高中数学第一章计数原理阶段通关训练新人教A版选修2_3
- 格式:doc
- 大小:786.00 KB
- 文档页数:7
2016-2017学年高中数学第一章计数原理复习梯度训练新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第一章计数原理复习梯度训练新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第一章计数原理复习梯度训练新人教A版选修2-3的全部内容。
第一章 计数原理梯度训练 基础题1.某小组有8名男生,6名女生,从中任选男生、女生各一人去参加座谈会,则不同的选法种数有( )A 48种B .24种C 14种D .12种 答案:A解:从8名男生中任意挑选一名参加座谈会,共有8种不同的选法,从6名女生中任意挑选一名参加座谈会,共有6种不同的选法,由分步乘法计数原理,不同的选法种数共有8×6=48(种).2.如果33411n n n C C C --=+,则n 的值为( )A . 8B . 7C .6D . 不存在 答案: B解:因为3344411n n n n n nC C C C C ---=+==,所以n=7,故选B 3 .9(1)x -按x 降幂排列的展开式中,系数最大的项是( )A .第4项和第5项B .第5项C .第5项和第6项D .第6项 答案:B解:9(1)x -的展开式中的中间两项即第5项和第6项的二项式系数最大,但第6项前有一个1-和它相乘,所以只有第5项的系数最大.4.由0,3,5,7,9这五个数组成无重复数字的三位数,其中是5的倍数的个数( )A .9B .21C .24D .42答案:B解:分两类,一类0在个位的三位数有24A 个,二类5在个位的三位数有313A 个,所以是5的倍数的共有24A +313A =21.5.已知0122222729n n nn n n C C C C ++++=,则13n n C C ++的值等于( )A . 64B . 32C . 63D . 31 答案:B解:因为0122222(12)729n nn nn n n C C C C ++++=+=,所以n=6所以135666620632C C C ++=++= 6.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A .96B .84C .60D .48答案:B解法1:分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=. 解法2:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 7.8(ax 的展开式中5x 的系数为28,则a =___________. 答案:1±解:由二项展开式的通项公式38882188(1)()(1)r rrrr r r rr T C ax C a x ---+=-=- 令3852r-=得2r =,所以26828C a =,解得a=1± 8. 设坐标平面内有一个青蛙从原点出发沿x 轴跳动,每次向正方向或负方向跳动一个单位;经过5次跳动后,青蛙落在点(3,0)(允许重复经过此点);则青蛙不同的运动方式有 种.答案:5解:青蛙5次跳动中,只有一次是向负方向的,另外的4次都是向正方向的,不同的跳动方式数为515=C 种. 9.对某种产品的6件不同正品和4件不同次品一一进行测试,直到区分出所有次品为止.若所有次品恰好在第5次测试被全部发现,则这样的测试方法有 种.答案:576解:所有次品恰好在第5次测试被全部发现,则第5次检验的必定是次品.第一步:优先排第5次测试有14C 种.第二步:从6件正品中任选一件,有16C 种选法.第三步:由剩下的三件次品和选中的一件正品排前4次确定的位置,有44A 种排法.由分步乘法计数原理,不同的测试方法共有14C 16C 44A =576种. 能力提升11.已知(n展开式的前三项系数的和为129,这个展开式中是否含有常数项?一次项?如果没有,请说明理由;如有,请求出来.解:展开式的通项为91161(2(0,1,2,,)n rr n rr r rr nn T C C x r n --+=⋅=⋅⋅=;∴由题意得:00122222129nn n C C C +⋅++⋅=,∴2122(1)129,64n n n n ++-=∴=, ∴n=8,故72116182(0,1,2,,8)r r rr T C x r -+=⋅⋅=.若展开式存在常数项,则721106r -=,解之得7211r Z =∉, 所以展开式中没有常数项. 若展开式存在一次项,则721116r-=,即72116r -=,所以r=6, 所以展开式中存在一次项,它是第7项,667821792T C x x ==.12. 现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数有多少种?解:依题意得,这四项工作中必有一项工作有2人参与,根据司机这项工作的实际参与人数进行分类:第一类,司机这项工作的实际参与人数恰有1人,满足题意的方法有11213342C C C C =108(种);第二类,司机这项工作的实际参与人数恰有2人,满足题意的方法有2333C A =18(种)因此,满足题意的方法有108+18=126(种).提高题1.为了迎接元宵节,某大楼安装了5个彩灯,它们闪亮的顺序不固定.每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是A .1 205秒B .1 200秒C .1 195秒D .1 190秒. 答案:C解:共有55A =120个闪烁,119个间隔,每个闪烁需用时5秒,每个间隔需用时5秒,故共需要至少120×(5+5)-5=1195秒.2.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息O110至多有两个对应位置上的数字相同的信息个数为A .10 8.1l C .12 D .15 答案:B解:恰有0个,1个,2个对应位置上的数字相同的信息个数分别为1,14C ,24C ,故至多有两个对应位置上的数字相同的信息个数为1+14C +24C =11,故选B .3.如图,用四种不同颜色给图中的A ,B ,C ,D ,E ,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有 j‘“A .288种B .264种C .240种D .168种 答案:B解:先涂A 、D 、E 三个点,共有4×3×2=24种涂法,然后再按B 、C 、F 的顺序涂色,分为两类:一类是B 与E 或D 同色.共有2 ×(2 × 1+1×2)= 8种涂法;另一类是B 与E 或D 不同色,共有l ×(1×l+1×2)=3种涂法.所以涂色方法共有24 ×(8+3)=264种.4.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有A .36种B .42种C .48种D .54种 答案:B解:由题可知,可以考虑分成两类计算,若甲排在第一位则有44A 种方案,若甲排在第二位则有1333C A 种方案,所以按照要求该台晚会节目演出顺序的编排方案共有44A +1333C A =42(种),故选B .5.353(12)(1)x x +的展开式中x 的系数是( ) A .- 4 B .—2 C .2 D .4 答案:C解:由题意3(1)x +展开式的通项为2133(2)2r rr rr r T C x C x +==,53(1x -的展开式的通项为'''''33'155()(1)r r r r r r T C x C x +=-=-,因此,353(1)(1)x x +的通项为32'''635(1)2r r r rr r C C x+-,故当32'6r r +=1时,也即r=0且r '=3或r=2且r '=0两种情况, 则展开式中x 的系数为(-10)+12=2,选C .6.已知6(2的展开式的第四项是____________ 答案:160x-解:由33343161602(T T C x +===-.7.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是__________ 答案:108解:从2,4,6三个偶数中选一个数放在个位,有13C 种方法,将其余两个偶数全排列,有22A 种排法,当l ,3不相邻且不与5相邻时有33A 种方法,当l ,3相邻且不与5相邻时有22A 33A 种方法,故满足题意的偶数有13C 22A (33A +22A 33A )=108个. 8. 已知26(1)kx +(k 是正整数)展开式中,x 8的系数小于120,则k=______ 答案:1解:由22166()r r r r r r T C kx k C x +==得x 8的系数为444615k C k =. 由415120k <得48k <,由于k 为正整数,于是k=1.9.(12)n x +的展开式中第六项与第七项的系数相等,求展开式中二项式系数最大的项和系数最大的项。
第一章过关检测(时间90分钟,满分100分)一、选择题(每小题4分,共40分) 1.若A 3m =6C 4m ,则m 等于( )A.9B.8C.7D.62.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人B.3人或4人C.3人D.4人3.若100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A.C 16C 294B.C 16C 299C.C 3100-C 394D.C 3100-C 2944.从5位男教师和4名女教师中选出3位教师,派到3个班担任班主任(每班一位班主任),要求这三位班主任中男女教师都有,则不同的选派方案共有( ) A.210种 B.420种 C.630种 D.840种5.现有6个人分乘两辆不同的出租车,每辆车最多乘4人(不含司机),则不同的乘车方案的种数是( )A.50B.60C.70D.806.在10)3( x 的展开式中,x 6的系数为( )A.-27C 610B.27C 410C.-9C 610D.9C 4107.把1,2,3,4,5,6,7,8,9这9个数字填入图中的表格,从上到下,从左到右,依次增大.当3、4固定在图中位置,余下的数的填法有( )A.6种B.12种C.18种D.24种8.把4个不同的小球全部放入3个不同的盒子里,使得每个盒子都不空的放法总数是( )A.C 13A 33B.C 34A 22C.C 24A 33D.C 14C 34C 229.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A.10种 B.20种 C.36种 D.52种10.已知(1-3x)9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于( ) A.29 B.49 C.39 D.1 二、填空题(每小题4分,共16分)11. 8次投篮中,投中3次,其中恰有2次连续命中的情形有______种.12.四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_______.13.某药品研究所研制了5种消炎药a 1,a 2,a 3,a 4,a 54种退烧药b 1,b 2,b 3,b 4,现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知a 1,a 2两种药必须同时使用,且a 3,b 4两种药不能同时使用,则不同的方案有_______种.14.若nx x )(13-+展开式中,第5项是常数,问中间项是第_______项.三、解答题(共44分)15.(10分)如右图,若灯不亮,则元件R 1,R 2,R 3断路的情况共有多少种?16.(10分)解关于n 的不等式:C 4n >C 6n .17.(12分)求84)21(xx +展开式中系数最大的项.18.(12分)“十一”国庆期间,公司从网络部抽4名人员、人事部抽3名人员(两个部门的主任都在内),从10月1号至7号,安排每人值班一天,分别回答下列问题: (1)两个部门的主任不能安排在1号和7号;(2)若各部门的人员安排不能连续(即同部门的人员相间安排); (3)若人事部因工作需要,他们的值班必须安排在连续三天; (4)网络部主任比人事部主任先值班.参考答案1解析:由m(m -1)(m -2)=1234)3)(2)(1(6⨯⨯⨯---•m m m m ,解得m =7. 答案:C2解析:设女生有x 人,则30128=•-C C x x ,即302)7)(8(=•--x x x .解得x =2或3. 答案:A3 解析:不考虑限制条件,从100件产品中任取3件,有C 3100种取法,然后减去3件全是正品的取法C 394,故有C 3100-C 394种取法. 答案:C4解析:分两类:第一类2男1女,则不同的选派方案有C 25C 14A 33=240种. 第二类1男2女,则不同的选派方案有C 15C 24A 33=180种. 由分类加法计数原理得:共有240+180=420种不同的选派方案. 答案:B5解析:分三类:第一辆车乘2人,第二辆车乘4人,有C 26种乘法;第一、二辆车各乘3人,有C 36种乘法;第一辆车乘4人,第二辆车乘2人,有C 46种乘法,由分类加法计数原理,共有C 26+C 36+C 46=50种. 答案:A6 解析:T5=C410x10-4·(-3)4=9·C410 x6.答案:D7解析:左上角格必须填1,右下角格必须填9,第二行最左端格必须填2,如图.A、B从余下的5,6,7,8四个数中任选两个,从左到右依次增大填入,有C24种.剩余的两个数由上到下,依次增大填入C、D即可.故共有C24=6种不同的填法.答案:A8解析:选2个小球捆在一起看成1个元素,有C24种选法.把3个元素放入3个不同的盒中,有A33种放法.故共有C24·A33种不同的放法.答案:C9 解析:分两类:第一类2号盒内放2个球,有C24种放法(剩余的球放入1号盒内即可);第二类,2号盒内放3个小球,有C34种放法(剩余的球放入1号盒内即可).