量子信息密钥分发技术的原理和应用
- 格式:docx
- 大小:37.55 KB
- 文档页数:4
量子加密方案量子加密是一种基于量子力学原理的加密技术,通过利用量子特性来保护通信的安全性。
传统的加密方法存在被破解的风险,而量子加密则提供了更高的保密性。
本文将介绍几种量子加密方案,并讨论其在保护通信安全方面的应用。
一、量子密钥分发(Quantum Key Distribution,QKD)量子密钥分发是量子加密的核心技术之一。
它利用量子态的不可克隆性和测量的干扰性,确保密钥在通信双方间的传输过程中不被窃听者获取到。
量子密钥分发的过程如下:首先,发送方Alice通过发送一系列的量子比特,使用随机的基进行编码。
接收方Bob在收到量子比特后,使用相同的基进行测量,并记录测量结果。
然后,Alice和Bob通过公开交流的方式,抛弃那些测量结果不一致的比特,并保留一部分用于生成密钥。
最后,Alice和Bob对保留下来的比特进行错误校验,并生成一致的密钥。
二、量子分布式密码(Quantum Secret Sharing,QSS)量子分布式密码是一种多方协作的量子加密方案。
它通过将密钥分发给多个参与者,以确保只有在满足特定条件时,这些参与者才能合作解密。
量子分布式密码的过程如下:首先,一个秘密密钥被分割成多个份额,并分发给多个参与者。
然后,每个参与者都会使用自己的份额,并与其他参与者密钥进行握手。
最后,只有当满足预设条件时,参与者才能恢复秘密密钥。
三、量子认证(Quantum Authentication)量子认证是一种用于验证通信对方身份的量子加密方案。
它通过使用量子态的特性,提供了更高水平的身份认证安全性。
量子认证的过程如下:首先,认证者Alice会向被认证者Bob发送一系列的认证信息,这些信息会以随机的基进行编码。
然后,Bob对接收到的信息进行测量,并记录测量结果。
在收到测量结果后,Alice 和Bob会通过公开交流的方式,抛弃那些测量结果不一致的比特,并保留一部分用于验证身份。
最后,Alice和Bob对保留下来的比特进行错误校验,并确认对方的身份。
量子通信的应用及用途量子通信是一种基于量子力学原理的通信方式,能够实现超越传统加密算法的安全性和传输速度。
目前,量子通信技术在各个领域得到了广泛的应用,并在信息传输、安全通信、密码学、量子计算等领域发挥着重要的作用。
1. 量子密钥分发量子密钥分发是量子通信的核心应用之一。
它通过利用量子态的不可重复性,使得密钥分发过程具有超过任何其他密码学协议的安全性。
量子密钥分发技术可以被用于保护关键信息,比如政府、军事、金融和商业机密。
与传统的加密方式不同,量子密钥可以在传输过程中检测到窃听者的存在,从而保证了密钥的真实性。
2. 量子隐形传态量子隐形传态是量子通信中的另一项重要应用,它允许在通信时实现信息传输的“隐形”,其基本原理是通过特殊的量子纠缠来传输信息。
该技术可以被广泛应用于医学图像传输、机器人遥控等领域,并具有高度的保密性。
3. 量子编码量子编码是在量子计算机领域的一项重要应用。
在传统计算机中,信息被编码成二进制(0和1)的形式,而在量子计算机中,利用量子比特(qubit)的性质,将信息编码成量子态的形式。
量子编码技术可以大大提高计算机的处理速度,并且可以实现高级模拟和优化问题。
4. 量子保密计算量子保密计算是保持计算机隐私和数据安全的新方法之一。
将数据加密后可以在未解密的情况下进行计算和传输,从而保护计算机内部的机密数据。
量子保密计算技术能够应用于金融、医疗、个人隐私信息等需要高度安全保障的领域。
5. 量子传感量子传感是泛指利用量子力学原理来实现精密测量和控制的技术。
量子传感可以用来测量小的物理量,如电磁场、磁场、温度、压力和加速度等。
相较于传统传感技术,量子传感技术具有高度的精度和灵敏度,可以用于地震预测、气象探测等领域。
6. 量子纠错量子纠错是一种强大的信息处理方法,可以帮助纠正在传输过程中对量子信息的扰动和噪声,从而保持信息传输的准确性。
量子纠错技术可以应用于量子计算和量子通信中,有效提高量子计算机的可靠性和传输的稳定性。
量子密钥分发的基本原理量子密钥分发的基本原理什么是量子密钥分发?量子密钥分发(Quantum Key Distribution,简称QKD)是一种利用量子力学原理进行安全密钥传输的方法。
通过光子的量子特性,QKD可以提供高度安全的通信,确保密钥的机密性和不可伪造性。
量子密钥分发的基本原理量子密钥分发基于两个基本原理:量子态不可克隆定理和量子态测量不可避免地干扰系统。
下面将详细介绍这两个原理。
1. 量子态不可克隆定理量子态不可克隆定理表明,不可能创建一个完美的副本来复制未知量子态。
这意味着,如果试图对传输的光子进行复制,就会引起测量结果的不可预测性改变。
2. 量子态测量不可避免地干扰系统在量子力学中,测量一个粒子的状态会对其状态产生干扰。
这个原理被称为不可避免测量干扰原理。
在量子密钥分发中,这一原理保证了如果有人试图窃取密钥,他们的存在将会被探测到。
下面将介绍量子密钥分发的基本过程:1.发送端准备密钥:发送方准备一串随机的比特作为密钥。
2.量子态编码:发送方将每个比特用相应的量子态编码,例如,“0”可以用水平极化的光子表示,“1”可以用垂直极化的光子表示。
3.量子态传输:发送方将被编码的量子态通过光纤或自由空间传输到接收方。
4.量子态测量:接收方在收到量子态后,使用合适的测量方法对光子进行测量。
这个步骤会导致测量结果的不可预测性改变。
5.密钥提取:发送方和接收方比较他们的测量结果,并公开其选择的测量方法。
然后,接收方将根据发送方和接收方的测量结果提取出一个密钥。
6.密钥认证:发送方和接收方可以通过公开一部分密钥进行认证,以确保密钥的完整性和真实性。
量子密钥分发具有高度的安全性,主要基于量子力学的原理。
由于量子态不可克隆定理和量子态测量不可避免地干扰系统,任何试图窃听或修改密钥的行为都会被探测到。
然而,尽管量子密钥分发是安全的,但它依赖于可信的量子通道,因为量子态非常易受环境的扰动影响。
因此,确保量子通道的安全性也是非常重要的。
量子通信技术的实际应用案例量子通信技术是一项前沿的科学技术,它利用量子力学的原理来传递和处理信息。
相比传统的通信技术,量子通信技术具有更高的安全性和更快的传输速度。
在过去的几十年里,科学家们一直致力于将量子通信技术应用于实际场景中。
本文将介绍几个成功的量子通信技术实际应用案例。
1. 量子密钥分发(QKD)量子密钥分发是量子通信技术中最重要的应用之一。
它利用量子力学中的不可克隆性原理来实现信息的安全传输。
通常,密钥是通过传统的公钥加密算法来传递的,然而,这种方式存在被破解的风险。
而量子密钥分发则通过量子纠缠和量子测量来生成和传递密钥,保证了信息的绝对安全性。
一个实际应用案例是中国科学家成功进行的长距离量子密钥分发实验。
他们利用卫星在距离约1200公里的地面站之间成功传输了量子密钥。
这一实验的成功标志着量子密钥分发技术的进一步发展和应用。
