PWM技术
- 格式:doc
- 大小:1.75 MB
- 文档页数:25
四种pwm控制技术的原理
PWM(Pulse Width Modulation,脉宽调制)是一种常用的数字控制技术,用于实现模拟信号的精确控制。
它通过改变信号的脉冲宽度来控制信号的平均电压或电流。
下面是四种常见的PWM控制技术及其原理:
1. 占空比控制:占空比是PWM信号高电平与周期之比。
通过改变占空比可以控制输出信号的平均电压或电流。
占空比越大,输出信号的平均电压或电流越大;占空比越小,输出信号的平均电压或电流越小。
这种方法简单易行,适用于许多应用场合。
2. 脉冲数改变:这种方法通过改变PWM信号每个周期中的脉冲数来控制输出信号的平均电压或电流。
脉冲数越多,输出信号的平均电压或电流越大;脉冲数越少,输出信号的平均电压或电流越小。
脉冲数改变时,周期保持不变。
这种方法常用于需要精确控制输出信号的平均电压或电流的应用。
3. 频率调制:这种方法通过改变PWM信号的频率来控制输出信号的平均电压或电流。
频率越高,输出信号的平均电压或电流越大;频率越低,输出信号的平均电压或电流越小。
输出的平均功率受频率的影响最小,可以实现高效的能量转换。
频率调制一般使用较高的固定占空比。
4. 相位移控制:这种方法通过改变PWM信号相位来控制输出信号的平均电压或电流。
相位移正比于输出信号的平均电压或电流。
相位移控制可以实现交流电源的电压或电流控制,广泛应用于电网有功功率控制和无功功率控制。
这四种PWM控制技术可以根据具体应用的需要选择合适的方式,以实现对输出信号的精确控制。
PWM(脉宽调制)是一种控制信号的技术,通过调整信号的脉冲宽度来实现对电路或设备的驱动。
PWM驱动常被用于直流电机驱动、LED亮度调节、音频放大器等应用中。
PWM驱动的原理如下:
1. 基本概念:PWM信号由一个固定的周期和一个可变的脉冲宽度组成。
周期表示一个完整的PWM信号循环所持续的时间,脉冲宽度则表示脉冲信号的高电平持续的时间。
2. 控制信号生成:PWM信号是由一个控制器或微控制器生成的。
控制器通过计算或根据输入的模拟信号,生成具有相应脉冲宽度的PWM信号。
3. 周期和频率:PWM信号的周期是固定的时间间隔,在设计中可以根据需要进行选择。
频率是指PWM信号每秒钟循环的次数,是周期的倒数。
4. 脉冲宽度调节:脉冲宽度决定了PWM信号的占空比,即高电平和周期之间的比例关系。
脉冲宽度决定了驱动电路的输出电平和功率。
通过调节脉冲宽度的比例可以控制输出电路的平均电压或功率。
5. 低通滤波:PWM信号在驱动输出电路中,通常通过一对开关进行控制。
由于PWM信号的高频特性,开关的开关电流会产生高频噪声。
为了去除这些噪声,通常使用低通滤波器对PWM信号进行滤波,得到平滑的模拟输出。
通过改变PWM信号的脉冲宽度,可以控制输出电路的电平或功率,实现对电路或设备的精确驱动。
PWM驱动具有高效率、精度高、响应快和容易实现的优点,在诸多应用中被广泛应用。
现代电力电子及变流技术第四章脉宽调制(PWM)技术脉宽调制技术:按同一比例改变在ur 和uc交点时刻控制IGBT 的通断u r 和uc的点时刻制IGBT 的通断控制公用三角波载波uc 三相的调制信号依次u c u rW单相逆变器结构特点电路结构特征:2个桥臂输出电压:ab ag bg V V V =−结构分析:�每个桥臂存在2个开关状态—桥臂上开关通(用S a =1描述);—桥臂下开关通(用S a =0描述)。
�逆变器共有4种开关状态—S a S b :00,01,10,11。
开关状态与电压的关系4.5 4.5 SVPWMSVPWM 的原理及实现结构特点�两个桥臂电压V ag 和V bg 分别独立可控——控制存在两个自由度;�由于连接了负载,输出电压V ab 具有唯一性——只有一个自由度。
如何分析两维的桥臂电压和一维的输出电压之间的联系?几何分析方法矢量空间�桥臂电压构成两维空间,两个自由度分别代表两个垂直方向——桥臂电压空间;�输出电压只有一个自由度,构成一维空间 ——输出电压空间。
4.5 4.5 SVPWMSVPWM 的原理及实现桥臂电压和输出电压的联系�采用投影方式建立联系;�开关状态(00),(11)形成的两个桥臂电压——对应一个输出电压(0V)。