由分类加法计数原理,共有C24+C34=10种不同的放法.答案:A10解析:由展开式可知a1,a3,a5,a7,a9都小于0,a0,a2,a4,a6,a8都大于0,故|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+a4-a5+a6-a7+a8-a9,只需令x=-1即可得:(1+3)9=a0-a1+a2-a3+a4-a5+a6-a7+a8-a9=49.答案:B11解析:将2次连续命中当作一个整体,和另一次命中插入另外5次不命中留下的6个空档里进行排列有A26种.答案:3012 解析:将其中两名学生视为一个元素,其余二名同学分别视为一个元素,然后将三个元素分配到三所学校,所以不同的保送方案的总数为C 24A 33=36. 答案:3613解析:分3类:当取a 1,a 2时,再取退烧药有C 14种方案;取a 3时,取另一种消炎药的方法有C 12种,再取退烧药有C 13种,共有C 12C 13种方案;取a 4,a 5时,再取退烧药有C 14种方案.故共有C 14+C 12C 13+C 14=14种不同的实验方案. 答案:1414解析:由通项公式可得第5项3164434414---+==n n n nxx xT C C,即n =16,所以中间项是第9项. 答案:915解:每个元件都有通或断两种可能,以m,n,p 表示元件的通断,m,n,p 可取值均为0(表示断),1(表示通),故所有可能情况为(m,n,p)的可能情况共有2×2×2=8种.因为是串联电路,所以一断则断,只要排除全通的情况(m =1,n =1,p =1)即可,所以若灯不亮,则元件R 1,R 2,R 3断路的情况共有8-1=7种. 16解:因为C 4n >C 6n ,所以⎪⎩⎪⎨⎧≥->-,6,)!6(!6!)!4(!4!n n n n n即⎩⎨⎧≥<--.6,01092n n n 所以6≤n <10. 又因为n ∈N *,所以满足不等式的n 的取值为{6,7,8,9}. 17 解:记第r 项系数为T r ,设第k 项系数最大,则有⎩⎨⎧≥≥+-.,11k k k k T T T T 又1182+--•=r r r C T ,那么有⎪⎩⎪⎨⎧•≥••≥•-+--+--+--,22,228118228118kk k k k k k k C C C C 即⎪⎪⎩⎪⎪⎨⎧-•≥⨯-•-⨯-•-≥-•-,)!8(!!82)!9()!1(!8,2)!10()!2(!8)!9()!1(!8k k k k k k k k所以⎪⎩⎪⎨⎧≥--≥-.192,10211kk k k 解得3≤k≤4.所以系数最大的项为第3项257x 和第4项477x .18解:(1)第一步,在2号至6号五天中安排两名主任,有A 25种排法;第二步,剩下五人安排在剩下的五天有A 55种排法,故共有A 25·A 55=2 400种排法.(2)两个部门的人员相间安排,先排4名网络部人员,有A 44种;然后在他们的三个空档中插入三名人事部人员,有A 33种,故共有A 44·A 33=144种排法.(3)把人事部三个人看成一个人,再与网络部4人,有A 55种排法;人事部三个人的内部排列,有A 33种,故共有A 55·A 33=720种排法.(4)不考虑任何限制的排法有A 77,两人中排谁先值班的可能性相同,故有52022177=A种排法.。
第一章 计数原理(时间:120分钟 满分:150分) 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若实数a =2-2,则a 10-2C 110a 9+22C 210a 8-…+210=( ) A .32 B .-32 C .1 024 D .512解析:由题意得a 10-2C 110a 9+22C 210a 8-…+210=(a -2)10,又a =2-2,所以原式=(2-2-2)10=32.答案:A2.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于( ) A .180 B .-180 C .45D .-45解析:依题意知,a 8=C 81022(-1)8=180,故选A. 答案:A3.(2019·某某省八校高三联考)某工厂安排6人负责周一至周六的中午午休值班工作,每天1人,每人值班1天,若甲、乙两人需安排在相邻两天值班,且都不排在周三,则不同的安排方式有( )A .192种B .144种C .96种D .72种解析:因为甲、乙两人都不排在周三,且安排在相邻两天,所以分两类:①甲、乙两人安排在周一,周二,则有A 22·A 44=48种;②甲、乙两人安排在周四,周五,周六中的相邻两天,则有2A 22·A 44=96种,则共有48+96=144(种).答案:B4.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( )A .150种B .180种C .200种D .280种解析:不同的分派方法⎝ ⎛⎭⎪⎫C 25C 23A 22+C 15C 14A 22A 33=150种,故选A.答案:A5.(2019·某某市、某某市部分学校联合模拟)二项式⎝ ⎛⎭⎪⎫ax 2+228的展开式中x 6的系数为562,则⎠⎛1a (x -cos πx )d x =( )A .2B .1C.32D.12 解析:二项式⎝⎛⎭⎪⎫22+ax 28的展开式的通项公式为T r +1=C r 8⎝ ⎛⎭⎪⎫228-r (ax 2)r ,∵2r =6,∴r =3.令r =3,则C 38×⎝⎛⎭⎪⎫225×a 3=562,解得a =2,所以⎠⎛1a (x -cos πx )dx =⎠⎛12(x -cos πx )dx答案:C6.已知6C x -7x -3=10A 2x -4,则x 的值为( ) A .11 B .12 C .13D .14解析:由6C x -7x -3=10A 2x -4,得6·(x -3)(x -4)(x -5)(x -6)4×3×2×1=10·(x -4)(x -5).∴x 2-9x -22=0,∴x =11或x =-2(舍). 答案:A7.(2019·某某一中高二月考)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数为( )A .12B .24C .30D .36解析:因为一种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,所以分两类,第一类,涂前三个圆用三种颜色,有A 33=6种涂法,则涂后三个圆有C 12C 12=4种涂法,共有6×4=24种涂法;第二类,涂前三个圆用两种颜色,则涂后三个圆也用两种颜色,共有C 13C 12=6种涂法.综上,可得不同的涂色方案的种数为24+6=30.答案:C8.设⎝ ⎛⎭⎪⎫3x +1x n 展开式的各项系数之和为M ,其二项式系数之和为N ,若M +N =272,则n 的值为( )A .1B .4C .3 D.12解析:由题意得M =4n ,N =2n. ∵M +N =272,∴4n +2n=272,得n =4. 答案:B9.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是( )A .C 28A 23 B .C 28A 66 C .C 28A 26D .C 28A 25解析:先从后排中抽出2人有C 28种方法,再插空,由题意知,先从4人中的5个空中插入1人,有5种方法,余下1人则要插入前排5人的空中,有6种方法,即抽出的2人插入前排为A 26.共有C 28A 26种调整方法.故选C.答案:C10.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种解析:首先,甲、乙两人同选1门,有4种方法;其次,甲从剩下的3门课中选1门,有3种方法;最后,乙从剩下的2门课中选1门,有2种方法.所以共有4×3×2=24种.答案:C11.若C 3n +123=C n +623(n ∈N *),且(3-x )n =a 0+a 1x +a 2x 2+…+a n x n,则a 0-a 1+a 2-…+(-1)na n =( )A .250B .-250C .256D .-150解析:由C 3n +123=C n +623,得3n +1=n +6或3n +1+n +6=23,∴n =52(舍去)或n =4.令x=-1,则(3-x )n=(3+1)4=a 0-a 1+a 2-a 3+a 4=256.∴a 0-a 1+a 2-…+(-1)na n =256.故选C.答案:C12.由1,2,3,0组成没有重复数字的三位数,其中0不在个位上,则这些三位数的和为( )A .1 320B .1 332C .2 532D .2 544解析:共组成A 33+A 23=12个这样的三位数,个位数有4个3,4个2 ,4个1,和为24;十位数有2个3,2个2,2个1,6个0,和为12;百位数有4个1,4个2,4个3,和为24,∴这些位数的和为2 544,故选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(2019·某某市高三质量预测)已知⎝⎛⎭⎪⎫1x+x 2n的展开式的各项系数和为64,则展开式中x 3的系数为_______________________________________.解析:令x =1,得2n =64,解得n =6,则⎝ ⎛⎭⎪⎫1x+x 26的展开式的通项T r +1=C r 6⎝ ⎛⎭⎪⎫1x 6-r x 2r =C r6x 3r -6,令3r -6=3,得r =3,故x 3的系数为C 36=20.答案:2014.设a ≠0,n 是大于1的自然数,⎝⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n.若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =________.解析:由题图可知a 0=1,a 1=3,a 2=4,由题意知⎩⎪⎨⎪⎧C 1n ·1a=a 1=3,C 2n·1a 2=a 2=4,故⎩⎪⎨⎪⎧n a =3,n (n -1)a 2=8,可得⎩⎪⎨⎪⎧n =9,a =3.答案:315.盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有________种不同的取法(用数字作答).解析:依题意,取盒子中6个小球,可以看作6个小球排成一排,在中间插入挡板,由于每次至少取出一个球,所以最多可以插入5个挡板,即C 05+C 15+C 25+C 35+C 45+C 55=25=32.答案:3216.(2019·某某一中高二月考)将6名报名参加运动会的同学分别安排到跳绳、接力、投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有x 种不同的方案,若每项比赛至少要安排一人,则共有y 种不同的方案,其中x +y 的值为________.解析:6名同学报名参加跳绳、接力、投篮三项比赛,每人只参加一项,每人有3种报名方法,根据分步乘法计数原理可得x =36=729.而每项比赛至少要安排一人时,先分组有C 16C 15C 44A 22+C 16C 25C 33+C 26C 24C 22A 33=90(种),再排列有A 33=6(种),所以y =90×6=540.所以x +y =1 269. 答案:1 269三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)为支援西部开发,需要从8名男干部和2名女干部中任选4人组成支援小组到西部某地支边,要求男干部不少于3人,问有多少种选派方案.解:解法一:男干部有四人时有C 48种选法;男干部有3人时有C 38C 12种选法,故适合条件的选派方案有C 48+C 38C 12=182种.解法二:从10名干部中选4名减去2名女干部全被选中的方案数,共有C 410-C 28C 22=182种.18.(12分)已知(3x 2+3x )n展开式中各项系数的和比它的二项式系数的和大4 032. (1)求展开式中含x 4的项;(2)求展开式中二项式系数最大的项.解:(1)令x =1得展开式各项系数和为4n ,而二项式系数和为C 0n +C 1n +…+C n n =2n, 由题意得4n -2n =4 032,即(2n -64)(2n +63)=0,得2n =64或2n=-63, 又∵n ∈N *,∴2n=64,故n =6,二项展开式的第r +1项为,令12+r 3=4,得r =0,∴展开式中含x 4的项为T 1=30·C 06·x 4=x 4. (2)∵n =6,∴展开式中第4项的二项式系数最大,19.(12分)2名女生和4名男生外出参加比赛活动.(1)他们排成一列照相时,若2名女生必须在一起,有多少种排列方法? (2)他们排成一列照相时,若2名女生不相邻,有多少种排列方法?(3)从这6名学生中挑选3人担任裁判,至少要有1名女生,则有多少种选法? 解:(1)有2A 55=240种. (2)有A 44A 25=480种. (3)有C 36-C 34=16种.20.(12分)求证:1+4C1n+7C2n+10C3n+…+(3n+1)C n n=(3n+2)·2n-1.证明:设S=1+4C1n+7C2n+10C3n+…+(3n+1)C n n,①则S=(3n+1)C n n+(3n-2)C n-1n+…+4C1n+1.②①+②得2S=(3n+2)(C0n+C1n+C2n+…+C n n)=(3n+2)·2n,∴S=(3n+2)·2n-1.21.(12分)带有编号1,2,3,4,5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?解:(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A45种放法.(3)将其中的4个球投入一个盒子里共有C45C14=20种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C25A44种不同的放法.22.(12分)设x10-3=Q(x)(x-1)2+ax+b,其中Q(x)是关于x的多项式,a,b∈R.(1)求a,b的值;(2)若ax+b=28,求x10-3除以81的余数.解:(1)由已知等式,得[(x-1)+1]10-3=Q(x)(x-1)2+ax+b,∴C010(x-1)10+C110(x-1)9+…+C810(x-1)2+C910(x-1)+C1010-3=Q(x)(x-1)2+ax+b,∴[C010(x-1)8+C110(x-1)7+…+C810](x-1)2+10x-12=Q(x)(x-1)2+ax+b,∴10x-12=ax+b.∴a=10,b=-12.(2)∵ax+b=28,即10x-12=28,∴x=4,∴x10-3=410-3=(3+1)10-3=C010×310+C110×39+…+C910×3+C1010-3=34×(C010×36+C110×35+…+C610)+40×34+5×34+28=81(C010×36+C110×35+…+C610+45)+28,∴所求的余数为28.。
