精品2020年广东省中考数学模拟试卷一含解析
- 格式:doc
- 大小:793.34 KB
- 文档页数:29
2020年广东中考数学各地区模拟试题分类(深圳专版)(一)——反比例函数一.选择题1.(2020•福田区一模)如图,是函数y =ax 2+bx +c 的图象,则函数y =ax +c ,y =,在同一直角坐标系中的图象大致为( )A .B .C .D .2.(2020•福田区校级模拟)以下说法正确的是( )A .小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是B .一组对边平行,另一组对边相等的四边形是平行四边形C .点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =图象上,且x 1<x 2,则y 1<y 2D .对于一元二元方程ax 2+bx +c =0(ac <0),若b =0,则方程的两个根互为相反数3.(2020春•福田区校级期中)将反比例函数y =的图象绕坐标原点O 逆时针旋转30°,得到如图的新曲线,与过点A (﹣3,3),B (,)的直线相交于点C 、D ,则△OCD 的面积为( )A.8 B.3 C.2D.4.(2020•南山区校级一模)已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.B.C.D.5.(2020•福田区校级模拟)如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,若图中S=4,则k的值为()△OBPA.B.﹣C.﹣4 D.46.(2020春•罗湖区校级月考)函数y=﹣2x,y=,y=﹣x2的共同性质是()A.它们的图象都经过原点B.它们的图象都不经过第二象限C.在x>0的条件下,y都随x的增大而增大D.在x>0的条件下,y都随x的增大而减小7.(2020春•宝安区校级月考)如图,矩形ABCD的边AB在x轴上,反比例函数y=(k ≠0)的图象过D点和边BC的中点E,连接DE,若△CDE的面积是2,则k的值是()A.3 B.4 C.2D.8 8.(2020•龙岗区校级模拟)以下说法正确的有()①正八边形的每个内角都是135°;②反比例函数y=﹣,当x<0时,y随x的增大而增大;③长度等于半径的弦所对的圆周角为30°;④分式方程的解为x=;A.1个B.2个C.3个D.4个9.(2020•龙岗区模拟)如图,点A、B在双曲线(x<0)上,连接OA、AB,以OA、AB为边作▱OABC.若点C恰落在双曲线(x>0)上,此时▱OABC的面积为()A.B.C.D.4二.填空题10.(2020•深圳模拟)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(0,2),点C是反比例函数y=(x>0)图象上一点,∠ABC=135°,AC交y轴于点D,=,则k的值为.11.(2020•南山区校级二模)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D是斜边AC的中点,连接DB并延长交y轴于点E,若△BCE的面积为7,则k的值为.12.(2020•深圳模拟)如图,直线y=﹣2x+4与y轴,x轴分别相交于A,B两点,将射线AB绕B点顺时针旋转到BC,使得∠ABC=∠ABO,反比例函数y=(x>0)的图象经过C点,CD⊥OB于D点,且S=,则k值=.△BCD13.(2020•大鹏新区一模)已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象限,且四边形OABC是平行四边形,AB=2,sin B=,反比例函数y=的图象经过点C以及边AB的中点D,则四边形OABC的面积为.14.(2020•盐田区二模)如图,在平面直角坐标系中,半径为的⊙B经过原点O,且与x,y轴分别交于点A,C,点C的坐标为(0,2),AC的延长线与⊙B的切线OD交于点D,则经过D点的反比例函数的解析式为.15.(2020•罗湖区一模)如图,平行于x轴的直线与函数y=(k>0,x>0)和y=(x >0)的图象分别相交于B,A两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC 的面积为1,则k的值为.16.(2020•龙华区二模)如图,已知直线y=﹣2x+4与x轴交于点A,与y轴交于点B,与双曲线y=(x>0)交于C、D两点,且∠AOC=∠ADO,则k的值为.17.(2020•福田区模拟)如图,在平面直角坐标系中,边长为1的正方形OABC的顶点O 与原点重合,顶点A,C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,连接OM、ON、MN.若∠MON=45°,则k的值为.18.(2020•坪山区一模)如图,Rt△OAB的边AB延长线与反比例函数y=在第一象限的图象交于点C,连接OC,且∠AOB=30°,点C的纵坐标为1,则△OBC的面积是.=(x>0)的图象在第一象限,反比例函19.(2020•光明区一模)如图,反比例函数y1=﹣(x>0)的图象在第四象限,把一个含45°角的直角三角板如图放置,三数y2个顶点分别落在原点O和这两个函数图象上的A,B点处,若点B的横坐标为2,则k的值为.三.解答题20.(2020•大鹏新区一模)如图1,直线y 1=kx +3与双曲线y 2=(x >0)交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,直线y 1=kx +3分别交x 轴、y 轴于点C 和点D ,且S △DBP =27,.(1)求OD 和AP 的长;(2)求m 的值;(3)如图2,点M 为直线BP 上的一个动点,连接CB 、CM ,当△BCM 为等腰三角形时,请直接写出点M 的坐标.21.(2020•深圳模拟)如图,在平面直角坐标系中,▱ABCO 的顶点A 在x 轴正半轴上,两条对角线相交于点D ,双曲线y =(x >0)经过C ,D 两点.(1)求▱ABCO 的面积.(2)若▱ABCO 是菱形,请直接写出:①tan ∠AOC = .②将菱形ABCO 沿x 轴向左平移,当点A 与O 点重合时停止,则平移距离t 与y 轴所扫过菱形的面积S 之间的函数关系式: .22.