这一投影具有唯一性投影关系ag ab bg 01111V V V V −⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦V 0是零序电压*11ag 22ab 11bg 220*V V V V ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦逆变器控制方法V 0*为一定范围的任意数注:V 0*取常数(如V i )时,Vag 和Vbg 的驱动波形可以设计。
例:V ab *取0.5V i , V 0*取V iV ag 取0.75V i , V bg 取0.25V ia 桥臂上管b 桥臂下管b 桥臂上管a 桥臂下管4.5 4.5 SVPWMSVPWM 的原理及实现V 0*取其他值会怎样? V 0*有没有一个取值原则?4.5 4.5 SVPWMSVPWM 的原理及实现三相逆变器结构特点结构特征:3个桥臂电路特征:()ng ag bg cg 3V V V V =++结构分析:�每个桥臂存在2个开关状态—桥臂上开关通(用S a =1描述);—桥臂下开关通(用S a =0描述)。
pwm脉宽调制原理
PWM脉宽调制原理
PWM,即脉宽调制(Pulse Width Modulation),是一种通过控制信号的脉冲宽度来实现模拟信号的技术。
在电子领域中,PWM技术被广泛应用于控制系统、变频调速、电源供应等方面。
PWM脉宽调制原理基本上可以概括为通过改变信号的占空比来控制输出信号的电压或功率。
在PWM脉宽调制中,信号的周期是固定的,而脉冲的宽度则根据控制信号的变化而改变。
通过控制脉冲的宽度,可以实现对输出信号的精确控制。
通常情况下,信号的占空比被定义为脉冲的宽度与周期的比值,通常以百分比表示。
PWM脉宽调制技术的原理可以简单地解释为:当信号的占空比增大时,输出信号的电压或功率也会随之增大;反之,当信号的占空比减小时,输出信号的电压或功率也会相应减小。
因此,通过改变信号的占空比,可以实现对输出信号的精确控制。
在实际应用中,PWM脉宽调制技术被广泛应用于电子设备中,如直流电机的调速控制、逆变器的控制、电源供应的调节等。
通过PWM 技术,可以实现对电子设备的精确控制,提高系统的稳定性和效率。
除了在电子设备中的应用外,PWM脉宽调制技术还被广泛应用于照明领域。
通过调节LED灯的PWM信号,可以实现对灯光的亮度和
颜色的精确控制,实现节能和环保的效果。
总的来说,PWM脉宽调制技术是一种非常有效的控制技术,可以广泛应用于电子设备、照明领域等各个领域。
通过控制信号的脉冲宽度,可以实现对输出信号的精确控制,提高系统的稳定性和效率。
PWM技术的不断发展和应用将为电子领域带来更多的创新和发展。
伺服控制器的PWM调制技术介绍伺服控制器是现代自动控制系统中关键的设备,它能够通过对电机的控制来实现精确定位和稳定控制。
在伺服控制器中,PWM调制(Pulse Width Modulation)技术起到了重要作用。
本文将介绍PWM调制技术在伺服控制器中的原理和应用。
1. PWM调制技术原理PWM调制技术是通过改变脉冲宽度来调制输出信号的技术。
在伺服控制器中,PWM调制技术主要应用于控制电机的输出功率。
通过改变PWM信号的占空比(高电平持续时间与一个周期的比值),控制电机的转速和输出扭矩。
PWM调制技术的原理是利用周期性的方波信号和一个可调节的调制信号进行运算。
当调制信号的幅值小于方波信号的幅值时,输出信号的占空比小于50%,电机输出功率较低;当调制信号的幅值等于方波信号的幅值时,输出信号的占空比等于50%,电机输出功率最大;当调制信号的幅值大于方波信号的幅值时,输出信号的占空比大于50%,电机输出功率较高。
2. PWM调制技术的优势PWM调制技术在伺服控制器中具有以下的优势:(1)高效率:由于PWM信号是脉冲宽度可调的方波信号,可以通过改变占空比来调节输出功率,从而提高电机的效率。
在低负载情况下,可以通过降低占空比来减少功耗。
(2)精确控制:PWM调制技术可以通过改变脉冲占空比来控制电机的转速和输出扭矩,并且调制信号的幅值可以实时调整。
这种精确的控制能够满足不同应用场景对电机性能的要求。
(3)稳定性高:PWM调制信号具有高频率和快速响应的特点,能够提供稳定的输出信号。