2. 量子随机数生成随机数在密码学、模拟计算和通信等领域中具有重要的作用。
然而,传统的随机数生成方法存在很多问题,因为它们往往基于确定性的算法产生伪随机数。
量子随机数生成技术则利用量子的不确定性来生成真正的随机数,提供了更高的安全性和可靠性。
一个实际应用案例是日本科学家开发的量子随机数发生器。
他们利用光子的叠加态和量子测量来生成随机数序列。
这种方法不仅产生真正的随机数,而且可以在短时间内生成高质量的随机数,为密码学和模拟计算等领域提供了重要的支持。
3. 量子通信网络量子通信网络是未来通信领域的重要发展方向之一。
与传统的通信网络相比,量子通信网络具有更高的安全性和更快的传输速度。
它可以实现点对点的量子通信,也可以构建起覆盖全球的量子互联网。
一个实际应用案例是中国科学家成功构建的长距离量子通信网络。
他们利用卫星和地面站之间的量子通信链接,建立了一个分布式的量子通信网络。
这个网络可以实现跨大陆的量子密钥分发和量子纠缠分发,为未来的量子互联网奠定了基础。
4. 量子模拟量子模拟是量子通信技术的另一个重要应用领域。
量子信息的量子密钥分发与安全性在当今科技飞速发展的时代,量子信息这一领域逐渐崭露头角,成为了科学界的热门话题。
其中,量子密钥分发作为量子信息中的重要应用,为信息安全带来了革命性的变化。
要理解量子密钥分发,首先得搞清楚什么是量子。
简单来说,量子是构成物质和能量的最小单位,具有一些非常奇特的性质。
比如,量子的状态可以处于一种“叠加态”,直到被观测时才会确定为一种特定的状态。
这种特性为量子密钥分发提供了独特的基础。
那么,量子密钥分发到底是怎么一回事呢?想象一下,有两个人,我们暂且称之为 A 和 B,他们想要安全地分享一个密钥,用于加密和解密他们之间传递的信息。
传统的方法可能会面临被窃取或破解的风险,但量子密钥分发就不一样了。
在量子密钥分发过程中,会利用量子的特性来生成和传输密钥。
比如说,通过发送单个的光子,光子的偏振态就可以用来编码信息。
由于量子的不可克隆原理,也就是无法精确复制一个未知的量子态,这就保证了密钥在传输过程中的安全性。
如果有第三方 C 试图窃取这个密钥,那么一旦 C 进行观测,就会干扰到量子态,从而被 A 和 B 发现。
这就好像有人想要偷偷打开一个上了特殊锁的宝箱,只要他一碰,宝箱就会发出警报。
量子密钥分发的安全性是其最大的优势之一。
传统的加密方法,比如基于数学难题的加密算法,随着计算能力的提高,可能会在未来被破解。
但量子密钥分发基于量子力学的基本原理,从理论上来说,只要这些原理成立,它就是绝对安全的。
然而,要实现量子密钥分发并非一帆风顺。
在实际应用中,存在着许多技术挑战。
首先,量子信号在传输过程中容易受到干扰和衰减。
光子在光纤中传输时,会因为散射、吸收等原因而损失能量,导致信号变弱。
这就限制了量子密钥分发的距离。
为了解决这个问题,科学家们正在研究使用量子中继器来增强信号,但目前这一技术还不够成熟。
其次,量子设备的制备和操控也非常困难。
要产生高质量的单光子源、实现精确的偏振控制等,都需要极其精密的技术和设备。
量子密钥分发技术的实际部署指南与安全性评估介绍量子密钥分发(Quantum Key Distribution,简称QKD)技术是一种基于量子物理原理的加密通信技术,它利用光子的量子特性确保密钥分发的安全性。
与传统的加密方式相比,QKD具有独特的安全性保障,能够有效地抵抗量子计算机对传统加密算法的攻击。
本文将分析量子密钥分发技术的实际部署指南,并对其安全性进行评估,以帮助读者更好地理解和应用该技术。
量子密钥分发技术的实际部署指南1. 基础设施建设在部署量子密钥分发技术之前,需要搭建一套适配的基础设施。
包括合适的实验室环境、稳定可靠的光学设备和控制系统等。
确保实验环境的稳定性和安全性对于正确执行和保护量子密钥分发过程至关重要。
2. 密钥分发过程量子密钥分发技术的核心是使用量子比特(qubit)进行密钥传输。
这要求发送方和接收方拥有一套成对的量子比特发射器和接收器。
在传输过程中,发送方通过一个——称为“量子信道”的公共信道向接收方发送量子比特,并在传输时对其状态进行监测。
接收方通过测量接收到的量子比特的状态来生成密钥。
为了确保安全性,传输过程中的量子比特必须受到严格的保护,以防止信息的截取或干扰。
3. 密钥认证与隐私放大在量子密钥分发技术中,密钥认证是确保分发密钥的完整性和安全性的重要步骤。
通过使用一种加密哈希函数和消息鉴别码,可以对生成的密钥进行认证,并防止中间人攻击和其他形式的攻击。
此外,为了进一步加强密钥的安全性,还可以引入隐私放大协议,利用广义上的量子纠缠效应排除由于不完美的量子信道而导致的信息泄漏。
量子密钥分发技术的安全性评估1. 安全性特征量子密钥分发技术的安全性可以通过以下几个方面进行评估:- 信息泄露:量子密钥分发技术通过量子力学原理确保信息不被截取或复制。
- 中间人攻击:通过密钥认证和消息鉴别码等方式,可以防止中间人攻击。
- 量子信道安全性:确保量子信道的安全性,避免信息泄漏。
- 外部环境干扰:抵抗光子捕捉和窃听等外界环境干扰。
量子密钥分发的实用教程和实施步骤量子密钥分发(QKD)是一种保障信息安全的现代密码学技术,利用量子力学的原理,确保密钥在传输过程中不被窃取或篡改。
它的核心原理是依赖于不可逆的量子测量效应和量子态的特性,使得一旦密钥被监听,就会改变其量子态,从而保护通信的安全性。
本文旨在提供一份实用教程和实施步骤,重点介绍量子密钥分发的基本原理和实际操作过程。
下面将分为四个部分介绍:一、量子密钥分发基本原理二、实施步骤:数量子密钥分发系统的搭建三、实施步骤:量子密钥生成与分发四、实施步骤:密钥鉴别与传输加密一、量子密钥分发基本原理量子密钥分发的核心基于量子力学原理,主要包括以下三个过程:1. 量子态制备:发送方将量子比特通过量子光源制备成特定的量子态,例如垂直和水平偏振态、相位态等。
2. 量子态传输:发送方通过信道将量子态发送给接收方。
此过程中,选择合适的光纤通信或者自由空间通信是非常关键的。
3. 量子态测量:接收方接收到量子态并通过量子测量得到密钥的一部分。
由于量子测量的不确定性,任何对量子态的窃听都会改变量子态的性质,从而被检测出来。
二、实施步骤:数量子密钥分发系统的搭建要搭建一个可靠的量子密钥分发系统,需要以下几个关键组件:1. 量子光源:用于制备量子粒子的光源,常见的有激光器和发光二极管。
2. 偏振保持器和相位调节器:用于确保量子态的稳定性和准确性。
3. 量子信道:用于传输量子态的通信信道,可以是光纤或者自由空间。
4. 量子检测器:用于接收并测量量子态,通常有单光子探测器和线性光子探测器。
5. 控制和分析系统:用于控制和分析搭建的整个系统,包括光源控制、信道调节和密钥分发的处理。
三、实施步骤:量子密钥生成与分发1. 量子光源的制备:根据实际需求选用合适的光源,并调节到所需的量子态。
2. 光源的稳定性检查:使用合适的测量设备检查量子光源的稳定性和强度。