选修第一章第课时一、选择题.名同学合影,站成前排人后排人,现摄影师要从后排人中抽人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )....[答案][解析]第一步从后排人中抽人有种抽取方法,第二步前排共有个位置,先从中选取个位置排上抽取的人,有种排法,最后把前排原人按原顺序排在其他个位置上,只有种安排方法,∴共有种排法..从编号为、、、的四种不同的种子中选出种,在块不同的土地上试种,每块土地上试种一种,其中号种子必须试种,则不同的试种方法有( ).种.种.种.种[答案][解析]先选后排=,故选..把、、、、、这六个数,每次取三个不同的数字,把其中最大的数放在百位上排成三位数,这样的三位数有( ).个.个.个.个[答案][解析]先选取个不同的数有种方法,然后把其中最大的数放在百位上,另两个不同的数放在十位和个位上,有种排法,故共有=个三位数..某同学有同样的画册本,同样的集邮册本,从中取出本赠送给位朋友,每位朋友本,则不同的赠送方式共有( ).种.种.种.种[答案][解析]分两类:第一类,取出两本画册,两本集邮册,从人中选取人送画册,则另外两人送集邮册,有种方法.第二类,本集邮册全取,取本画册,从人中选人送画册,其余送集邮册,有种方法,∴共有+=种赠送方法..(·青岛高二检测)从甲、乙等名志愿者中选出名,分别从事,,,四项不同的工作,每人承担一项.若甲、乙二人均不能从事工作,则不同的工作分配方案共有( ).种.种.种.种[答案][解析]解法:根据题意,分两种情形讨论:①甲、乙中只有人被选中,需要从甲、乙中选出人,担任后三项工作中的种,由其他三人担任剩余的三项工作,有=种选派方案.②甲、乙两人都被选中,则在后三项工作中选出项,由甲、乙担任,从其他三人中选出人,担任剩余的两项工作,有··=种选派方案,综上可得,共有+=种不同的选派方案,故选.解法:从甲、乙以外的三人中选一人从事工作,再从剩余四人中选三人从事其余三项工作共有=种选法..如图,用种不同的颜色涂入图中的矩形、、、中,(四种颜色可以不全用也可以全用)要求相邻的矩形涂色不同,则不同的涂法有( ).种.种.种[答案][解析]解法:()种颜色全用时,有=种不同涂色方法.()种颜色不全用时,因为相邻矩形不同色,故必须用三种颜色,先从种颜色中选种,涂入、、中,有种涂法,然后涂,可以与(或)同色,有种涂法,∴共有=种,∴共有不同涂色方法+=种.解法:涂有种方法,涂有种方法,涂有种方法,涂有种方法,故共有×××=种涂法.二、填空题.一排个座位分给人坐,要求任何两人都不得相邻,所有不同排法的总数有种[答案][解析]对于任一种坐法,可视个空位为个人为则所有不同坐法的种数可看作个和的一种编码,要求不得相邻故从个形成的个空档中选个插入即可.∴不同排法有=种..将支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放两支笔,有种放法(用数字作答)[答案][解析]设有,两个笔筒,放入笔筒有四种情况,分别为支,支,支,支,一旦笔筒的放法。
描述:例题:高中数学选修2-3(人教A版)知识点总结含同步练习题及答案第一章计数原理 1.4 计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
1.2.2 组合课时过关·能力提升基础巩固1.C 62+C 75的值为( )A.72B.36C.30D.4262+C 75=6×52×1+7×62×1=15+21=36.2.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案共有( ) A.16种B.36种C.42种D.60种2个城市,则有C 42C 32A 22=36种投资方案;若选择了3个城市,则有C 43A 33=24种投资方案,因此共有36+24=60种投资方案.3.某高校外语系有8名志愿者,其中有5名男生,3名女生,现从中选3人参加某项测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( ) A.45种 B.56种C.90种D.120种,不同的选法种数为C 83−C 53−C 33=45.4.氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则不同的改变方法的种数为 ( )A.210B.126C.70D.357种中取出3种有C 73=35种取法,比如选出a ,b ,c 3种,再都改变位置有b ,c ,a 和c ,a ,b 两种改变方法,故不同的改变方法有2×35=70种.5.在某次数学测验中,学号i (i=1,2,3,4)的四位同学的考试成绩f (i )∈{90,92,93,96,98},且满足f (1)<f (2)≤f (3)<f (4),则这四位同学的考试成绩的所有可能的情况为( ) A.9种 B.5种 C.23种 D.15种6.某书店有11种杂志,2元1本的有8种,1元1本的有3种.小张用10元钱买杂志(每种至多买1本,10元钱刚好用完),则不同买法的种数为 .(用数字作答):(1)买5本2元的买法种数为C 85.(2)买4本2元的、2本1元的买法种数为C 84·C 32.故不同的买法种数为C 85+C 84·C 32=266.7.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 .(用数字作答)0,则可组成没有重复数字的四位数的个数为C 32C 22A 44=72.若选0,则可组成没有重复数字的四位数的个数为C 21C 32C 31A 33=108.则共可组成没有重复数字的四位数的个数为108+72=180.8.从7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有 种.(用数字作答)C 73种方法,第二步安排周日有C 43种方法,故不同的安排方案共有C 73C 43=140种.9.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个.(用数字作答):第一类:个位、十位和百位上各有一个偶数,有C 31A 33+C 32A 33C 41=90个.第二类:个位、十位和百位上共有两个奇数一个偶数,有C 32A 33C 41+C 31C 32A 33C 31=234个,共有90+234=324个.10.8人排成一排,其中甲、乙、丙3人中有2人相邻,问这3人不同时排在一起的排法有多少种?5人有A 55种排法;再从甲、乙、丙3人中选2人排在一起并插入已排好的5人的6个间隔中有C 61A 32种排法,余下的1人可以插入另外5个间隔中有C 51种排法,由分步乘法计数原理知,共有A 55C 61A 32C 51=21 600种排法. 11.(1)求证:C m+2n =C m n +2C m n -1+C m n -2; (2)解:方程:3C x -3x -7=5A x -42.C n+1m =C n m +C n m -1可知,右边=(C m n +C m n -1)+(C m n -1+C m n -2)=C m+1n +C m+1n -1=C m+2n =左边.右边=左边,所以原式成立.3C x -34=5A x -42,即3(x -3)(x -4)(x -5)(x -6)4×3×2×1=5(x-4)(x-5), 所以(x-3)(x-6)=5×4×2=8×5. 所以x=11或x=-2(舍去负根).经检验,x=11符合题意,所以方程的解为x=11.能力提升15.个不同的球放入4个不同的盒子中,每个盒子中至少有一个球,若甲球必须放入A 盒,则不同的放法种数是 ( )A.120B.72C.60D.36A盒后分两类:一类是除甲球外,A盒还放其他球,共A44=24种放法;另一类是A盒中只有甲球,则其他4个球放入另外三个盒中,有C42·A33=36种放法.故总的放法有24+36=60种.2.某科技小组有6名学生,现从中选出3人去参加展览,至少有1名女生入选的不同选法有16种,则该小组中的女生人数为()A.2B.3C.4D.5x人,则女生有(6-x)人.依题意得C63−C x3=16,即x(x-1)(x-2)+16×6=6×5×4.解得x=4,故女生有2人.3.已知一组曲线y=13ax3+bx+1,其中a为2,4,6,8中的任意一个,b为1,3,5,7中的任意一个.现从这些曲线中任取两条,它们在x=1处的切线相互平行的组数为()A.9B.10C.12D.142+b,曲线在x=1处切线的斜率k=a+b.切线相互平行,则需它们的斜率相等,因此按照在x=1处切线的斜率的可能取值可分为五类完成.第一类:a+b=5,则a=2,b=3;a=4,b=1.故可构成两条曲线,有C22组.第二类:a+b=7,则a=2,b=5;a=4,b=3;a=6,b=1.可构成三条曲线,有C32组.第三类:a+b=9,则a=2,b=7;a=4,b=5;a=6,b=3;a=8,b=1.可构成四条曲线,有C42组.第四类:a+b=11,则a=4,b=7;a=6,b=5;a=8,b=3.可构成三条曲线,有C32组.第五类:a+b=13,则a=6,b=7;a=8,b=5.可构成两条曲线,有C22组.故共有C22+C32+C42+C32+C22=14组曲线,它们在x=1处的切线相互平行.4.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于()A.4225B.2225C.275D.475C62=15条直线,如图,其中有6对平行线,所求概率P=12×115×15=475.故选D.5.如图,一只电子蚂蚁在网格线上由原点O(0,0)出发,沿向上或向右方向爬至点(m,n)(m,n∈N*),记可能的爬行方法总数为f(m,n),则f(m,n)=.O出发,只能向上或向右方向爬行,记向上为1,向右为0,则爬到点(m,n)需m个0和n个1.这样爬行方法总数f(m,n)是m个0和n个1的不同排列方法数.m个0和n个1共占(m+n)个位置,m.只要从中选取m个放0即可.故f(m,n)=C m+nmm+n6.如图,工人在安装一个正六边形零件时,需要固定六个位置的螺丝,第一阶段,首先随意拧一个螺丝,接着拧它对角线上的(距离它最远的,下同)螺丝,再随意拧第三个螺丝,第四个也拧它对角线上的螺丝,第五个和第六个以此类推,但每个螺丝都不要拧死;第二阶段,将每个螺丝拧死,但不能连续拧相邻的2个螺丝.则不同的固定方式有种.(用数字作答)7.在如图所示的四棱锥中,顶点为P,从其他的顶点和各棱中点中取3个,使它们和点P在同一平面内,则不同的取法种数为.(用数字作答):第一类,在四棱锥的每个侧面上除点P外任取3点,有4C53种取法;第二类,在两个对角面上除点P外任取3点,有2C43种取法;第三类,过点P的侧棱中,每一条上的三点和与这条棱异面的两条棱的中点也共面,有4C21种取法.因此,满足题意的不同取法共有4C53+2C43+4C21=56种.★8.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,求与信息0110至多有两个对应位置上的数字相同的信息个数.0110至多有两个对应位置上的数字相同的信息包括三类:第一类,与信息0110恰有两个对应位置上的数字相同,即从4个位置中选2个位置相同,其他2个不同有C42=6个信息.第二类,与信息0110恰有一个对应位置上的数字相同,即从4个位置中选1个位置相同,其他3个不同有C41=4个信息.第三类,与信息0110没有一个对应位置上的数字相同,即4个位置中对应数字都不同,有C40=1个信息.由分类加法计数原理知,与信息0110至多有两个对应位置上的数字相同的信息个数为6+4+1=11.★9.在6名内科医生和4名外科医生中,内科主任和外科主任各1名,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生;(3)至少有1名主任参加;(4)既有主任,又有外科医生.先选内科医生有C63种选法,再选外科医生有C42种选法,故选派方法的种数为C63·C42=120.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,易得出选派方法的种数为C61·C44+C62·C43+C63·C42+C64·C41=246.若从反面考虑,则选派方法的种数为C105−C65=246.(3)分两类:一是选1名主任有C21·C84种方法;二是选2名主任有C22·C83种方法,故至少有1名主任参加的选派方法的种数为C21·C84+C22·C83=196.若从反面考虑:至少有1名主任参加的选派方法的种数为C105−C85=196.(4)若选外科主任,则其余可任选,有C94种选法.若不选外科主任,则必选内科主任,且剩余的四人不能全选内科医生,有C84−C54种选法.故有选派方法的种数为C94+C84−C54=191.。