在伺服控制系统中,稳定性是非常重要的,可以保证系统的可靠性和精准性。
(4)电磁兼容性好:PWM调制信号是数字信号,频率比较高,能够有效地抑制电磁干扰。
这对于电机控制系统而言,尤为重要,可以减少电磁干扰对其他设备的影响。
3. PWM调制技术的应用PWM调制技术在伺服控制器中有着广泛的应用。
下面介绍几个常见的应用场景:(1)速度控制:通过改变PWM信号的占空比,实现对电机速度的精确控制。
pwm的两个参数
PWM(脉宽调制)是现代电子产品中广泛应用的一种信号控制技术,它是通过控制信号的高电平时间和低电平时间的比例来实现对电子设备的控制。
PWM有两个重要参数,分别是频率和占空比,下面我们将详细介绍这两个参数及其作用。
一、PWM的频率
PWM的频率指的是PWM信号在单位时间内的震荡次数,单位为赫兹(Hz)。
PWM信号频率越高,它所携带的信息就越多,控制的精度也越高。
然而,频率也不能太高,因为高频率会导致噪声和能量损耗增加,同时还会增加硬件复杂度和成本。
在实际应用中,PWM信号的频率通常比较固定,一般为几千赫兹或数十千赫兹,以确保设备的稳定性和可靠性。
当需要控制设备时,需要根据设备的具体要求选择合适的频率。
二、PWM的占空比
PWM的占空比指的是PWM信号高电平时间与整个周期时间的比例。
换句话说,PWM的占空比是指PWM波形中高电平时间所占的比例。
占空比的变化会导致PWM信号的能量变化,从而影响被控制的设备的工作状态。
在智能家居中,灯泡的亮度、电子大门的打开角度、电机的旋转速度等都可以通过PWM的占空比来控制。
占空比越大,被控制设备的作用越强,反之则越弱。
另外,PWM的占空比还可以用于控制能量消耗。
例如,当控制设备处于闲置状态时,可以通过将占空比降到零来降低能耗,以达到节能的目的。
综上所述,PWM的两个参数(频率和占空比)是实现现代电子设备控制的重要因素,通过控制这两个参数,可以实现对设备的方方面面的精确控制。
在实际应用中,我们需要根据被控制设备的要求来选择合适的PWM参数,以实现最佳的控制效果。
pwm电机调速原理PWM电机调速原理。
PWM(Pulse Width Modulation)是一种通过改变脉冲宽度来控制电机转速的技术。
在实际应用中,PWM电机调速广泛应用于各种电动车、工业生产设备、家用电器等领域。
本文将介绍PWM电机调速的原理及其应用。
1. PWM电机调速原理。
PWM电机调速的原理是通过改变电机输入的脉冲宽度来控制电机的平均电压,从而实现电机的调速。
具体来说,当PWM信号的占空比增大时,电机接收到的平均电压也随之增大,电机转速也相应增加;反之,当PWM信号的占空比减小时,电机接收到的平均电压减小,电机转速也相应减小。
通过这种方式,可以实现对电机转速的精确控制。
2. PWM电机调速的优势。
与传统的电压调速方式相比,PWM电机调速具有以下优势:(1)精度高,PWM电机调速可以实现对电机转速的精确控制,可以满足不同应用场景对电机转速精度的要求。
(2)效率高,由于PWM电机调速是通过改变脉冲宽度来控制电机转速,因此可以在不同转速下实现电机的高效工作,提高电机的能效比。
(3)响应快,PWM电机调速可以在短时间内实现对电机转速的调节,响应速度快,适用于对转速要求快速变化的场景。
3. PWM电机调速的应用。
PWM电机调速广泛应用于各种电动车、工业生产设备、家用电器等领域。
以电动车为例,电动车的电机需要根据车速的变化实时调整转速,以实现对车速的精确控制。
而PWM电机调速技术可以满足这一需求,提高电动车的动力性能和能效比。
在工业生产设备中,PWM电机调速可以根据生产工艺的要求实时调整电机转速,提高生产效率和产品质量。
在家用电器中,如空调、洗衣机等,也广泛应用了PWM电机调速技术,实现对电机转速的精确控制,提高了产品的性能和节能效果。
4. 结语。
总的来说,PWM电机调速是一种高效、精确、响应速度快的电机调速技术,具有广泛的应用前景。
随着电动化、智能化的发展,PWM电机调速技术将在更多领域得到应用,并不断完善和提升。
PWM调速原理1. 引言脉宽调制(PWM,Pulse Width Modulation)是一种常用的数字调制技术,主要用于控制电流、电压或功率的大小。
PWM调速技术可以通过调整数字信号的占空比来实现对电机或其他设备的调速控制。
本文将介绍PWM调速的原理以及应用。