3. 量子光源的优化:通过调节偏振保持器和相位调节器来优化光源的质量。
量子纠缠与量子密钥分发技术的发展引言量子纠缠和量子密钥分发是量子信息科学中两个重要的概念。
量子纠缠是指两个或多个量子系统之间存在一种特殊的关联关系,即使它们之间存在较大的空间距离,仍然可以表现出非常密切的相互关系。
量子密钥分发则是利用量子纠缠的原理进行的一种安全的通信方式。
本文将讨论量子纠缠与量子密钥分发技术的发展历程及其应用前景。
量子纠缠的发现与理论基础量子纠缠的概念最早由爱因斯坦、波尔和波多尔斯基等人在20世纪20年代提出。
他们通过研究量子力学的基本原理,发现了量子纠缠的存在。
量子纠缠是量子力学的一种非常奇特的现象,违背了经典物理学的直观认识。
根据量子力学的原理,当两个或多个量子系统之间发生相互作用后,它们之间的状态将无法被单独描述,而只能以整体的方式来描述。
这就是量子纠缠的本质。
量子纠缠的理论基础是量子力学的数学表述,即薛定谔方程。
薛定谔方程描述了量子系统的演化规律,其中包括了量子纠缠的数学描述。
通过薛定谔方程,我们可以计算出量子系统之间的纠缠程度,即所谓的纠缠熵。
纠缠熵越大,表示量子系统之间的纠缠程度越高。
量子纠缠的应用量子纠缠在量子信息科学中有着广泛的应用。
首先,量子纠缠可以用于量子计算。
量子计算是一种基于量子力学原理的计算方式,相比传统计算机具有更高的计算速度和更强的计算能力。
量子纠缠作为量子计算的基础,可以用来存储和传输量子比特,实现量子逻辑门的操作,从而实现复杂的计算任务。
其次,量子纠缠还可以用于量子通信。
量子通信是一种基于量子力学原理的安全通信方式,通过利用量子纠缠的特性,可以实现信息的安全传输。
传统的通信方式往往容易受到黑客攻击和窃听,而量子通信则可以通过量子纠缠的特性来保证信息的安全性。
量子密钥分发就是一种基于量子纠缠的安全通信方式,下面将详细介绍。
量子密钥分发技术的发展量子密钥分发技术是一种利用量子纠缠的原理进行的安全通信技术。
它的基本原理是利用量子纠缠的特性,将密钥分发过程中的信息传输与窃听行为进行绑定,从而实现信息的安全传输。
量子密钥分发的基本原理(一)量子密钥分发的基本原理什么是量子密钥分发?量子密钥分发(Quantum Key Distribution,QKD)是一种基于量子力学原理的加密通信方式。
它利用量子随机性和不可逆干扰来确保密钥的安全传输,是当前密码学研究中的前沿技术之一。
量子密钥分发的基本原理量子密钥分发基于量子态的特性和观测原理,通过将传输的密钥编码到量子态上,从而保证密钥分发的安全性。
其基本原理包括以下几个步骤:1.量子比特的编码(Quantum Bit Encoding):发送方选择一个合适的量子态(如单光子态)来表示二进制的0和1,然后将密钥信息编码到这些量子比特上。
2.量子比特的传输(Quantum Bit Transmission):发送方将编码好的量子比特传输给接收方,传输过程中要确保传输通道的安全性,以免被攻击者截获或劫持。
3.量子比特的测量(Quantum Bit Measurement):接收方利用测量设备对接收到的量子比特进行测量。
由于量子力学的测量原理,测量结果仅有一定的概率与发送方的编码结果相同。
4.密钥提取(Key Extraction):接收方根据测量的结果与发送方协商,舍弃不一致的比特,并利用剩余的一致比特生成密钥。
5.安全认证(Security Authentication):发送方和接收方交换一部分密钥信息,通过比对以确认密钥的一致性和完整性,并排除窃听和篡改的风险。
量子密钥分发的优势量子密钥分发相较于传统加密技术具有以下优势:•信息-theoretically secure:量子力学的原理保证了密钥的传输过程是信息理论上的安全,即使未来量子计算机问世,量子密钥分发也能够防御量子计算攻击。
•安全性可检验:密钥的安全性可以通过技术手段进行检验,确保传输过程中没有被窃听、篡改或植入后门等威胁。
•前向安全:一旦密钥被攻破,过去的通信内容也不会受到影响,因为每一次通信都使用独一无二的密钥。
收稿日期:20230612基金项目:教育部中外语言合作中心非洲国家数据分析人才培养项目(21Y H 034C X 5);教育部产学合作协同育人项目(201902166001)㊂作者简介:朱宏峰(1978 ),男,辽宁盘锦人,沈阳师范大学教授,博士㊂第41卷 第6期2023年 12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y (N a t u r a l S c i e n c eE d i t i o n )V o l .41N o .6D e c .2023文章编号:16735862(2023)06051511量子密钥分发网络架构㊁进展及应用朱宏峰1,陈柳伊1,王学颖1,张 璐1,邢笑瑞2(1.沈阳师范大学软件学院,沈阳 110034;2.范德堡大学文理学院,纳什维尔 37235)摘 要:近年来,随着网络通信攻击手段的层出不穷,只依赖传统计算困难程度的密钥分发的安全性受到了严重威胁㊂量子密钥分发技术由于其无条件安全性的优势,与光网络结合,在信息的保密性和传递效率方面具有突出的表现㊂利用量子密钥分发技术组建的量子密钥分发网络也在全球范围内得到逐步应用并且不断发展㊂重点总结了量子密钥分发各项协议及量子密钥分发网络的发展历程,以量子密钥分发网络所面临的生存性和连通性,以及中继节点的布置问题为切入点,分析了量子密钥分发网络目前存在的不足及现有的各种解决方案㊂最后,从实际的角度出发,分析和总结了量子密钥分发网络的应用现状,通过量子密钥分发在线与离线相结合的方式,使量子密钥分发网络的可推广性变得更强,同时,边缘网关到物联网终端设备的量子密钥分发也大大促进了量子密钥分发网络与现有物联网设备的结合应用㊂关 键 词:量子安全网络架构;量子密钥分发网络;可信中继;光网络中图分类号:T P 319 文献标志码:A d o i :10.3969/j .i s s n .16735862.2023.06.006A r c h i t e c t u r e ,p r o g r e s s ,a n d a p p l i c a t i o n s o f q u a n t u m k e y d i s t r i b u t i o nn e t w o r k sZ HU H o n g f e n g 1,C H E N L i u y i 1,WA N G X u e y i n g 1,Z HA N G Lu 1,X I N GX i a o r u i 2(1.S o f t w a r eC o l l e g e ,S h e n y a n g N o r m a lU n i v e r s i t y ,S h e n y a n g 110034,C h i n a ;2.C o l l e g e o fA r t s a n dS c i e n c