人教版高中数学选修2~3 全册章节同步检测试题目录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3二项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2二项分布及其应用第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应用第3章练习 3.2独立性检验的基本思想及其初步应用第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题一、选择题1.一件工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是( )A.8 B.15 C.16 D.30答案:A2.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有( )A.5种 B.6种 C.7种 D.8种答案:B3.如图所示为一电路图,从A 到B 共有( )条不同的线路可通电( )A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( )A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则李芳有( )种不同的选择方式( ) A.24 B.14 C.10 D.9答案:B6.设A ,B 是两个非空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是( )A.4 B.7 C.12 D.16答案:C二、填空题7.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有 种不同的选法;要买上衣,裤子各一件,共有 种不同的选法.答案:33,2708.十字路口来往的车辆,如果不允许回头,共有 种行车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则方程22()()25x a y b -+-=表示不同的圆的个数是 .答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有 项.答案:1011.如图,从A →C ,有 种不同走法.答案:612.将三封信投入4个邮箱,不同的投法有 种.答案:34三、解答题13.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =⨯=种.14.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中1人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =⨯⨯=种;(3)56644574N =⨯+⨯+⨯=种15.已知集合{}321012()M P a b =---,,,,,,,是平面上的点,a b M ∈,. (1)()P a b ,可表示平面上多少个不同的点?(2)(),可表示多少个坐标轴上的点?P a b解:(1)完成这件事分为两个步骤:a的取法有6种,b的取法也有6种,∴P点个数为N=6×6=36(个);(2)根据分类加法计数原理,分为三类:①x轴上(不含原点)有5个点;②y轴上(不含原点)有5个点;③既在x轴,又在y轴上的点,即原点也适合,∴共有N=5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题一、选择题1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有( )A .30个B .42个C .36个D .35个答案:C2.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有( )A .4种B .5种C .6种D .7种答案:A3.如图,用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有( )A .72种B .48种C .24种D .12种答案:A4.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )A .10种B .52种 C.25种 D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的子集的个数是( ) A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最大边长为11的三角形的个数为( )A.25 B.26 C.36 D.37答案:C二、填空题7.平面内有7个点,其中有5个点在一条直线上,此外无三点共线,经过这7个点可连成不同直线的条数是 .答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直角三角形的个数为 .答案:2(1)n n-9.电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生种不同的信息.答案:25610.椭圆221x ym n+=的焦点在y轴上,且{}{}123451234567m n∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:2011.已知集合{}123A,,,且A中至少有一个奇数,则满足条件的集合A分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题13.用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3410大的四位数有多少个?解:本题可以从高位到低位进行分类.(1)千位数字比3大.(2)千位数字为3:①百位数字比4大;②百位数字为4:1°十位数字比1大;2°十位数字为1→个位数字比0大.所以比3410大的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜色旗子各(3)n n>面,任取其中三面,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗子中不允许有三面相同颜色的旗子,可以有多少种不同的信号?若所升旗子颜色各不相同,有多少种不同的信号?解:1N=3×3×3=27种;227324N=-=种;33216N=⨯⨯=种.15.某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法.解:首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第二类:2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷一.选择题:1.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出一本,则不同的取法共有()(A)37种(B)1848种(C)3种(D)6种2.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出语文、数学、英语各一本,则不同的取法共有()(A)37种(B)1848种(C)3种(D)6种3.某商业大厦有东南西3个大门,楼内东西两侧各有2个楼梯,从楼外到二楼的不同走法种数是()(A) 5 (B)7 (C)10 (D)124.用1、2、3、4四个数字可以排成不含重复数字的四位数有()(A)265个(B)232个(C)128个(D)24个5.用1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A)265个(B)232个(C)128个(D)24个6.3科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有()(A)43种(B)34种(C)4×3×2种(D)1×2×3种7.把4张同样的参观券分给5个代表,每人最多分一张,参观券全部分完,则不同的分法共有()(A)120种(B)1024种(C)625种(D)5种8.已知集合M={l,-2,3},N={-4,5,6,7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是()(A)18 (B)17 (C)16 (D)109.三边长均为整数,且最大边为11的三角形的个数为()(A)25 (B)36 (C)26 (D)3710.如图,某城市中,M、N两地有整齐的道路网,若规定只能向东或向北两个方向沿途中路线前进,则从M到N 不同的走法共有()(A)25 (B)15 (C)13 (D)10二.填空题:11.某书店有不同年级的语文、数学、英语练习册各10本,买其中一种有种方法;买其中两种有种方法.12.大小不等的两个正方形玩具,分别在各面上标有数字1,2,3,4,5,6,则向上的面标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正八边形的三个顶点组成的三角形中,与正八边形有公共边的有个.15.某班宣传小组要出一期向英雄学习的专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A、B、C、D每一部分只写一种颜色,如图所示,相邻两块颜色不同,则不同颜色的书写方法共有种.三.解答题:D CB A16.现由某校高一年级四个班学生34人,其中一、二、三、四班分别为7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人做中心发言,这二人需来自不同的班级,有多少种不同的选法?17.4名同学分别报名参加足球队,蓝球队、乒乓球队,每人限报其中一个运动队,不同的报名方法有几种?[探究与提高]1.甲、乙两个正整数的最大公约数为60,求甲、乙两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线方程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第一象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、 排列综合卷1.90×9l ×92×……×100=( )(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是( )(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于( ) (A )827n A - (B )2734n n A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是( )(A )0 (B )3 (C )5 (D )85.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有( ) (A )24个 (B )30个 (C )40个 (D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有( ) (A )20个 (B )19个 (C )25个 (D )30个7.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有( )(A )12种 (B )18种 (C )24种 (D )96种8.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有( )(A )6种 (B )9种 (C )18种 (D )24种9.有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有( )(A )88A 种 (B )48A 种 (C )44A ·44A 种 (D )44A 种10.有4位学生和3位老师站在一排拍照,任何两位老师不站在一起的不同排法共有( ) (A )(4!)2种 (B )4!·3!种 (C )34A ·4!种 (D )35A ·4!种11.把5件不同的商品在货架上排成一排,其中a ,b 两种必须排在一起,而c ,d 两种不能排在一起,则不同排法共有( )(A )12种 (B )20种 (C )24种 (D )48种 二.填空题::12.6个人站一排,甲不在排头,共有 种不同排法.13.6个人站一排,甲不在排头,乙不在排尾,共有 种不同排法.14.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有 种.15.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的口袋中,但红口袋不能装入红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每人各一本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每人各一本,共有种不同的送法.三、解答题:17.一场晚会有5个唱歌节目和3个舞蹈节目,要求排出一个节目单(1)前4个节目中要有舞蹈,有多少种排法?(2)3个舞蹈节目要排在一起,有多少种排法?(3)3个舞蹈节目彼此要隔开,有多少种排法?18.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合 综合卷一、选择题:1.下列等式不正确的是( ) (A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=-(C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是( )(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11111m m m m n n n n C C C C --+--=++3.方程2551616x x x CC --=的解共有( ) (A )1个 (B )2个 (C )3个 (D )4个4.若372345n n n C A ---=,则n 的值是( )(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男生中挑选3人,4名女生中挑选2人,组成一个小组,不同的挑选方法共有( )(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男生,3个女生中挑选4人参加智力竞赛,要求至少有一个女生参加的选法共有( )(A )12种 (B )34种 (C )35种 (D )340种8.平面上有7个点,除某三点在一直线上外,再无其它三点共线,若过其中两点作一直线,则可作成不同的直线( )(A )18条 (B )19条 (C )20条 (D )21条9.在9件产品中,有一级品4件,二级品3件,三级品2件,现抽取4个检查, 至少有两件一级品的抽法共有( )(A )60种 (B )81种 (C )100种 (D )126种10.某电子元件电路有一个由三节电阻串联组成的回路,共有6个焊点,若其中某一焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有( ) (A )5种 (B )6种 (C )63种 (D )64种 二.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每人教两个班,分配方案共有 种。
