐还原成气态氮。在同一个反应器内实现了硝化反硝化。 图3-3 膜区曝气原理示意图 同时在兼氧FMBR池内污泥浓度较高,活性污泥粒径较大,在活性污泥粒内部形成厌氧区,在活性污泥粒外表面形成好氧区,从而使硝化菌和反硝化菌同时工作,形成同步硝化反硝化。 II 短程硝化-反硝化 兼氧FMBR工艺污泥泥龄接近无限长的条件下,硝化过程出现明显的短程硝化反硝化现象,氨氮向硝酸盐转化受抑制,亚硝酸盐大量积累,实现短程硝化反硝化效果。 短程硝化反硝化就是将硝化过程控制在N02-阶段,组织NO2-进一步氧化为NO3-,直接以NO2-作为电子最终受氢体进行反硝化,这一过程相当于将传统的硝化过程中从NO2-转化为NO3-与反硝化过程中再将NO3-转化为NO2-这两个过程省去,反硝化菌直接将亚硝氮还原为氮气。工艺利用硝酸菌和亚硝酸菌的不同生长速率,即在操作温度30~35℃下,亚硝化细菌的生长速率明显高于硝化细菌的生长速率,亚硝化细菌的最小停留时间小于硝化细菌,从而使氨氧化控制在亚硝酸盐阶段,同时通过缺氧环境达到反硝化的目的。 III 厌氧氨氧化 在兼氧FMBR系统在一定条件下,硝化作用产生大量的NO2-累积,厌氧氨氧化菌首先将NO2-转化成NH2OH,再以NH2OH为电子受体将NH4+氧化生成N2H4;N2H4转化成N2,并为NO2-还原成NH2OH提供电子,实验中有少量NO2-被氧化成NO3-。由于实现了短程硝化、厌氧氨氧化作用,减少了供氧,大幅降低曝气能耗和反硝化所需碳源,从而实现了高效脱氮目的。在实施上,不仅要优化营养条件和环境条件,促进厌氧氨氧化菌的生长,同时要设法改善菌体的沉降性能并改进反应器的结构,促使功能菌有效持留。 厌氧氨氧化涉及的化学反应为: NH2OH + NH3 → N2H4 + H2O N2H4 → N2 + 4[H] HNO2 + 4[H] → NH2OH + H2O c) 实现了气化除磷 污水除磷技术主要有化学除磷和生物除磷,化学除磷药剂用量大,产生的化学污泥多,运行成本高;生物除磷需通过排泥实现,存在剩余污泥处理难题,近年来,利用膜生物反应器强化生物脱氮除磷越来越受重视。污水处理系统中的磷,除了传统理论中磷只能在固体形态和溶解形态之间转化以外,还存在一种新的转化形式,即磷的化合物向气态磷化氢的转化。 国内外已有文献探讨和研究气化除磷途径对磷的有效去除:1988年Devai等人首次发现了在污水处理系统中的磷循环中磷损失达30%~45%,并证实其中25%~50%是以气态磷化氢的形式进入大气的;随后,随着分析方法和检测手段的提高,特别是1993年Gassmann等人采用GC-FPD检测技术,通过毛细管色谱柱和低温冷阱富集GC-NPD检测技术,使沉积物中磷化氢的检测限达到0.1ng,证明了磷化氢是水环境中普遍存在的一种磷的化合物形式;Eisman1997年的研究表明磷化氢的产生是一种微生物为媒介的过程;Rutishauser等人(1999年)观察了在污水处理厂污泥浓缩池上部的污泥中的磷化氢的形成,他们接种杀毒后的污泥以及将污泥加入到补充了甲醛或氯化汞的媒介中时完全得不到磷化氢,证明了磷化氢形成的动力学遵循典型的微生物生长曲线,磷源和碳源的交替影响促进了磷化氢的形成;Jenkins等人(2000)测得有一些厌氧微生物可以产生磷化氢;刘志培等人(2004)测得污水处理厂初次沉淀池中污泥磷化氢含量为21307.4ng/kg,并且提出了磷化氢的产生在污水除磷中有一定的作用,这就对原有污水处理系统中磷的转化途径提出了重要的补充,认为污水处理系统中的磷不仅存在于液相和固相中,而且其中的一部分以气体的形式逸出; 所有这些研究表明,磷化氢已经成为一种不可忽视的磷的气态形式,同时反映了磷的又一迁移转化的重要途径,即向气态迁移的途径,为传统的磷只能在土体形态和溶解形态之间转化的理论提出了重要的补充。 关于磷化氢产生的机理,目前的研究还很少,生物学上认为在有机物(碳源)、无机磷酸盐等共同作用下,在兼性厌氧菌作用下合成了微生物细胞物质,形成有机磷化合物,由于氨基酸在生物体内分解产生含C—P键的磷脂,兼性厌氧菌在利用磷脂化合物时,使C—P键断裂,从而生成磷化氢气体;动力学上认为磷的化合物还原成磷化氢的过程是需要能量的,这部分能量可以由生物体内储存的ATP水解获得。因此,生物学以及动力学为磷的化合物向气态磷化氢的转化提供了解释。