e ,V a n d e r b i l tU n i v e r s i t y,N a s h v i l l e 37235,U S A )A b s t r a c t :I n r e c e n t y e a r s ,w i t h t h e e n d l e s s e m e r g e n c e o f n e t w o r k c o mm u n i c a t i o n a t t a c k m e t h o d s ,t h es e c u r i t y o fk e y d i s t r i b u t i o nt h a to n l y r e l i e so nt r a d i t i o n a l c o m p u t i n g d i f f i c u l t y h a s b e e ns e r i o u s l y t h r e a t e n e d .Q u a n t u m k e y d i s t r i b u t i o nt e c h n o l o g y ,b e c a u s e o fi t s u n c o n d i t i o n a l s e c u r i t y a d v a n t a g e s ,c o m b i n e d w i t h o p t i c a ln e t w o r k s ,h a s o u t s t a n d i n g r e s u l t si ni n f o r m a t i o n c o n f i d e n t i a l i t y a n d t r a n s m i s s i o n e f f i c i e n c y .T h e q u a n t u m k e y d i s t r i b u t i o n n e t w o r k b a s e d o n q u a n t u mk e y d i s t r i b u t i o n t e c h n o l o g y h a s a l s o b e e n g r a d u a l l y a p p l i e d a n d d e v e l o p e dw o r l d w i d e .T h i s p a p e r f o c u s e s o ns u mm a r i z i n g t h ed e v e l o p m e n th i s t o r y o f q u a n t u m k e y d i s t r i b u t i o n p r o t o c o l sa n d q u a n t u m k e y d i s t r i b u t i o n n e t w o r k s .S t a r t i n g f r o mt h e s u r v i v a b i l i t y a n d c o n n e c t i v i t y o f q u a n t u mk e y d i s t r i b u t i o nn e t w o r k s a n d t h el a y o u t o fr e l a y n o d e s .i n t h i s p a p e r w e a n a l y z e st h e c u r r e n t s h o r t c o m i n g so f q u a n t u m k e y d i s t r i b u t i o nn e t w o r k sa n dv a r i o u se x i s t i n g s o l u t i o n s .F i n a l l y,w e a n a l y z e sa n ds u mm a r i z e st h ea p p l i c a t i o ns t a t u so f q u a n t u m k e y d i s t r i b u t i o n n e t w o r kf r o m t h e p r a c t i c a l p o i n t o fv i e w.T h r o u g ht h ec o m b i n a t i o no f q u a n t u m k e y di s t r i b u t i o no n l i n ea n do f f l i n e ,t h e q u a n t u mk e y d i s t r i b u t i o nn e t w o r kh a sb e c o m em o r e s c a l a b l e .A t t h e s a m e t i m e ,t h e q u a n t u m k e y d i s t r i b u t i o nf r o m t h ee d g e g a t e w a y t ot h eI n t e r n e to f T h i n g st e r m i n a ld e v i c e sh a s g r e a t l yp r o m o t e d t h ec o m b i n a t i o no f q u a n t u m k e y d i s t r i b u t i o nn e t w o r ka n de x i s t i n g I n t e r n e to fT h i n g s d e v i c e s .615沈阳师范大学学报(自然科学版)第41卷K e y w o r d s:q u a n t u ms e c u r i t y n e t w o r ka r c h i t e c t u r e;q u a n t u m k e y d i s t r i b u t i o nn e t w o r k;t r u s t e dr e l a y;o p t i c a l n e t w o r k1量子密钥分发网络的发展1.1量子密钥分发网络的实施量子通信领域虽然在近些年取得了很多重大进展,但是现在的量子通信技术只能在有限距离内实施,实现长距离的量子通信仍然非常困难㊂这是因为信道中存在量子损耗和噪声㊂B r i e g e l等[1]在1998年提出了利用纠缠交换和纠缠纯化的量子中继器解决在较长距离通信中量子的损耗和噪声问题,其原理如图1所示㊂即把参与信息传送的双方之间的传输通道拆分成若干段,每一段都要制备纠缠并对其进行纯化,利用相邻段与段之间的纠缠交换,使传输距离更远㊂这种纠缠交换与纯化的情况重复进行,直到通信保真度无限接近1㊂图1量子密码学的发展历程及相关理论F i g.1D e v e l o p m e n t h i s t o r y a n