第1课时 排列与排列数公式[A 组 学业达标]1.4·5·6·…·(n-1)·n 等于( ) A .A 4n B .A n -4n C .n !-4!D .A n -3n解析:因为A mn =n(n -1)(n -2)…(n-m +1),所以A n -3n =n(n -1)(n -2)…[n-(n -3)+1]=n·(n-1)·(n-2)·…·6·5·4.答案:D2.将5本不同的数学用书放在同一层书架上,则不同的放法有( ) A .50种 B .60种 C .120种D .90种解析:5本书进行全排列,A 55=120种. 答案:C3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有( )A .12种B .24种C .48种D .120种解析:∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A 44=24(种).答案:B4.已知A 2n +1-A 2n =10,则n 的值为( ) A .4 B .5 C .6D .7解析:因为A 2n +1-A 2n =10,则(n +1)n -n(n -1)=10,整理得2n =10,即n =5. 答案:B5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20解析:lg a -lg b =lg a b ,从1,3,5,7,9中任取两个数分别记为a ,b ,共有A 25=20种,其中lg 13=lg3 9,lg31=lg93,故其可得到18种结果.答案:C6.计算A67-A56A45=________.解析:因为A67=7×6×A45,A56=6×A45,所以原式=36A45A45=36.答案:367.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)解析:根据题意,得A240=1 560,故全班共写了1 560条毕业留言.答案:1 5608.8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法.(用数字作答) 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地上,则本题即为从8个不同元素中任选4个元素的排列问题.所以不同的种法共有A48=8×7×6×5=1 680(种).答案:1 6809.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示多少种不同的信号.解析:第1类,挂1面旗表示信号,有A13种不同方法;第2类,挂2面旗表示信号,有A23种不同方法;第3类,挂3面旗表示信号,有A33种不同方法.根据分类加法计数原理,可以表示的信号共有A13+A23+A33=3+3×2+3×2×1=15(种).10.一条铁路线原有n个车站,为了适应客运需要,新增加了2个车站,客运车票增加了58种,问原有多少个车站?现有多少车站?解析:由题意可知,原有车票的种数是A2n种,现有车票的种数是A2n+2种,∴A2n+2-A2n=58,即(n+2)(n+1)-n(n-1)=58.解得n=14.故原有14个车站,现有16个车站.[B组能力提升]11.将3张不同的电影票全部分给10个人,每人至多一张,则不同的分法种数是( )A.1 260 B.120C.240 D.720解析:相当于3个元素安排在10个位置上,共有A310=720种分法,故选D.答案:D12.下列各式中与排列数A mn 相等的是( ) A.n !n -m +1!B .n(n -1)(n -2)…(n-m) C.nA mn -1n -m +1 D .A 1n A m -1n -1 解析:∵A mn =n !n -m !,而A 1n ·A m -1n -1=n·n -1![n -1-m -1]!=n !n -m !,∴A m n =A 1n ·A m -1n -1.答案:D13.满足不等式A 7nA 5n>12的n 的最小值为________.解析:由排列数公式得n !n -5!n -7!n !>12,即(n -5)(n -6)>12,解得n >9或n <2.又n≥7,所以n >9,又n ∈N *,所以n 的最小值为10. 答案:1014.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为________.解析:这四张卡片可组成的四位数是2011、2101、2110、1021、1012、1102、1120、1201、1210共9个. 答案:915.根据要求完成下列各题. (1)计算:A 59+A 49A 610-A 510;(2)解方程 :3A x8=4A x -19.解析:(1)原式=5A 49+A 495A 510-A 510=6A 494A 510=6A 4940A 49=640=320. (2)由排列数公式,原方程可化为3×8!8-x !=4×9!10-x !,化简得3=4×910-x 9-x,即x 2-19x +78=0,解得x 1=6,x 2=13. 因为x≤8,所以原方程的解是x =6.16.(1)求由1,2,3,4这四个数字组成的首位数字是1,且恰有三个相同数字的四位数的个数. (2)从0,1,2,3这四个数字中,每次取出3个不同的数字排成一个三位数,写出其中大于200的所有三位数.解析:(1)本题要求首位数字是1,且恰有三个相同的数字,用树形图表示为:由此可知共有12个.(2)大于200的三位数的首位是2或3,于是大于200的三位数有:201,203,210,213,230,231,301,302,310,312,320,321.第2课时排列的综合应用[A组学业达标]1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法有( ) A.60种B.48种C.36种D.24种解析:把A,B视为一人,且B排在A的右边,则本题相当于4人的全排列,故有A44=24种排法.答案:D2.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A.192种B.216种C.240种D.288种解析:根据甲、乙的位置要求分类解决,分两类.第一类,甲在最左端,有A55=5×4×3×2×1=120(种)方法;第二类,乙在最左端,有4A44=4×4×3×2×1=96(种)方法.所以共有120+96=216(种)方法.答案:B3.5名男生与5名女生排成一排,男生甲与男生乙之间有且只有2名女生,且女生不排在两端,这样的排列种数为( )A.5 760 B.57 600C.2 880 D.28 800解析:先选2名女生放在男生甲与男生乙之间,并捆绑在一起看作一个大元素,从大元素和另外的3名男生中选2个排在两端,剩下的和女生全排列,故有A22·A25·A24·A55=57 600(种)排法.故选B.答案:B4.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个解析:当五位数的万位为4时,个位可以是0,2,此时满足条件的偶数共有2A34=48(个);当五位数的万位为5时,个位可以是0,2,4,此时满足条件的偶数共有3A34=72(个).所以比40 000大的偶数共有48+72=120(个).答案:B5.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种B.18种C.24种D.48种解析:把甲、乙看作1个元素和另一飞机全排列,调整甲、乙,共有A22·A22种方法,再把丙、丁插入到刚才“两个”元素排列产生的3个空位中,有A23种方法,由分步乘法计数原理可得总的方法种数为A22·A22·A23=24.答案:C6.把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析:先将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44种摆法.而A,B,C这3件产品在一起,且A,B相邻,A,C相邻有2A33种摆法.故A,B相邻,A,C不相邻的摆法有A22A44-2A33=36(种).答案:367.从班委会的5名成员中选出3名分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答)解析:文娱委员有3种选法,则安排学习委员、体育委员有A24=12种方法.由分步乘法计数原理知,共有3×12=36种选法.答案:368.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.解析:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其他号码各为一组,分给4人,共有4×A44=96(种).答案:969.分别求出符合下列要求的不同排法的种数.(1)6名学生排3排,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)6人排成一排,甲、乙不相邻.解析:(1)分排与直排一一对应,故排法种数为A66=720.(2)甲不能排头尾,让受特殊限制的甲先选位置,有A14种选法,然后其他5人排,有A55种排法,故排法种数为A14A55=480.(3)甲、乙不相邻,第一步除甲、乙外的其余4人先排好;第二步,甲、乙在已排好的4人的左、右及之间的空位中排,共有A44A25=480(种)排法.10.7名班委中有A,B,C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)若正、副班长两职只能从A,B,C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A,B,C三人中的一人担任,有多少种分工方案?解析:(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步乘法计数原理,知共有A23A55=720(种)分工方案.(2)7人中任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24A55,因此A,B,C三人中至少有一人任正、副班长的方案有A77-A24A55=3 600(种).[B组能力提升]11.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.72解析:第一步,先排个位,有A13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有A13·A44=72(个).答案:D12.航天员在进行一项太空实验时,先后要实施6个程序,其中程序B和C都与程序D不相邻,则实验顺序的编排方法共有( )A.216种B.288种C.180种D.144种解析:当B,C相邻,且与D不相邻时,有A33A24A22=144种方法;当B,C不相邻,且都与D不相邻时,有A33A34=144种方法,故共有288种编排方法.答案:B13.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).解析:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A55种,当C在左边第2个位置时有A24·A33种,当C在左边第3个位置时,有A23·A33+A22·A33种.这三种情况的和为240种,乘以2得480.则不同的排法共有480种.答案:48014.在某艺术馆中展出5件艺术作品,其中不同的书法作品2件,不同的绘画作品2件,标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则展出这5件作品的不同方案有________种.解析:把2件书法作品当作一个元素,与其他3件艺术品进行全排列,有2A44=48种方案.其中,2件绘画作品相邻,有2×2A33=24种方案,则该艺术馆展出这5件作品的不同方案有48-24=24种.答案:2415.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?(1)一个唱歌节目开头,另一个放在最后压台;(2)2个唱歌节目互不相邻;(3)2个唱歌节目相邻且3个舞蹈节目不相邻.解析:(1)先排唱歌节目有A22种排法,再排其他节目有A66种排法,所以共有A22·A66=1 440种排法.(2)先排3个舞蹈节目,3个曲艺节目有A66种排法,再从其中7个空(包括两端)中选2个排唱歌节目,有A27种插入方法,所以共有A66·A27=30 240种排法.