图2 磷转化机理 兼氧FMBR工艺中在特性菌在兼性条件下将污水当中磷转化为气态的PH3,该生物气化除磷途径完全不同于传统的生物除磷工艺,是一种全新的高效低耗生物除磷新工艺。类似自然现象中某些场合下磷被转化为气体磷化氢的现象,如自然界中的“鬼火”现象,稻田、沼泽、氧化沟中的磷损失现象等。由于PH3非常不稳定,曝气过程中瞬间氧化为磷的氧化物被带入空气中,进入磷的自然生态循环,达到从污水中去除的目的,开辟了国际公认的生物排泥除磷和化学除磷之外又一除磷新途径。 国内外研究均证明具有一种全新的除磷途径———气化除磷,兼氧FMBR工艺是第一个将该途径应用到工程实例当中,并且在大量工程案例中的成功运用。 d) 兼氧FMBR工艺对SS的去除 污水厂出水中悬浮物浓度不仅涉及到出水SS指标,出水中的
污水+无机磷酸盐 兼性厌氧菌 合成 微生物细胞 (有机磷) 兼性厌氧菌 代谢 P2H4/PH3 CODcr、BOD5、PO4-P等指标也与之相关。因为采用MBBR工艺处理生活污水组成出水悬浮物的主要成分是活性污泥絮体,其本身的有机成分就高,而有机物本身就含磷,因此较高的出水悬浮物含量会使得出水的CODcr、BOD5、PO4-P增加。 由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈,悬浮物和浊度接近与零,与此同时细菌和病毒被大幅去除。污水当中的颗粒,如胶体、固体颗粒、病毒、细菌、隐性孢子等被过滤掉,因此保证了过滤后的出水,不含任何悬浮物,长期保持高质量,可以直接使用。因此兼氧FMBR工艺是具备深度处理功能。 e) 污水污泥同步处理(有机污泥零排放) 兼氧FMBR技术在实现污水处理回用的同时,实现了有机污泥的大幅度减量,实现有机剩余污泥零排放,成功解决了剩余污泥处置难题。 F/M比是影响污泥增值的重要因素,低F/M将使得生化系统中污泥处于高度内源呼吸相,进入系统有机基质最终被内源呼吸而代谢成为二氧化碳、水及少量无机盐。 新增有机物在兼性厌氧菌的作用下一部分被分解为小分子有机物,继而被氧化分解为CO2、H2O等无机物;另一部分被合成为细胞。在低污泥负荷条件下,该细胞作为营养物在兼性厌氧菌作用下一部分又被分解为小分子有机物,继而又被氧化分解为CO2、H2O等无机物;另一部分又被合成为新细胞。依此类推,在低污泥负荷条件下,该新细胞又作为营养物在兼性厌氧菌的作用下继续作分解与合成的代谢,直至细胞最后全部代谢为CO2、H2O等无机物。由下图可见,从整个分解、合成代谢的过程来看,有机物已被彻底代谢,系统内有机污泥没有富集增长。
图3 兼性厌氧菌对有机物的分解与合成及产物示意图 当系统内新增细胞等于代谢速率时,有机污泥零增长。通过长期实验,监测出当污泥自身消化与增殖达到动态平衡时,系统内的污泥负荷基本维持在0.02~0.06kg(COD)/kg(MLSS·d)之间。进水有机污染物浓度高,新增细胞多,代谢速率高,MLVSS升高;反之,进水有机污染物浓度低,新增细胞少,代谢速率低,MLVSS降低。由于膜生物反应器能够将细菌截留下来,污泥浓度随进水浓度可以在比较宽的范围内波动,确保系统能在0.05~0.1kg(COD)/kg(MLSS·d)这个污泥负荷下运行,实现有机剩余污泥近零排放。且通过不排泥方式的运行,可以维持较长污泥龄,抑制了丝状菌的增殖,解决了不排泥情况下的污泥膨胀问题。
兼性厌氧菌 兼性厌氧菌 兼性厌氧菌 兼性厌氧菌 分解 分解
分解 CxHyOz
O 兼性厌氧菌
合成 细胞
小分子有机物C1
… 兼性厌氧菌 CO2、H2O等
O 兼性厌氧菌
合成 细胞
小分子有机物C2 CO2、H2O等 O 兼性厌氧菌
合成 细胞
小分子有机物C3 CO2、H2O等
O CO2、H2O等