d r e l a t e d t h e o r i e s o f q u a n t u mc r y p t o g r a p h y量子密钥分发(q u a n t u mk e y d i s t r i b u t i o n,Q K D)网络实施往往依赖光交换或可信中继㊁不可信中继,或者使用量子中继器作为解决方案㊂目前,光交换和可信中继方案比基于不可信中继和量子中继器的方案更为成熟㊂1)基于光交换的Q K D网络:可以将光束分割或切换等几种经典光学功能用于传输量子信号,以连接一对Q K D节点㊂量子信号可以通过短量子链路传输,而无需与不可信节点进行任何交互㊂因此,与长途链路相比,这些短链路不太容易被攻击和窃听㊂2)基于可信中继的Q K D网络:与上述基于光交换的Q K D网络的场景相反,在基于可信中继的Q K D网络(通常称为可信节点Q K D网络)中,通过为每个Q K D链路生成本地密钥,将其存储在位于每个Q K D链路两端的节点中实现长距离传输㊂密钥沿着Q K D路径以逐跳的方式从源节点转发到目的节点㊂这种Q K D 网络实用性和可扩展性强,已被广泛用于现实Q K D 网络的部署㊂3)基于不可信中继的Q K D 网络:必须依赖更安全的Q K D 协议,如设备无关的量子密钥分发(m e a s u r e m e n t -d e v i c e -i n d e p e n d e n tQ K D ,M D I -Q K D )和基于量子纠缠的协议㊂依赖M D I 协议的不可信中继通常比基于可信中继的协议具有更好的安全性,因为它可以消除测量端的几乎所有安全漏洞,它甚至允许不受信任的中继被窃听者控制,但不会影响Q K D 的安全性㊂基于不可信中继的协议也能够相当大地扩大Q K D 的安全实现距离㊂例如,双场量子密钥分发(t w i n -f i e l dQ K D ,T F -Q K D )协议中的不可信中继可达到的距离约为500k m [2]㊂4)基于量子中继器的Q K D 网络:量子中继器可以减轻对量子信号的距离依赖性损伤㊂位于中间节点的量子中继器可以依靠量子纠缠交换的过程在源节点和目的节点之间产生长距离纠缠㊂量子中继器有望在不直接测量或克隆量子信号的情况下转发量子信号,然而这种理想化的量子中继器仍然有待实现㊂1.2 Q K D 网络架构Q K D 网络的一般架构与经典网络密不可分㊂Q K D 网络现已在通信和安全基础设施中得到初步应用,如合肥城域网[3],它是基于三节点可信中继的Q K D 网络,使用了诱饵状态B B 84协议和商业光纤链路,实现了O T P (o n e -t i m e p a s s w o r d )加密的实时音频通信;2018年的基于卫星的中奥洲际Q K D 网络[4]使用连续变量Q K D [5](c o n t i n u o u s -v a r i a b l eQ K D ,C V -Q K D )协议连接了3个不同的站点㊂Q K D 网络的通用3层架构由3个逻辑层组成:Q K D 层㊁控制层及应用层,如图2所示㊂图2 Q K D 网络基本架构F i g .2 B a s i ca r c h i t e c t u r eo f Q K Dn e t w o r k 1)Q K D 层:该层由Q K D 网络设计的各种物理设备(如Q K D 节点和链路)组成,Q K D 节点间可以通过光纤或自由空间链路互连,Q K D 节点之间可以生成对称比特串作为密钥,生成的密钥存储在Q K D节点中㊂每个Q K D 节点都保存其详细的密钥参数,如标识符㊁比特长度㊁传输速率和时间戳等㊂每个Q K D 节点还存储链路参数(如链路的长度和类型)及量子信道的错误率信息㊂2)控制层:该层由Q K D 网络控制器和管理器组成,其中,所有的Q K D 节点都由Q K D 网控制器控制,该控制器负责激活和校准Q K D 节点,并对整个Q K D 网络进行控制,其中包括监视所有Q K D 节点和链路的状态,并监督Q K D 网络控制器[6]㊂通过监测和管理获得的统计数据可以被读取,随后记录在数据库中,存储在Q K D 节点中的密钥都在安全链路中传递,而不能被Q K D 网络控制器或管理器访问,因而在添加控制器后,密钥的安全性仍然能够得到保证[7]㊂许多控制层在设计时引入了软件定义网络(s o f t w a r e -d e f i n e dn e t w o r k i n g ,S D N ),通过逻辑集中控制的方法对整个Q K D 集成光网络进行科学管理㊂S D N 具有多样化的资源分配能力和高效的全局控制能力,这些能力已在具有分时Q K D 资源的715 第6期 朱宏峰,等:量子密钥分发网络架构㊁进展及应用815沈阳师范大学学报(自然科学版)第41卷S D N控制光网络中得到了验证㊂3)应用层:由用户所需的加密应用程序组成㊂首先,应用程序向管理层通知其安全请求(即密钥的安全需求),根据这些请求,管理层从相应的Q K D节点查询所需密钥的可用性㊂如果实时密钥可用于支持加密应用,则Q K D管理层指示为应用提供加密密钥,否则应用程序应该等待提供密钥㊂最后,使用密钥对应用程序链接上的数据传输进行加密㊂应用程序获取到密钥后对其进行管理和使用㊂每个Q K D网络可以支持的用户数量由密钥资源和密钥需求决定㊂因此,密钥资源和用户需求之间如何达到最优的问题是应用层需要关注的重点㊂2 Q K D网络架构的发展2.1Q K D网络的基本架构[8]该架构由4层组成,即应用层㊁控制层㊁Q K D层和数据层,如图3(a)所示㊂应用层:在应用层中生成光路请求,其中包括2种请求,一种是需要Q K D安全性的光路(Q K D s e c u r e d l i g h t p a t h,Q L P)请求,一种是没有Q K D参与的普通光路(l i g h t p a t h,L P)请求㊂随后Q L P和L P请求都被传送到控制层进行进一步处理㊂应用程序层上可以拒绝或者接受Q L P请求和L P请求㊂控制层:控制层由控制和管理网络资源的软件定义网络(S D N)控制器组成㊂控制层分别从Q K D 层和数据层中的量子信道和经典信道向Q L P和L P请求需要分配的资源㊂Q K D层:Q K D层由量子通信节点(q u a n t u mc o mm u n i c a t i o n n o d e s,Q C N s)组成,Q C N之间的连接通过量子信道和经典信道建立㊂Q K D层的具体实现依赖所使用的Q K D协议,在Q K D层中Q L P请求的每个节点对之间进行密钥生成和分发㊂数据层:L P请求在不涉及Q K D层的情况下直接传输到数据层,并被分配波长资源,Q L P请求也被传输到数据层,通过经典信道传输的数据使用在Q K D层生成的密钥加密,在数据节点之间进行数据传输㊂为了在网络体系结构的四层之间建立安全可靠的通信服务,研究者们在架构中加入了不同的协议㊂为了实现控制层和Q K