(3)把2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A44种排法,再将3个舞蹈节目插入,共有A35种插入方法,最后将2个唱歌节目互换位置,有A22种排法,故所求排法共有A44·A35·A22=2 880种排法.16.从1到9这9个数字中取出不同的5个数进行排列.问:(1)奇数的位置上是奇数的有多少种排法?(2)取出的奇数必须排在奇数位置上有多少种排法?解析:(1)奇数共5个,奇数位置共有3个;偶数共有4个,偶数位置有2个.第一步先在奇数位置上排上奇数共有A35种排法;第二步再排偶数位置,有4个偶数和余下的2个奇数可以排,排法为A26种,由分步乘法计数原理知,排法种数为A35·A26=1 800.(2)因为偶数位置上不能排奇数,故先排偶数位,排法为A24种,余下的2个偶数与5个奇数全可排在奇数位置上,排法为A37种,由分步乘法计数原理知,排法种数为A24·A37=2 520种.第1课时 组合与组合数公式[A 组 学业达标]1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加两个乡镇的社会调查,有多少种不同的选法? ②有4张电影票,要在7人中确定4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种? 其中属于组合问题的个数为( ) A .0 B .1 C .2D .3解析:①与顺序有关,是排列问题;②③均与顺序无关,是组合问题. 答案:C2.计算:C 28+C 38+C 29=( ) A .120 B .240 C .60D .480解析:C 28+C 38+C 29=7×82×1+6×7×83×2×1+8×92×1=120.答案:A3.某校开设A 类选修课3门,B 类选修课5门,一位同学要从中选3门.若要求两类课程中各至少选1门,则不同的选法共有( )A .15种B .30种C .45种D .90种解析:分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有C 13·C 25+C 23·C 15=45(种)选法.答案:C4.方程C x14=C 2x -414的解集为( ) A .{4} B .{14} C .{4,6}D .{14,2}解析:由题意知⎩⎪⎨⎪⎧x =2x -4,2x -4≤14,x≤14,或⎩⎪⎨⎪⎧x =14-2x -4,2x -4≤14,x≤14,解得x =4或6.答案:C5.异面直线a ,b 上分别有4个点和5个点,由这9个点可以确定的平面个数是( ) A .20 B .9 C .C 39D .C 24C 15+C 25C 14解析:分两类:第一类,在直线a 上任取一点,与直线b 可确定C 14个平面;第二类,在直线b 上任取一点,与直线a 可确定C 15个平面.故可确定C 14+C 15=9个不同的平面.答案:B6.某班级要从4名男生、2名女生中派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为________.解析:法一:分类完成.第1类,选派1名女生、3名男生,有C 12·C 34种选派方案;第2类,选派2名女生、2名男生,有C 22·C 24种选派方案.故共有C 12·C 34+C 22·C 24=14(种)不同的选派方案.法二:6人中选派4人的组合数为C 46,其中都选男生的组合数为C 44,所以至少有1名女生的选派方案有C 46-C 44=14(种).答案:147.有4名男医生、3名女医生,从中选出2名男医生、1名女医生组成1个医疗小组,则不同的选法共有________种.解析:从4名男医生中选2人,有C 24种选法,从3名女医生中选1人,有C 13种选法.由分步乘法计数原理知,所求选法种数为C 24C 13=18.答案:188.不等式C 2n -n <5的解集为________. 解析:由C 2n -n <5,得n n -12-n <5,∴n 2-3n -10<0. 解得-2<n <5.由题设条件知n≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}. 答案:{2,3,4}9.(1)解方程:A 3m =6C 4m ; (2)解不等式:C x -18>3C x8. 解析:(1)原方程等价于 m(m -1)(m -2)=6×mm -1m -2m -34×3×2×1,∴4=m -3,解得m =7.(2)由已知得⎩⎪⎨⎪⎧x -1≤8,x≤8,∴x≤8,且x ∈N *,∵C x -18>3C x8,∴8!x -1!9-x !>3×8!x !8-x !.即19-x >3x ,∴x >3(9-x),解得x >274, ∴x =7,8.∴原不等式的解集为{7,8}.10.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备多少不同的素菜品种?解析:设餐厅至少还需准备x 种不同的素菜.由题意,得C 25·C 2x ≥200,从而有C 2x ≥20,即x(x -1)≥40.又x≥2且x ∈N *,所以x 的最小值为7.故餐厅至少还需准备7种不同的素菜.[B 组 能力提升]11.从8名女生和4名男生中,抽取3名学生参加某档电视节目,若按性别比例分层抽样,则不同的抽取方法数为( )A .224B .112C .56D .28 解析:由分层抽样知,应从8名女生中抽取2名,从4名男生中抽取1名,所以抽取2名女生和1名男生的方法数为C 28C 14=112.答案:B12.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( )A .72种B .84种C .120种D .168种 解析:需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯形成的10个空当中,所以关灯方案共有C 310=120(种).答案:C13.方程C x 17-C x 16=C 2x +216的解集是________.解析:因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x +2=16,解得x 1=-3(舍去),x 2=5.答案:{5}14.从4台甲型电视机和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法有________种.解析:根据结果分类:第一类,两台甲型机,有C 24·C 15=30(种);第二类,两台乙型机,有C 14·C 25=40(种).根据分类加法计数原理,共有C 24·C 15+C 14·C 25=70(种)不同的取法.答案:7015.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值.解析:由已知得2C 5n =C 4n +C 6n ,所以2·n !5!n -5!=n !4!n -4!+n !6!n -6!, 整理得n 2-21n +98=0,解得n =7或n =14,要求C 12n 的值,故n≥12,所以n =14,于是C 1214=C 214=14×132×1=91. 16.由13个人组成的课外活动小组,其中5个人只会跳舞,5个人只会唱歌,3个人既会唱歌也会跳舞,若从中选出4个会跳舞和4个会唱歌的人去演节目,共有多少种不同的选法?解析:设既会唱歌也会跳舞的人为“多面手”第一类,选会唱歌的4人无多面手:有C 45C 48=350;第二类,选会唱歌的4人中有一个多面手:有C 35C 13C 47=1 050;第三类,选会唱歌的4人中有2个多面手:有C 25C 23C 46=450;第四类,选会唱歌的4人中有3个多面手:有C 15C 33C 45=25.由分类加法计数原理,共有350+1 050+450+25=1 875种.第2课时组合的综合应用[A组学业达标]1.某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有( )A.140种B.120种C.35种D.34种解析:从7人中选4人共有C47=35(种)方法.又4名全是男生的选法有C44=1(种).故选4人既有男生又有女生的选法种数为35-1=34.答案:D2.平面内有4个红点,6个蓝点,其中只有一个红点和两个蓝点共线,其余任三点不共线,过这十个点中的任两点所确定的直线中,至少过一红点的直线的条数是( )A.28 B.29C.30 D.27解析:可分两类:第一类,红点连蓝点有C14C16-1=23(条);第二类,红点连红点有C24=6(条),所以共有29条.故选B.答案:B3.某科技小组有6名学生,现从中选出3人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为( )A.2 B.3C.4 D.5解析:设男生人数为x,则女生有(6-x)人.依题意:C36-C3x=16.解得x=4,故女生有2人.答案:A4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A.24 B.48C.72 D.96解析:据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可.此时共有A22A24种摆放方法;当1本物理书放在2本语文书一侧时,共有A22A12C12C13种不同的摆放方法.由分类加法计数原理可得共有A22A24+A22A12C12C13=48种摆放方法.答案:B5.将标号分别为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中将标号为1,2的卡片放入同一信封中,则不同的放法共有( )A.12种B.18种C.36种D.54种解析:先将1,2捆绑后放入信封中,有C13种方法,再将剩余的4张卡片放入另外两个信封中,有C24C22种方法,所以共有C13C24C22=18种方法.答案:B6.从7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有________种.(用数字作答)解析:C67C36C33A22·A22=140.答案:1407.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有________种不同的选修方案.(用数字作答)解析:分两类:①A、B、C均不选,有C46=15.②A、B、C中选一门,有C13C36=60.∴共有15+60=75种不同选修方案.答案:758.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有________种.(用数字作答)解析:①不选甲、乙,则N1=A44=24(种).②只选甲,则N2=C34C13A33=72(种).③只选乙,则N3=C34C13A33=72(种).④选甲、乙,则N4=C24A23A22=72(种).故N=N1+N2+N3+N4=240(种).答案:2409.某市工商局对35件商品进行抽样检查,鉴定结果有15件假货,现从35件商品中选取3件.(1)恰有2件假货在内的不同取法有多少种?(2)至少有2件假货在内的不同取法有多少种?(3)至多有2件假货在内的不同取法有多少种?解析:(1)从20件真货中选取1件,从15件假货中选取2件,有C120C215=2 100种不同的取法.所以恰有2件假货在内的不同取法有2 100种.(2)选取2件假货有C120C215种,选取3件假货有C315种,共有C120C215+C315=2 555种不同的取法.(3)任意选取3件的种数为C335,因此符合题意的选取方式有C335-C315=6 090(种).所以至多有2件假货在内的不同的取法有6 090种.10.6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少不同的分法.解析:先分组再分配分三类:第一类,“2,2,2”类(先平均分组再分配)C26C24C22·A33=90(种)A33第二类,“1,2,3”类(先非平均分组再分配)C16C25C33·A33=360(种)第三类,“1,1,4”类(先部分平均分组,再分配)C16C15C44·A33=90(种)A22共有90+360+90=540(种).[B组能力提升]11.如果把个位数是1,且恰好有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有( )A.9个B.3个C.12个D.6个解析:当重复数字是1时,有C13·C13个“好数”;当重复数字不是1时,有C13个“好数”.由分类加法计数原理,得“好数”有C13·C13+C13=12个.答案:C12.现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各三张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同的取法种数为( )A.135 B.172C.189 D.162解析:不考虑特殊情况,共有C312种取法,取三张相同颜色的卡片,有4种取法,只取两张红色卡片(另一张非红色),共有C23C19种取法.所求取法种数为C312-4-C23C19=189.答案:C13.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有________种.解析:当入选的3名队员为2名老队员1名新队员时,有C13C12A22=12种排法;当入选的3名队员为2名新队员1名老队员时,有C12C23A33=36种排法.故共有12+36=48种排法.答案:4814.现有6张风景区门票分配给6位游客,若其中A,B风景区门票各2张,C,D风景区门票各1张,则不同的分配方案共有________种.(用数字作答).解析:从6位游客中选2人去A风景区,有C26种方法,从余下4位游客中选2人去B风景区,有C24种方法,余下2人去C,D风景区,有A22种方法,所以分配方案共有C26C24A22=180(种).答案:18015.从1到6这6个数字中,取2个偶数和2个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,2个偶数排在一起的有几个?(3)2个偶数不相邻的四位数有几个?(所得结果均用数值表示).解析:(1)易知四位数共有C23C23A44=216(个).(2)上述四位数中,偶数排在一起的有C23C23A33A22=108(个).(3)由(1)(2)知两个偶数不相邻的四位数有216-108=108(个).16.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现下列结果:(1)4只鞋子没有成双的;(2)4只鞋子恰有两双;(3)4只鞋子有2只成双,另2只不成双.解析:(1)从10双鞋子中选取4双,有C410种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410×24=3 360(种).(2)从10双鞋子中选2双有C210种取法,即有45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双有C29种选法,每双鞋只取一只各有2种取法,根据分步乘法计数原理,不同取法为N=C110C29×22=1 440种.。