2. PWM调速原理PWM调速原理是基于脉宽调制技术,通过控制信号的高电平时间占总周期时间的比例来控制输出设备的电流、电压或功率。
通常,PWM调速主要使用矩形波形信号来实现。
2.1 PWM调速信号的形式PWM调速信号是一个周期性的矩形波形信号,周期T表示一个完整的波形信号周期。
信号的高电平时间为t1,低电平时间为t2,占空比D表示高电平时间t1与总周期T的比例,即D = (t1 / T)。
2.2 PWM调速的工作原理PWM调速的工作原理基于人眼对光线变化的感知特性。
对于LED灯或电机等设备,当PWM调速信号的高电平时间比例增加时,设备输出的亮度或速度也会相应增加。
同样,当PWM调速信号的高电平时间比例减少时,设备输出的亮度或速度也会相应减少。
例如,当PWM调速信号的占空比为50%时,设备输出的功率为输入功率的一半。
当PWM调速信号的占空比为80%时,设备输出的功率为输入功率的80%。
2.3 PWM调速的优势PWM调速具有以下几个优势: - 精准控制:通过调整PWM调速信号的占空比,可以实现对设备的精确控制,使设备的输出满足需求。
- 响应快速:由于PWM调速信号的周期较短,设备对控制信号的变化响应迅速,可以快速调整设备的状态。
- 节能降耗:PWM调速可以通过调整设备的工作状态来实现能量的节约和减少设备的耗损。
3. PWM调速的应用PWM调速广泛应用于各种电子设备中,如电机控制、LED 灯控制等。
下面介绍几个典型的PWM调速应用:3.1 电机控制电机控制是PWM调速的重要应用领域之一。
通过控制PWM信号的占空比,可以实现对电机转速的调节。
1、什么是pwm技术?答:脉宽调制技术是指利用全控型电力电子器件的导通和关断把电压变成一定形状的电压脉冲,实现变压、变频控制并且消除谐波的技术。
2、pwm的意义及给电机带来的好处?答:①、及时、准确地实现变压变频控制要求;②、抑制逆变器输出电压或电流中的谐波分量。
给电机带的好处:①、降低或消除转矩脉动;②、提高电机的效率;③、扩大调速范围。
3、三个主要的pwm技术?答:电压正弦PWM法;电流正弦PWM法;电压空间矢量pwm法。
4、电压正弦PWM法?答:电压SPWM技术就是希望逆变器输出电压是正弦波形,其含义是通过脉冲宽度(脉冲占空比)来调节平均电压的方法。
5、电压正弦波脉宽调制的基本思想。
答:把电压正弦半波分为N等分,然后把每一份的正弦曲线与横线所包围的面积都用一个与此面积相等的等高矩形脉冲来代替。
6、载波比、调制度?答:载波频率fc与参考波频率fm之比调制度m定义为调制信号(参考电压)峰值与三角载波信号峰值之比,m与输出电压成正比。
7、什么是电流滞环SPWM及特点?答:电流滞环SPWM,即把正弦电流参考波形和电流的实际波形通过滞环比较器进行比较。
其结果决定逆变器桥臂上下开关器件的导通和关断。
优点是控制简单、响应快、瞬时电流可以被限制,功率开关器件得到自动保护。
其缺点是相对的电流谐波较大。
8、磁链轨迹法SPWM技术答:磁链轨迹法SPWM技术是从电机的角度出发,目的在于使交流电机产生圆形磁场。
9、逆变器的输出与开关状态有几种?逆变器空间矢量特点答:逆变器的输出:逆变器的输出电压模式;逆变器的八种开关模式对应八个电压空间矢量。
两个0矢量分别为(000、111);6个非0矢量,每个矢量模值相差相角每个相差60°。
10、插入0矢量的作用及原则。
答:磁链空间矢量的运动速度的改变可由在各边中添加零矢量来实现。
原则是选择使器件开关次数最少的零矢量。
11、变频器的组成。
答:变频器由交流电动机、电力电子功率变换器、控制器及电量检测器组成。
伺服控制器的PWM调制技术介绍伺服控制器是一种控制系统,用于控制伺服电机的运动。
伺服电机具有高精度、高响应和高稳定性的特点,广泛应用于工业自动化、机器人、制造业和航空航天等领域。
PWM调制技术是伺服控制器中的重要技术之一,本文将对PWM调制技术进行介绍。
PWM调制技术是一种通过改变脉宽来控制电压或电流的技术。
在伺服控制器中,PWM调制技术用于控制驱动电路的输出,从而控制伺服电机的速度和位置。
以速度控制为例,伺服控制器通过调节PWM的占空比来控制输出电压,进而控制伺服电机的转速。
具体而言,伺服控制器将期望的速度信号与实际的速度反馈信号进行比较,然后生成一个误差信号。