D层,以及控制层和数据层之间的南向接口,可以使用开放流(o p e n f l o w,O F)协议或网络配置(n e t w o r kc o n f i g u r a t i o n,N E T C O N F)协议[9]㊂南向接口用于将对应Q L P请求和L P请求的控制信号分别从S D N控制器发送到Q K D层和数据层㊂R E S T f u l应用程序接口(a p p l i c a t i o n p r o g r a mi n t e r f a c e,A P I)用于实现控制层和应用层之间的北向接口,通过北向接口交换L P请求和Q L P请求的属性(节点㊁比特率要求等)和状态(接受㊁拒绝等)[10]㊂在接收到来自应用层的L P请求时,控制层执行来自经典信道的路由和资源分配指令,并且将控制信息直接发送到数据层,使用所选择的路由和所分配的经典信道资源来发送信息㊂对于Q L P请求,控制层配置Q K D层并在Q C N之间生成密钥,并且执行来自量子信道和公共信道的资源分配㊂然后,控制层将信息发送给数据层,使用在Q K D 层生成的密钥加密要发送的信息,然后通过所选择的路由和来自经典信道所分配的频率资源来发送该信息㊂对于L P请求和Q L P请求,数据层与控制层进行确认,更新网络资源请求的状态,并且将Q L P/ L P的接受或拒绝的状态转发到应用层㊂2.2基于量子密钥池的Q K D网络架构[11]基于量子密钥池(q u a n t u mk e yp o o l s,Q K P s)的Q K D网络架构在原本架构的基础上引入了量子密钥池实现有效地管理密钥资源,量子密钥池用于存储Q K D网络中每对Q C N之间生成的密钥,如图3(b)所示㊂该架构中构建了2种类型的密钥池,分别在S D N控制器和网络中的每个Q C N之间加入密钥池(Q K P1,Q K P2, ),以及在网络中的一对Q C N之间建立密钥池(Q K P1-2)㊂网络中不同对Q C N之间的同步密钥存储在Q C N的各自量子密钥服务器(q u a n t u ms e c r e t k e y s e r v e r,Q K S)中,存储在各对Q K P之间的同步密钥可以虚拟化为各自的Q K P,实现按需提供密钥㊂例如,Q C N1和Q C N2之间的同步密钥存储在它们各自的Q K S中,即Q K S1和Q K S2中,存储的密钥被虚拟化为Q K P,根据不同的安全要求为数据加密和解密服务提供密钥㊂从应用层接收到Q L P请求时,控制层首先计算路径,然后在选择的路径上与相应的Q K P执行O p e n F l o w握手,控制层配置Q K P1和Q K P2,以便通过控制信道为控制消息提供密钥,控制层配置Q K P1-2为D C N1(d a t a c o mm u n i c a t i o nn o d e s)到D C N2的Q L P 请求提供密钥㊂控制层随后将控制指令发送到数据层,使用密钥加密要发送的信息,通过所选择的路由和来自经典信道所分配的资源发送该加密后的信息,最终进行控制层与应用层的确认㊂图3 Q K D 网络架构的发展F i g .3 D e v e l o pm e n t o f Q K Dn e t w o r ka r c h i t e c t u r e 2.3 基于Q K D 即服务的有可信中继参与的Q K D 网络架构[12]Q K D 即服务(Q K Da s a s e r v i c e ,Q a a S )是由C h o 等[13]在2017年提出的一种概念,即多个用户可以申请不同的Q K D 安全光路请求,以便从同一网络基础设施中获得所需的密钥速率(s e c r e t k e y r a t e s ,S K R )㊂2019年,C a o 等利用这一概念提出了一种用于Q K D 即服务的新S D N 架构,即S D Q a a S 框架,在原有基础上加入了可信中继节点(t r u s t e d r e pe a t e r n o d e s ,T R N s ),以使Q K D 网络基础结构上的多个用户都能被提供灵活的Q a a S ,如图3(c )所示㊂这里只讨论用于远程安全通信的2个Q C N (Q C N 1和Q C N 2)及2个Q C N s 之间的T R N ㊂点对点Q K D 机制分别在Q C N 1和T R N ,T R N 和Q C N 2之间实现,在量子链路上可以获得不同的密钥速率㊂当用户请求Q L P 以满足Q C N 1和Q C N 2之间所需的密钥速率时,计算源节点(Q C N 1)和目标节点(Q C N 2)之间的路径,为每个用户检查他们所需的密钥速率并在量子链路上搜索可用的密钥速率,如果能够满足用户需求,则从相关链路中选择所需的密钥速率用于该Q L P 请求,否则该Q L P 申请将会被拒绝㊂在S K R 选择之后,T R N 在Q L 1上使用所获得的密钥在Q L 2上加密所获得的秘密密钥,之后T R N 将加密数据从Q C N 1中继到Q C N 2㊂为了解密原始数据,Q C N 2可以在Q L 2上使用获得的密钥,并且在Q L 1上与Q C N 1共享获得的密钥,之后将基于密钥速率获得的密钥分配给发出请求的用户㊂在这个Q K D 即服务的S D N 架构(S D Q a a S )体系结构中,Q a a S 的功能包括Q L P 请求的创建㊁修改和删除㊂具体内容为接收到来自应用平面的Q L P 创建请求时,控制平面首先计算并选择源节点和目的节点之间的路由,并搜索每个相关Q L 上的密钥速率时隙的可用性,依据用户需求选择S K R 时隙㊂当用户的密钥速率需求改变时,为该用户建立的Q L P 请求也会相应发生改变㊂此外,当Q L P 请求到期时,应用平面将该请求删除,控制平面控制源节点和中继节点以停止向该Q L P 请求分配密钥速率并删除该Q L P 要求的信息㊂2.4 基于不可信中继或混合不可信中继的Q K D 网络架构[14]基于不可信中继或混合不可信中继的Q K D 网络架构概念由C a o 等在2021年提出,在有可信中继915 第6期 朱宏峰,等:量子密钥分发网络架构㊁进展及应用025沈阳师范大学学报(自然科学版)第41卷参与的Q K D网络架构中加入了不可信中继节点,更加保证光网络的传输安全性㊂文献[15]中介绍了一种新的基于混合可信和不可信中继Q K D的网络架构,如图3(d)所示,该网络架构可在大规模Q K D 部署中使用㊂该网络架构中一共需要3种类型的节点,即Q C N,T R N和不可信中继节点(u n t r u s t e d r e l a y n o d e s,U T R N)㊂其中Q C N的作用是充当向其位于同一位置的D C N提供密钥的末端节点, U T R N充当2个Q C N之间的中间节点㊂T R N包括2个或多个M D I-Q K D发送器㊁本地密钥管理器(接收㊁存储和中继密钥)和安全基础设施㊂U T R N包含2个或多个M D I-Q