第一章检测(A )(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(x 3+x 2+x+1)(y 2+y+1)(z+1)展开后的不同项数有( )A.9项B.12项C.18项D.24项:第一步,从(x 3+x 2+x+1)中任取一项,有4种方法;第二步,从(y 2+y+1)中任取一项,有3种方法;第三步,从(z+1)中任取一项有2种方法.根据分步乘法计数原理得共有4×3×2=24项.2.下列等式不正确的是( )A .C n m =C n n -mB .C m m +C m m -1=C m+1mC .C 51+C 52+C 53+C 54+C 55=25D .C n+1m =C n m -1+C n -1m +C n -1m -1:C 50+C 51+C 52+C 53+C 54+C 55=25,故C 不正确,而A,B,D 正确.3.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A.8种B.10种C.12种D.32种4.将7名学生分配到甲、乙两间宿舍中,每间宿舍至少安排2名学生,那么互不相同的分配方案共有( )A.252种B.112种C.70种D.56种:甲、乙两间宿舍中一间住4人、另一间住3人或一间住5人、另一间住2人,所以不同的分配方案共有C 73A 22+C 72A 22=35×2+21×2=112种.5.满足a ,b ∈{1,0,1,2},且关于x 的方程ax 2+2x+b=0有实数解的有序数对(a ,b )的个数为( )A.14B.13C.12D.10a=0时,方程变为2x+b=0,则b 为1,0,1,2都有解;当a ≠0时,若方程ax 2+2x+b=0有实数解,则Δ=224ab ≥0,即ab ≤1.当a=1时,b 可取1,0,1,2.当a=1时,b 可取1,0,1.当a=2时,b 可取1,0,故满足条件的有序数对(a ,b )的个数为4+4+3+2=13.6.若C n 1x+C n 2x 2+…+C n n x n 能被7整除,则x ,n 的值可能为( )A.x=4,n=3B.x=4,n=4C.x=5,n=4D.x=6,n=5C n 1x+C n 2x 2+…+C n n x n =(1+x )n 1,分别将选项A,B,C,D 中的值代入检验知,仅有选项C 适合.7.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243B.252C.261D.279C 91C 101C 101=900,而无重复数字的三位数的个数为C 91C 91C 81=648,故所求个数为900648=252,应选B .8.在x (1+x )6的展开式中,含x 3项的系数为( )A.30B.20C.15D.10x 3的项是由(1+x )6展开式中含x 2的项与x 相乘得到,又(1+x )6展开式中含x 2的项的系数为C 62=15,故含x 3项的系数是15.9.设(1+x+x 2)n =a 0+a 1x+…+a 2n x 2n ,则a 2+a 4+…+a 2n 的值为( )A.3nB.3n 2 C .3n -12 D .3n +12x=0,得a 0=1;① 令x=1,得a 0a 1+a 2a 3+…+a 2n =1;② 令x=1,得a 0+a 1+a 2+a 3+…+a 2n =3n , ③ ②+③得2(a 0+a 2+…+a 2n )=3n +1,故a 0+a 2+a 4+…+a 2n =3n +12,再由①得a 2+a 4+…+a 2n =3n -12.10.从正方体ABCDA 1B 1C 1D 1的8个顶点中选取4个作为四面体的顶点,可得到的不同四面体的个数为( )A .C 8412B .C 848 C .C 846D .C 8446个面和6个对角面中,每个面上的四个点不能构成四面体.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.如图所示为一电路图,若只闭合一条线路,从A 处到B 处共有 条不同的线路可通电.,上线路中有3条,中线路中有一条,下线路中有2×2=4条.根据分类加法计数原理,共有3+1+4=8条不同的线路.12.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 .(用数字作答):第一类,7级台阶上每一级只站一人,则有A 73种;第二类,若有一级台阶有2人,另一级有1人,则共有C 31A 72种.因此共有不同的站法种数是A 73+C 31A 72=336.13.若(x √x 3)8的展开式中x 4的系数为7,则实数a= .(x √x3)8的通项为C 8r x 8r a r (x -13)r =C 8r a r x 8r x -r 3=C 8r a r x 8-r -r 3, ∴令8r r 3=4, 解得r=3.∴C 83a 3=7,得a=12.14.C 1702C 171+4C 1728C 173+…+(217C 1717)= .=(12)17=(1)17=1.15.若4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻的站法有 .(用数字作答)3名教师中任取2名作为一个整体排列,共有A 32种方法,然后排4名学生共有A 44种方法,把2名教师组成的整体和另外一名教师安排在4名学生隔成的五个空中,有A 52种排法,故共有不同的站法种数为A 32·A 44·A 52=2 880.种三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)设集合M={2,1,0,1,2,3},P (a ,b )是坐标平面上的点,a ,b ∈M.(1)P 可以表示多少个第四象限内的点?(2)P 可以表示多少个不在直线y=x 上的点?分两步,第一步确定横坐标有3种,第二步确定纵坐标有2种,根据分步乘法计数原理得点的个数为N=3×2=6.(2)分两步,第一步确定横坐标有6种,第二步确定纵坐标有5种,根据分步乘法计数原理得点的个数为N=6×5=30.17.(8分)球台上有4个黄球、6个红球,击黄球入袋记2分,红球入袋记1分.求将此10球中的4球击入袋中,但总分不低于5分的击球方法有多少种?x 个,红球y 个符合要求.则有{x +y =4,2x +y ≥5,x ,y ∈N .解得{x =1,y =3或{x =2,y =2或{x =3,y =1或{x =4,y =0.对应每组解(x ,y ),击球方法数分别为C 41C 63,C 42C 62,C 43C 61,C 44C 60,所以不同的击球方法种数为C 41C 63+C 42C 62+C 43C 61+C 44C 60=195.18.(9分)有大小、形状、质地相同的6个球,其中3个一样的黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?1个、2个、3个黑球进行分类求解.:(1)若取1个黑球,和另三个球排4个位置,不同的排法种数为A 44=24;(2)若取2个黑球,从另三个球中选2个排4个位置,2个黑球是相同的,自动进入,不需要排列,即不同的排法种数为C 32A 42=36;(3)若取3个黑球,从另三个球中选 1个排4个位置,3个黑球是相同的,自动进入,不需要排列,即不同的排法种数为C 31A 41=12.综上,不同的排法种数为24+36+12=72.19.(10分)求证:(1)4×6n +5n+19是20的倍数(n ∈N *);(2)3n 2n ≥n ·2n 1(n ∈N *).(1)4×6n +5n+19=4×(5+1)n +5×(4+1)n 9=4(C n 05n +C n 15n 1+…+C n n -15+1)+5(C n 04n +C n 14n 1+…+C n n -14+1)9=20[(C n 05n 1+C n 15n 2+…+C n n -1)+(C n 04n 1+C n 14n 2+…+C n n -1)],故结论成立.(2)∵3n 2n ≥n ·2n 1⇔3n ≥n ·2n 1+2n =2n 1(n+2),①当n=1时,①式左边=31=3,右边=211×(1+2)=3,∴3n =2n 1(n+2).当n ≥2时,3n =(2+1)n =2n +C n 12n 1+C n 22n 2+…+C n n >2n +n ·2n 1=2n 1(2+n ). 综上,对一切n ∈N *,不等式3n ≥2n 1(2+n )成立,即3n 2n ≥n ·2n 1(n ∈N *)恒成立.20.(10分)已知(x2√x )n 的展开式中前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.,利用等差中项的性质即可求出n 的值;所谓系数最大的项,即只要某一项的系数不小于与它相邻的两项的系数即可,这是由二项式系数的增减性决定的.由题意,得C n 0+14×C n 2=2×12×C n 1, 即n 29n+8=0,解得n=8,n=1(舍去). (2)设第r+1项的系数最大,则{12r C8r≥12r+1C8r+1,1 2r C8r≥12r-1C8r-1,即{18-r ≥12(r+1),1 2r ≥19-r,解得r=2或r=3.所以系数最大的项为T3=7x5,T4=7x 7 2.。
1.3 二项式定理1.3.1 二项式定理课时过关·能力提升基础巩固1.(x-y )n 的二项展开式中,第r 项的二项式系数为( )A .C n rB .C n r+1 C .C n r -1 D.(-1)r-1C n r -1T r =C n r -1x n+1-r ·(-y )r-1,则第r 项的二项式系数为C n r -1.2.(x √x 3)12展开式中的常数项为( ) A.-1 320 B.1 320 C.-220 D.220k+1=C 12k ·x 12-k ·(-1√x 3)k =(-1)k C 12k x 12-43k ,令12-43k=0,得k=9.故T 10=(-1)9C 129=-220.3.(2x +1x2)7的展开式中倒数第3项的系数是( ) A .C 76·2B .C 76·26 C .C 75·25D .C 75·22+1x 2)7的展开式中倒数第3项为二项展开式中的第6项,而T 6=C 75·(2x )2·(1x 2)5=C 75·22·x -8.该项的系数为C 75·22.4.S=(x-1)4+4(x-1)3+6(x-1)2+4x-3,则S=( )A.x 4B.x 4+1C.(x-2)4D.x 4+4(x-1)4+4(x-1)3+6(x-1)2+4(x-1)+1=C 40(x-1)4+C 41(x-1)3+C 42(x-1)2+C 43(x-1)+C 44=[(x-1)+1]4=x 4,故选A .5.(√x 3+a x )12的展开式中的常数项为-220,则a 的值为( )A.1B.-1C.2D.-2k+1=C 12k ·x 12-k 3-k ·a k .∵T k+1为常数项,∴12-k 3-k=0, ∴k=3.∴C 123·a 3=-220,∴a=-1.6.(x -1x )5的展开式中含x 3项的二项式系数为( )A.-10B.10C.-5D.5k+1=C 5k ·x 5-k (-1x )k =(-1)k C 5k ·x 5-2k ,令5-2k=3,则k=1.故含x 3项的二项式系数为C 51=5.7.(x 32√x )5的展开式中x 8的系数是 .(用数字作答)T k+1=C 5k ·(x 3)5-k ·(2√x )k =C 5k ·2-k ·x 15-72k (k=0,1,2,…,5).令15-72k=8,得k=2,于是展开式中x 8项的系数是C 52·2-2=52.8.若A=37+C 72·35+C 74·33+C 76·3,B=C 71·36+C 73·34+C 75·32+1,则A-B= .37-C 71·36+C 72·35-C 73·34+C 74·33-C 75·32+C 76·3-C 77=(3-1)7=27=128.9.在(2x 2√x 3)8的展开式中,求: (1)第5项的二项式系数及系数;(2)x 2的系数.因为T 5=C 84(2x 2)4(√x3)4=C 8424·x 203,所以第5项的二项式系数是C 84=70,第5项的系数是C 84·24=1 120. (2)(2x 2√x 3)8的通项是 T k+1=C 8k (2x 2)8-k (-1√x3)k =(-1)k C 8k ·28-k ·x 16-73k , 根据题意得,16-73k=2,解得k=6,因此x 2的系数是(-1)6C 86·28-6=112.10.求证:32n+3-24n+37能被64整除.2n+3-24n+37=3×9n+1-24n+37=3(8+1)n+1-24n+37=3(C n+10·8n+1+C n+11·8n +…+C n+1n ·8+1)-24n+37=3×64(C n+10·8n-1+C n+11·8n-2+…+C n+1n -1)+24C n+1n -24n+40=64×3(C n+10·8n-1+C n+11·8n-2+…+C n+1n -1)+64.