根据该误差信号,伺服控制器经过PID算法计算出修正项,并将修正项转换成PWM信号,输出给驱动电路。
驱动电路根据接收到的PWM信号,控制电机的运动。
PWM调制技术具有以下几个优点。
首先,PWM调制技术可以实现对输出电压或电流的精确控制。
通过改变PWM的占空比,可以调节输出电压的大小,从而实现对伺服电机速度和位置的精确控制。
其次,PWM调制技术具有高效性。
由于PWM信号的特点是高电平时间和低电平时间交替出现,因此平均电压或电流较高,功率损耗较小。
这一特点使得伺服电机在能耗和发热方面更加高效。
此外,PWM调制技术的响应速度也非常快,适用于对速度和位置要求较高的应用场景。
在实际应用中,PWM调制技术有多种实现方式。
其中,常用的方式包括单边沟道PWM(Single-Ended Channel PWM)和双边沟道PWM(Dual-Ended Channel PWM)。
单边沟道PWM只有一个输出通道,通过改变PWM的占空比来实现对输出电压或电流的控制。
双边沟道PWM有两个输出通道,分别控制上半桥和下半桥的开关管,可以实现更精确的PWM控制。
此外,还有一种称为三相PWM的调制方式,用于控制三相交流电机。
除了上述的常见PWM调制方式,还有一种叫做矢量调制的PWM技术。
电力电子技术教案 1 第6章 PWM控制技术
主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处: 4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路
1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。
图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异第6章PWM控制技术 2 也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。
图6-2 冲量相同的各种窄脉冲的响应波形 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。
图6-3 用PWM波代替正弦半波 要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。 等幅PWM波和不等幅PWM波: 电力电子技术教案 3 由直流电源产生的PWM波通常是等幅PWM波,如直流斩波电路及本章主要介绍的PWM逆变电路,6.4节的PWM整流电路。输入电源是交流,得到不等幅PWM波,如4.1节讲述的斩控式交流调压电路,4.4节的矩阵式变频电路。基于面积等效原理,本质是相同的。 PWM电流波: 电流型逆变电路进行PWM控制,得到的就是PWM电流波。 PWM波形可等效的各种波形: 直流斩波电路:等效直流波形 SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。
2 PWM逆变电路及其控制方法 目前中小功率的逆变电路几乎都采用PWM技术。逆变电路是PWM控制技术最为重要的应用场合。本节内容构成了本章的主体 PWM逆变电路也可分为电压型和电流型两种,目前实用的几乎都是电压型。 (1)计算法和调制法 1、计算法 根据正弦波频率、幅值和半周期脉冲数,准确计算PWM波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM波形。 缺点:繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化 2、调制法 输出波形作调制信号,进行调制得到期望的PWM波;通常采用等腰三角波或锯齿波作为载波;等腰三角波应用最多,其任一点水平宽度和高度成线性关系且左右对称;与任一平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合PWM的要求。 调制信号波为正弦波时,得到的就是SPWM波;调制信号不是正弦波,而是其他所需波形时,也能得到等效的PWM波。 结合IGBT单相桥式电压型逆变电路对调制法进行说明:设负载为阻感负载,工作时V1和V2通断互补,V3和V4通断也互补。 控制规律: uo正半周,V1通,V2断,V3和V4交替通断,负载电流比电压滞后,在电压正半周,电流有一段为正,一段为负,负载电流为正区间,V1和V4导通时,uo等于Ud,V4关断时,负载电流通过V1和VD3续流,uo=0,负载电流为负区间,io为负,实际上从VD1和VD4流过,仍有uo=Ud,V4断,V3通后,io从V3和VD1续流,uo=0,uo总可得到Ud和零两种电平。 第6章PWM控制技术 4 uo负半周,让V2保持通,V1保持断,V3和V4交替通断,uo可得-Ud和零两种电平。