K D接收器㊂为了使用可信或不可信中继在Q K D的2个节点(Q C N1和Q C N2)之间建立安全的远程通信,在Q C N1和T R N1之间共享一个密钥串k1,而在T R N1和Q C N1之间共享另一个密钥字符串k2,图中T R N和U T R N可以交织在一起,以进一步扩展Q K D的传输范围㊂在每个T R N中,本地密钥管理器可以通过密钥管理链路沿着混合Q K D链中继密钥㊂例如,在T R N1中密钥管理器使用一次一密加密方法组合相同字符串长度的k1和k2,并将其发送到Q C N2中的密钥管理器中㊂Q C N2中的密钥管理器可以基于k2解密获得密钥k1㊂Q C N1和Q C N2的密钥管理器向它们连接的密钥服务器发送Q,k1,由此k1才能在Q C N1和Q C N2之间被成功共享,即使有不可信中继的参与也能安全地完成密钥传递和分发㊂3 Q K D网络面临的挑战和解决方法3.1密钥池供求失衡Q K D网络中由于需要进行密钥资源的生成和传递,密钥池作为特殊组件在密钥的存储和传输中发挥了重要作用,它是决定Q K D网络密钥供给能力好坏的重要设备,但也会因为链路中断等问题造成密钥供求失衡而带来安全隐患[16]㊂网络正常运行时,密钥池中密钥量的消耗程度主要由密钥的生成速率与消耗速率来决定,密钥池中为满足安全需求,密钥存储量至少是要大于0的㊂链路意外发生故障后,链路中的量子密钥分发过程也随之中断,密钥池无法生成密钥,但是密钥消耗速率依旧保持不变,仅仅只靠存储量维持㊂由于消耗速率存在,密钥池中的现有密钥量将无法满足供给而最终降为0,直至无法满足后续的安全需求,进而对整个Q K D网络造成极大影响㊂如图4(a)所示,节点1和2之间的链路发生故障,导致密钥无法生成,则此时只靠密钥池中存储的密钥为用户提供密钥服务,当密钥池中的密钥存储消耗完毕后,将无法再为用户提供密钥供给,对整个Q K D网络造成极大危害,也是Q K D网络现如今面临的亟待解决的一大问题㊂为了在安全级别和资源利用效率之间保持平衡,文献[11]中提出了一种新的密钥按需策略,该策略在软件定义网络上使用Q K P 构建技术保护数据信道,具有Q K P功能的密钥按需分配方案根据需要将密钥资源分配给Q L P请求,有效地解决了这一问题㊂在文献[17]中针对密钥消耗问题,不同Q K P中的密钥被不断消耗,其消耗数量可以是固定的或灵活的,这主要取决于在网络中的Q C N之间传输的保密信息的安全要求,这也能够有效解决密钥供需不均衡的问题㊂除密钥池的供求失衡问题外,T R N的短距离放置也会导致出现资源浪费问题,如图4(b)所示,在城域网络中使用过多中继节点会造成密钥资源的浪费㊂3.2路由㊁波长和时隙分配在Q K D网络中,可用的光波段被细分为量子信道㊁传统数据信道和公共信道,为传统数据信道保留的波长通过与用于经典光网络的方式相同的方式被分配用于数据传输的光路请求㊂然而,分配给公共信道和量子信道的波长是采用光时分复用(o p t i c a l t i m ed i v i s i o nm u l t i p l e x i n g,O T D M)方案,对于建立Q K D安全光路的请求,是在定义路由之后在传统数据信道上分配波长,在公共信道和量子信道上分配时隙㊂因为波长资源是有限的,并且随着量子密钥的分发,可用于经典通信的波长数量将会进一步减少,因而如何更有效地利用它们,以便用所需的安全级别建立更大数量的光路请求将是一大难题㊂针对此问题,研究者们提出了各种解决方案,C a o等[8]提出了一种在静态流量场景中进行路由波长和时隙分配的策略,通过建立整数线性规划模型,为Q L P建立不同等级的安全级别㊂图4展示了具有2个不同安全级别的Q L P的时隙分配场景,这2个安全级别被分配了不同的密钥更新周期T㊂图4(c)展示了具有固定周期的安全级别方案,并且对为公共信道和量子信道保留的所有波长都是相同的㊂在另一种分配场景中,如图4(d)所示,周期的值是固定的,但是对不同的波长则有所改变,由于固定周期更容易被窃听者破解,因而第二个方案具有更高的安全保障㊂在文献[18]中引入了一种新的密钥更新周期方案,在这种方案中周期是灵活并且动态变化的,通过增加复杂性从而达到增强Q L P的安全性㊂文献[19]中引入了一种采用Q K P 技术的时间调度方案,在该方案中,路由波长和时隙分配问题是通过考虑3个子问题来解决的,即固定/灵活的密钥消耗㊁均匀/非均匀的时隙分配和时隙连续/离散的Q K P构造,以有效解决路由波长和时隙分配问题㊂根据Q K P 构造的安全性要求,为不同的Q K P 分配的时隙数量可以是单一的或灵活的,不同Q K P 的构造是否占用2个Q C N 之间的时隙,取决于是否存在有密钥缓存功能的Q C N ㊂图4 Q K D 网络中的密钥池供求失衡情况㊁中继节点较短距离中的资源浪费现象及2种不同的安全级别方案F i g .4 K e yp o o l s u p p l y a n dd e m a n d i m b a l a n c e i nQ K Dn e t w o r k ,r e s o u r c ew a s t e i n s h o r t d i s t a n c e r e l a y n o d e s ,a n d t w od i f f e r e n t s e c u r i t yl e v e l s c h e m e s 3.3 Q K D 网络生存性和连通性在Q K D 网络中,除了典型的L P 故障外,节点/链路故障也会影响工作Q L P 的安全性,此外,大规模故障如地震㊁海啸或人为引起的故障都可能会严重损害Q L P 的安全性,甚至造成Q K D 网络中的大量数据丢失㊂因此,在Q K D 网络中网络生存性是一个更大的挑战㊂与传统网络保护方法相同的是,Q K D 网络中需要为传统数据信道㊁量子信道和公共信道上的L P和Q L P 保留备份资源㊂为了切实解决这一问题,研究者们提出了不同的解决方案㊂王华[20]开发了密钥流模型,通过研究密钥恢复策略以保护Q K D 网络中受故障影响的密钥供应服务㊂L u 等[21]提出了一种新的动态波长和关键资源调整算法,该资源调整方案总共包括3种方案:如果波长资源足够,而密钥资源不足以满足Q L P 请求,则动态调整密钥的存储量;如果Q S C h 和T D C h 的波长和密钥资源超过阈125 第6期 朱宏峰,等:量子密钥分发网络架构㊁进展及应用225沈阳师范大学学报(自然科学版)第41卷值,则分别加上Q S C h,T D C h波长;在其他正常情况下,则不需要进行资源调整㊂在现实的Q K D网络中,用户总是处于不同的地理位置中的不同区域,空间跨度很大,用户密钥需求的请求需要跨越地理距离障碍才能实现成功传输㊂但是现有Q K D网络密钥分发方案通常只能解决局部网络内的安全请求,无法实现跨区域下的密钥供给㊂因此,突破不同区域的密钥分发连通性障碍具有十分重要的意义㊂端到端的对用户的密钥供给面临着长距离跨区域密钥分发的技术难点,需要通过分布式区域网络相互协商,网络之间需要经过较为复杂的交互㊁决策及实施各种流程,当遇到极大数量密钥分发方案的时候,就需要Q