显然上式是64的倍数,故原式可被64整除.能力提升1.对任意实数x ,有x 3=a 0+a 1(x-2)+a 2(x-2)2+a 3(x-2)3,则a 2的值是( )A.3B.6C.9D.21x 3=[2+(x-2)]3=C 30·23+C 31·22·(x-2)+C 32·2·(x-2)2+C 33(x-2)3.所以a 2=C 32·2=6.2.若(1+√2)5=a+b √2(a ,b 为有理数),则a+b 等于( )A.45B.55C.70D.80,得(1+√2)5=1+C 51·√2+C 52·(√2)2+C 53·(√2)3+C 54·(√2)4+C 55·(√2)5=1+5√2+20+20√2+20+4√2=41+29√2,即a=41,b=29,故a+b=70.3.(1-√x )6(1+√x )4的展开式中x 的系数是( )A.-4B.-3C.3D.4:(1-√x )6的展开式的通项为C 6m (-√x )m ,(1+√x )4的展开式的通项为C 4n (√x )n ,其中m=0,1,2,…,6;n=0,1,2,3,4.令m +n=1,得m+n=2,于是(1-√x )6(1+√x )4的展开式中x 的系数等于C 60·(-1)0·C 42+C 61·(-1)1·C 41+C 62·(-1)2·C 40=-3. 方法二:(1-√x )6(1+√x )4=[(1-√x )(1+√x )]4·(1-√x )2=(1-x )4(1-2√x +x ).于是(1-√x )6(1+√x )4的展开式中x 的系数为C 40·1+C 41·(-1)1·1=-3.4.设a ∈Z ,且0≤a<13,若512 016+a 能被13整除,则a 等于( )A.0B.1C.11D.12,得512 016+a=a+(1-13×4)2 016=a+1-C 2 0161(13×4)+C 2 0162(13×4)2-…+C 2 0162 016(13×4)2 016,显然当a+1=13k (k ∈Z )时,512 016+a 能被13整除.又0≤a<13,则a=12.5.若x>0,设(x 2+1x )5的展开式中的第3项为M ,第4项为N ,则M+N 的最小值为 .T 3=C 52·(x 2)3(1x )2=54x , T 4=C 53·(x 2)2·(1x )3=52x ,则M+N=5x 4+52x ≥2√258=5√22. 当且仅当5x 4=52x ,即x=√2时,等号成立.6.二项式(√x -2√x 3)10的展开式中,常数项的值为 .★7.已知(ax+1)n =a n x n +a n-1x n-1+…+a 2x 2+a 1x+a 0(x ∈N *),点A i (i ,a i )(i=0,1,2,…,n )的部分图象如图,则a= .T k+1=C n k (ax )n-k =a n-k ·C n k x n-k ,由题图可知a 1=3,a 2=4,即a C n n -1=3,且a 2C n n -2=4,化简得na=3,且n (n -1)a 22=4,解得a=13.★8.(1)求(1+x )2(1-x )5的展开式中x 3的系数;(2)已知(x √x +2√x 3)n展开式的前三项系数的和为129,这个展开式中是否含有常数项?一次项?如果没有,请说明理由;如果有,请求出来.+x )2的通项为T r+1=C 2r ·x r ,(1-x )5的通项为T k+1=(-1)k ·C 5k x k ,其中r ∈{0,1,2},k ∈{0,1,2,3,4,5},令k+r=3,则有k=1,r=2;k=2,r=1;k=3,r=0.故x 3的系数为-C 22C 51+C 21C 52−C 20C 53=5.(2)展开式的通项为T k+1=C n k (x √x )n-k ·(2√x 3)k=C n k ·2k ·x 9n -11k 6(k=0,1,2,…,n ),由题意,得C n 020+C n 12+C n 222=129.所以1+2n+2n (n-1)=129,则n 2=64,即n=8.故T k+1=C 8k ·2k ·x 72-11k 6(k=0,1,2,…,8),若展开式存在常数项,则72-11k 6=0, 解:之,得k=7211∉Z ,所以展开式中没有常数项.若展开式中存在一次项,则72-11k 6=1, 即72-11k=6,所以k=6.所以展开式中存在一次项,它是第7项,T 7=C 8626x=1 792x.★9.已知f (x )=(1+x )m ,g (x )=(1+2x )n (m ,n ∈N *).(1)若m=3,n=4,求f (x )g (x )的展开式含x 2的项;(2)令h (x )=f (x )+g (x ),h (x )的展开式中x 的项的系数为12,当m ,n 为何值时,含x 2的项的系数取得最小值?当m=3,n=4时,f (x )g (x )=(1+x )3(1+2x )4.(1+x )3展开式的通项为C 3k x k ,(1+2x )4展开式的通项为C 4k (2x )k ,f (x )g (x )的展开式含x 2的项为1×C 42(2x )2+C 31x ×C 41(2x )+C 32x 2×1=51x 2.(2)h (x )=f (x )+g (x )=(1+x )m +(1+2x )n .因为h (x )的展开式中x 的项的系数为12,所以C m 1+2C n 1=12,即m+2n=12,所以m=12-2n.x 2的系数为C m 2+4C n 2=C 12-2n 2+4C n 2=12(12-2n )(11-2n )+2n (n-1) =4n 2-25n+66=4(n -258)2+43116,n ∈N *,所以当n=3,m=6时,x 2的项的系数取得最小值.。
第一章计数原理
阶段通关训练
(60分钟100分)
一、选择题(每小题5分,共30分)
1.由0,1,2,3,…,9十个实数和一个虚数单位i可以组成虚数的个数为( )
A.100
B.10
C.9
D.90
【解析】选D.复数a+bi(a,b∈R)为虚数,则a有10种可能,b有9种可能,共10×9=90种可能.
2.如图,在由开关组A与B所组成的并联电路中,接通电源,每次只能闭合一个开关,则能使电灯发光的方法种数为( )
A.6
B.5
C.30
D.1
【解析】选B.只要合上图中任一开关,电灯就会发光,开关组A中有2个开关;开关组B中有3个开关,由分类加法计数原理得共有2+3=5种方法.
【补偿训练】(2017·临汾高二检测)如图所示为一电路图,从A到B共有________条不同的串联电路线路可通电.
【解析】按上、中、下三条线路可分为三类:上线路中有3条,中线路中有1条,下线路中有2×2=4(条),根据分类加法计数原理,共有3+1+4=8(条).
答案:8
3.(2017·郑州高二检测)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )
A.36种
B.48种
C.96种
D.192种
【解析】选C.不同的选修方案共有··=96种,故选C.
4.若=6,则n的值为( )
A.6
B.7
C.8
D.9
【解析】选B.=6·,
解得n-3=4,n=7.
5.如图所示,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多的栽种方案有( )
A.180种
B.240种
C.360种
D.420种
【解析】选D.由题意知,最少用三种颜色的花卉,按照花卉选种的颜色可分为三类方案,即用三种颜色,四种颜色,五种颜色.
①当用三种颜色时,花池2,4同色和花池3,5同色,此时共有种方案.
②当用四种颜色时,花池2,4同色或花池3,5同色,故共有2种方案.
③当用五种颜色时有种方案.
因此所有栽种方案为+2+=420(种).
6.(2017·常德高二检测)+++…+除以9的余数是( )
A.7
B.0
C.3
D.-2
【解析】选A.原式=+++…+-
=(1+1)33-1
=233-1
=811-1
=(9-1)11-1
=911-910+…+9--1
=×911-×910+…+×9-2
=9M+7(M为整数).
故余数为7.
二、填空题(每小题5分,共20分)
7.(2017·青岛高二检测)若的展开式中x3的系数为,则常数a的值为__________.
【解析】T k+1=
=(-1)k·a9-k·,
令-9=3,得k=8,
所以(-1)8a·=a=,
所以a=4.
答案:4
8.(2016·全国卷Ⅰ)(2x+)5的展开式中,x3的系数是________.(用数字填写答案)
【解析】设展开式的第k+1项为T k+1,k∈{0,1,2,3,4,5},
所以T k+1=(2x)5-k()k=25-k.
当5-=3时,k=4,
即T5=25-4=10x3.
答案:10
9.现有高三(1)班参加校文艺演出的3男3女共6位同学,从左至右站成一排合影留念,要求3位女生有且只有两个相邻,则不同的排法有________种.
【解析】先将3位女生分成两组,再将3位男生排成一排,用插空法将两组女生插入男生间(包含两端)空隙
中,共有···=432(种).
答案:432
10.用红、黄、蓝3种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如图所示),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有__________种.
【解析】分三步进行涂色,第一步,给标号为1,5,9的小正方形涂色,有3种颜色可供选择.第二步,给标号为2,3,6的小正方形涂色:①若标号为3的小正方形的颜色与标号为1,5,9的小正方形的颜色相同,则标号为2,6的小正方形的颜色选择各有2种,根据分步乘法计数原理,其涂色方法有1×2×2=4(种);②若标号为3的小正方形的颜色与标号为1,5,9的小正方形的颜色不同,则标号为3的小正方形的颜色选择有2种,标号为2,6的小正方形的颜色选择各有1种,根据分步乘法计数原理,其涂色方法有:2×1×1=2(种).综上所述,标号为2,3,6的小正方形涂色方法共有4+2=6(种).第三步,给标号为4,7,8的小正方形涂色,其涂色方法与标号为2,3,6的小正方形的涂色方法相同,也有6种.故根据分步乘法计数原理,符合条件的所有涂法共有3×6×6=108(种).
答案:108
三、解答题(共4小题,共50分)
11.(12分)现有6本书,如果
(1)分成三组,一组3本,一组2本,一组1本.
(2)分给三个人,一人3本,一人2本,一人1本.
分别求分法种数.
【解析】(1)分三步完成:第一步,从6本书中取3本,有种取法;第二步,从剩下的3本中取2本,有种取法,第三步,剩下1本为一组,共有分法=60(种).
(2)分给三人,由于哪个人得多少本书没有限制,所以可先按(1)的方法将书分组,再分配到人的方法,共有
=360(种).
12.(12分)一个口袋内有4个不同的红球,6个不同的白球.
(1)从中任取4个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?
【解析】(1)将取出4个球分成三类情况:
①取4个红球,没有白球,有种;
②取3个红球,1个白球,有种;
③取2个红球,2个白球,有种,
故有++=115种.
(2)设取x个红球,y个白球,
则
故或或
因此,符合题意的取法种数有
++=186种.
13.(13分)(1)求(1+2x)7的展开式中的第4项的系数.
(2)求的展开式中x3的系数.
【解析】(1)展开式的第4项为
T4=(2x)3=280x3,
所以第4项的系数是280.
(2)设展开式的第k+1项为含x3的项,则
T k+1=x9-k=x9-2k,
所以9-2k=3,k=3.
即展开式中的第4项含x3,其系数为=84.
14.(13分)(2017·烟台高二检测)已知的展开式中,只有第六项的二项式系数最大.
(1)求该展开式中所有有理项的项数.
(2)求该展开式中系数最大的项.
【解析】(1)由题意可知:+1=6,所以n=10.
所以T r+1=2r x-2r=2r(0≤r≤10,且r∈N),
要求该展开式中的有理项,只需令∈Z,
所以r=0,2,4,6,8,10,所有有理项的项数为6项.
(2)设第T r+1项的系数最大,
则即
解得:≤r≤,
因为r∈N,得r=7.
所以展开式中的系数最大的项为
T8=27=15360.
【能力挑战题】
由四个不同的数字1,2,4,x组成无重复数字的三位数.
(1)若x=5,其中能被5整除的共有多少个?
(2)若x=9,其中能被3整除的共有多少个?
(3)若x=0,其中的偶数共有多少个?
(4)若所有这些三位数的各位数字之和是252,求x.
【解析】(1)若x=5,则四个数字为1,2,4,5;
又由要求的三位数能被5整除,则5必须在末尾,
在1,2,4三个数字中任选2个,放在前2位,有=6种情况,
即能被5整除的三位数共有6个.
(2)若x=9,则四个数字为1,2,4,9;
又由要求的三位数能被3整除,则这三个数字为1,2,9或2,4,9,
取出的三个数字为1,2,9时,有=6种情况,
取出的三个数字为2,4,9时,有=6种情况,
则此时一共有6+6=12个能被3整除的三位数.
(3)若x=0,则四个数字为1,2,4,0;
又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,
当末位是0时,在1,2,4三个数字中任选2个,放在前2位,有=6种情况,
当末位是2或4时,有××=8种情况,
此时三位偶数一共有6+8=14个,
(4)若x=0,可以组成××=3×3×2=18个三位数,即1,2,4,0四个数字最多出现18次, 则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,
故x=0不成立;
当x≠0时,可以组成无重复三位数共有××=4×3×2=24种,共用了24×3=72个数字, 则每个数字用了=18次,则有252=18×(1+2+4+x),解可得x=7.。