图6-4 单相桥式PWM逆变电路 单极性PWM控制方式(单相桥逆变): 在ur和uc的交点时刻控制IGBT的通断。ur正半周,V1保持通,V2保持断,当ur>uc
时使V4通,V3断,uo=Ud,当ur
保持通,当uruc时使V3断,V4通,uo=0,虚线uof
表示uo的基波分量。波形见图6-5。
图6-5 单极性PWM控制方式波形 双极性PWM控制方式(单相桥逆变): 在ur半个周期内,三角波载波有正有负,所得PWM波也有正有负。在ur一周期内, 电力电子技术教案 5 输出PWM波只有±Ud两种电平,仍在调制信号ur和载波信号uc的交点控制器件通断。ur
正负半周,对各开关器件的控制规律相同,当ur >uc时,给V1和V4导通信号,给V2和
V3关断信号,如io>0,V1和V4通,如io<0,VD1和VD4通, uo=Ud,当ur和V3导通信号,给V1和V4关断信号,如io<0,V2和V3通,如io>0,VD2和VD3通,uo=-Ud。波形见图6-6。 单相桥式电路既可采取单极性调制,也可采用双极性调制。
图6-6 双极性PWM控制方式波形 双极性PWM控制方式(三相桥逆变):见图6-7。 三相PWM控制公用uc,三相的调制信号urU、urV和urW依次相差120°。 U相的控制规律: 当urU>uc时,给V1导通信号,给V4
关断信号,
uUN´=Ud/2,当urUc
时,给V4导通信号,
给V1关断信号,uUN´=-Ud/2;当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是VD1(VD4)导通。uUN´、 图6-7 三相桥式PWM型逆变电路 第6章PWM控制技术 6 uVN´和uWN´的PWM波形只有±Ud/2两种电平,uUV波形可由uUN´-uVN´得出,当1和6通时,uUV=Ud,当3和4通时,uUV=-Ud,当1和3或4和6通时,uUV=0。波形见图6-8。 输出线电压PWM波由±Ud和0三种电平构成,负载相电压PWM波由(±2/3)Ud、(±1/3)Ud
和0共5种电平组成。
图6-8 三相桥式PWM逆变电路波形 防直通死区时间: 同一相上下两臂的驱动信号互补,为防止上下臂直通造成短路,留一小段上下臂都施加关断信号的死区时间。死区时间的长短主要由器件关断时间决定。死区时间会给输出PWM波带来影响,使其稍稍偏离正弦波。 特定谐波消去法(Selected Harmonic Elimination PWM—SHEPWM): 电力电子技术教案 7 计算法中一种较有代表性的方法,图6-9。输出电压半周期内,器件通、断各3次(不包括0和π),共6个开关时刻可控。为减少谐波并简化控制,要尽量使波形对称。 首先,为消除偶次谐波,使波形正负两半周期镜对称,即:
)()(tutu (6-1)
图6-9 特定谐波消去法的输出PWM波形 其次,为消除谐波中余弦项,使波形在半周期内前后1/4周期以π/2为轴线对称。 )()(tutu (6-2)
四分之一周期对称波形,用傅里叶级数表示为:
,...5,3,1nsin)(ntnatu (6-3)
式中,an为 20nsin)(4ttdntua 图6-9,能独立控制a1、a2和a3共3个时刻。该波形的an为
)cos2cos2cos21(2])sin2(sin2)sin2(sin2[4321d23d0n32211nnnnUtdtnUttdnUtdtnUttdnUaadaadaaad
(6-4)
式中n=1,3,5,… 确定a1的值,再令两个不同的an=0,就可建三个方程,求得a1、a2和a3。 消去两种特定频率的谐波: 在三相对称电路的线电压中,相电压所含的3次谐波相互抵消,可考虑消去5次和7次谐波,得如下联立方程: )cos2cos2cos21(2321d1Ua