K D节点具备强大的计算能力,这大大增加了Q K D网络部署的难度㊂王华[20]提出的端到端Q K D网络架构,增强了不同Q K D网络的连通性,形成了具备互联互通技术特点的创新方案㊂3.4中继节点的布置问题在Q K D网络中,与经典网络相比,量子信号的传输范围明显更短,为了实现将Q K D网络与链路距离在数百至数千公里范围内的现有光网络集成,需要布置一些中继节点以实现量子信号在光网络的节点之间的长距离传输,中继节点可以使用T R N,因为可信的中继节点无疑会增加网络的安全性㊂因此, T R N的放置问题是Q K D网络中的另一个重要问题㊂T R N的放置本身是为了实现远距离的安全传输,但是实际过程中也存在许多问题,问题之一就是短距离放置导致的资源浪费问题㊂例如,在Q K D 链路中,从源节点(Q C N1)到目的节点(Q C N4),对于每个中间节点对,生成相同大小的密钥,即Q K1,Q K2和Q K3㊂密钥在节点之间传输过程中,不断被中间节点以加密和解密的方式传输,即使在中间节点T R N处进行了多次加密和解密处理之后,源和目的地也使用相同的密钥Q K1来保护Q L P㊂但是在一些城域网络中,任意2个节点之间的距离较小,放置过多的T R N反而会导致大量密钥资源的浪费㊂如图4(b)所示,当节点1请求安全服务与节点2共享密钥时,路由路径计算为节点1 中继节点 节点2,为了获得共享密钥,需要2个Q K D进程分别生成S k1和S k2,并在中继节点上进行加密和解密操作,但是消耗的键数将是请求键数的2倍㊂如果节点1直接通过节点2分发密钥而绕过中继节点,则只需要消耗一组密钥来获得S k㊂因此,在城域网络中使用过多中继节点造成了密钥资源的浪费㊂针对这种问题,设计了一种新的量子节点结构[22],如果网络中2个节点之间的距离在一定范围内,则该结构具有绕过T R N节点的能力㊂在Q K D网络中,有3种不同的基于中继的解决方案用于远距离的安全通信,分别是基于量子中继器的Q K D㊁基于T R N的Q K D和基于M D I-Q K D的通信方案㊂但是由于不同的方案都有各自的缺陷,为了解决上述问题,提出了一种新的基于可信/不可信中继的混合Q K D网络架构[15,23],该架构由可信中继和不可信中继组成,实现了3种不同方案的融合,大大提高了Q K D网络的资源利用效率㊂4量子密钥分发网络的应用4.1基于量子密钥在线分发的量子保密通信网络基于量子密钥在线分发的量子保密通信网络适用于对安全性要求高并且对密钥更新有一定要求的网络通信应用场景,比较典型的应用包括政企保密专网㊁高端学术安全会议或数据中心之间的数据安全传输,或监控系统数据安全传输等场景,其在现实中的应用也取得了较大进展㊂Q K D网络通过量子密钥服务器设备向量子加密通信设备提供量子密钥服务,随后加密通信设备利用量子密钥,通过经典通信网络完成量子加密通信服务;密钥服务器与加密设备之间通过量子密钥应用接口(Q K_A P I)互联[24]㊂利用标准化的接口兼容不同业务类型,使得Q K D网络㊁经典通信网络和业务系统三者结合,实现Q K D 网络的高效运行㊂4.2基于量子密钥在线与离线结合的量子保密通信网络基于量子密钥在线与离线结合的量子保密通信网络是指通过Q K D网络生成的量子密钥运用安全通信技术分发给用户终端㊂其优势在于不受Q K D网络覆盖面积的影响㊁使用方式便捷灵活㊁可应用性和可推广性强,同时,需要的Q K D网络的花费成本也相对较低㊂其劣势在于安全性无法与在线分发模式相比㊂中国电信在2021年推出的天翼量子密话就是采用在线与离线相结合的Q K D网络实现的,它能够实现高质量V o I P量子加密通话,之后的V o L T E加密通话产品更是能够实现高清秘密通话,其基。
量子信息密钥分发技术的原理和应用随着信息产业的不断发展,信息的安全性也成为了人们越来越
关注的问题。
而量子信息技术正是当前信息安全领域的前沿之一。
其中,量子信息密钥分发技术是一项被广泛研究和应用的技术。
本文将介绍量子信息密钥分发技术的原理和应用。
一、量子信息密钥分发技术的原理
量子信息密钥分发技术是利用量子力学的特性,实现两个通信
节点之间的安全密钥分发。
在传统的加密通信中,通信双方需要
使用同一个密钥进行加密和解密。
而在传统方法中,密钥的分发
常常成为破解这种加密方法的瓶颈。
因此,如何安全分发密钥成
为了该领域的核心问题。
量子信息密钥分发技术通过量子纠缠和单光子的相互作用来实
现信息传输。
在这种技术中,通信双方会使用两个不同的基,如
水平极化和垂直极化来表示二进制的1和0。
每一个基都对应一个光子的极化状态。
在量子密钥分发的过程中,发送方会随机地选择两个基来表达
二进制的1和0,同时发送一个相应的光子。
接收方会随机地选择一个基来测量接收到的光子,并记录下其结果。
在发送一组光子
之后,发送方和接收方会公开它们选择的基。
如果两个节点使用
完全相同的基,那么接收方测量会得到一个完全正确的结果。
但是,如果两个节点选择的基不同,那么接收方所得到的结果就可
能是随机的。
此时,发送方和接收方会把已公开的基所相应的二进制编码进
行比较。
在这个过程中,只有在发送方和接收方使用了相同的基时,接收方所得到的结果才会是完全正确的,并且可以被用来生
成一个安全的密钥。
而在比较过程中,若发现有被篡改的信号,
那么双方会重新进行协商。
在这个过程结束后,两个节点实际得到的并不是完整的密钥,
而是一个由随机选择的比特组成的序列。
这时,双方可以通过差
错检测和纠正来去除错误的比特,从而生成一个安全可靠的密钥。
二、量子信息密钥分发技术的应用
量子信息密钥分发技术已经被广泛应用于金融、能源、政府机关、军事等领域,以实现更加安全、可靠的通信。
在金融领域,量子密钥分发技术被用来保证银行交易的安全性。
银行利用这种方法生成随机密钥,并将其用于加密用户的支付信息。
通过采用量子密钥分发技术,银行可以保证其支付系统的安
全性,并有效地防范黑客攻击和恶意的篡改。
在电力系统中,量子密钥分发技术被用来保障电力系统的数据
传输安全。
电力系统的信息通信涉及到大量的数据传输和交流。
而在这个过程中,数据的泄漏可能会对系统造成重大影响。
因此,电力系统利用量子密钥分发技术,保证其监控数据和命令的传输
安全。
除此之外,量子密钥分发技术还用于保障军事和政府机关的通信。
在军事和政府机关通信中,保密性是最重要的要求之一。
而
采用传统的加密方式容易遭受黑客攻击和间谍渗透。
利用量子密
钥分发技术可以有效地避免这些安全隐患,提升通信的安全性。
三、结论
总之,量子信息密钥分发技术是当前信息安全领域的重要研究方向。
其原理是利用量子力学的特性实现通信信息的安全传输,应用广泛涉及到金融、能源、政府机关、军事等领域。
因此,量子信息密钥分发技术在未来的信息安全领域还将持续发挥重要的作用,我们也期待它在更多领域的应用。