(2020•宝安区二模)如图,一次函数y1=﹣x+3与反比例函数y2=的图象交于A、B两点,A点的横坐标为3.(1)求反比例函数的解析式;(2)结合图象,直接写出y1<y2时,x的取值范围.23.(2020•南山区校级一模)如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,,且CA∥y轴.(1)若点C在反比例函数的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.参考答案一.选择题1.解:∵二次函数y =ax 2+bx +c 的图象开口向下,∴a <0,∵二次函数y =ax 2+bx +c 的图象交y 轴的负半轴,∴c <0,∵二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,∴b 2﹣4ac >0,∴一次函数y =ax +c ,图象经过第二、三、四象限,反比例函数y =的图象分布在第一、三象限,故选:A .2.解:A 、小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的频率是,故A 选项的说法错误; B 、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故B 选项说法错误; C 、点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =图象上,若x 1<x 2<0,则y 1<y 2,故C 选项说法错误;D ,若b =0,ac <0,由根与系数的关系可知:x 1+x 2==0,x 1•x 2=<0,所以x 1、x 2互为相反数,故D 选项说法正确;故选:D .3.解:连接OA 、OB ,过点A 、B ,分别作AM ⊥x 轴,BN ⊥x 轴,垂足为M 、N ,∵点A (﹣3,3),B (,), ∵OM =3,AM =3,BN =,ON =, ∴OA ==6,OB ==3, ∵tan ∠AOM ==,∴∠AOM =60°,同理,∠BON =30°,因此,旋转前点A所对应的点A′(0,6),点B所对应的点B′(3,0),设直线A′B′的关系式为y=kx+b,故有,,解得,k=﹣2,b=6,∴直线A′B′的关系式为y=﹣2x+6,由题意得,,解得,,因此,点C、D在旋转前对应点的坐标为C′(1,4),D′(2,2),如图2所示,过点C′、D′,分别作C′P⊥x轴,D′Q⊥x轴,垂足为P、Q,则,C′P=4,OP=1,D′Q=2,OQ=2,∴S△COD =S△C′OD′=S梯形C′PQD′=(2+4)×(2﹣1)=3,故选:B.4.解:设直线l的解析式为:y=kx+b,∵直线l经过点A(﹣2,0)和点B(0,1),∴,解得:,∴直线l的解析式为:y=x+1,∵点A(﹣2,0),∴OA=2,∵OM=2OA,∴OM=4,∴点C的横坐标为4,当x=4时,y=3,∴点C(4,3),设反比例函数表达式为y=,∴m=12,∴反比例函数表达式为y=,故选:B.5.解:如图:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP =S△AOP,∴S△AOB =S△OBP=4,过点B作BE⊥OA于点E,则S△OBE =S△ABE=S△AOB=2,∵点B在反比例函数y=的图象上,∴S△OBE=k,∴k=4故选:D.6.解:函数y=﹣2x,y=,y=﹣x2的共同性质是有当x>0时,y随x的增大而减小,故选:D.7.解:设E的坐标是(m,n),则k=mn,点C的坐标是(m,2n),在y=中,令y=2n,解得:x=,∵S=2,△CDE∴|n|•|m﹣|=2,即n×=2,∴mn=8.∴k=8.故选:D.8.解:①正八边形的每个内角都是:=135°,故①正确;②反比例函数y=﹣中的k=﹣2<0,则其函数图象在每一象限内y的值随x的值增大而增大,故②正确;③如图:∵OA=OB=AB,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴长度等于半径的弦所对的圆周角为:30°或150°,故③错误;④由已知方程得到3x﹣1=1且x≠0.解得x=.经检验,x=是原方程的根,故④正确.;故正确的有①②④,共3个.故选:C .9.解:如图,连接AC ,过A 作AD ⊥x 轴于D ,过C 作CE ⊥x 轴于E ,过B 作BF ⊥AD 于F ,则△ABF ≌△COE ,设A (a ,﹣),C (b ,),则OE =BF =b ,CE =AF =,∴B (a +b ,﹣+),又∵点B 在双曲线y =﹣(x <0)上,∴(a +b )(﹣+)=﹣3, ∴﹣=2, 设=x ,则方程﹣=2可化为3x ﹣=2,解得x =或x =(舍去), ∴=,=, ∴平行四边形OABC 的面积=2×S △OAC=2(S 梯形ADEC ﹣S △AOD ﹣S △COE )=2[(﹣+)(b ﹣a )﹣×|﹣3|﹣×|2|] =﹣+3+2﹣﹣5=﹣3×﹣2×(﹣) =2. 故选:B .二.填空题(共10小题)10.解:∵点A,B的坐标分别为(﹣1,0),(0,2),∴OA=1,OB=2,∴AB==,过A作AH⊥BC于H,∵∠ABC=135°,∴∠HBA=∠HAB=45°,∴AH=BH=×=,∵BH⊥AH,BO⊥AO,∴B,H,A,O四点共圆,连接OH,∴∠BOH=∠BAH=45°,∴H在第二象限角平分线上,作HM⊥x轴于M,HN⊥y轴于N,则四边形HMON是正方形,∴HM=HN,在Rt△AHM与Rt△BHN中,,∴Rt△HAM≌Rt△HBN(HL),∴AM=BN,∵OM=ON,∴AM=BN=,∴H(﹣,),∴直线BH的解析式为y=x+2,过C作CI⊥x轴于I,∴OD∥CI,∴==,∴2OI=3AO=3,∴OI=,把x=代入y=x+2得y=,∴C点坐标为(,),∵点C是反比例函数y=(x>0)图象上一点,∴k=×=,故答案为.11.解:连接OA.∵△BCE的面积为7,∴BC•OE=7,∴BC•OE=14,∵点D为斜边AC的中点,∴BD=DC=AD,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC=90°,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE,∵•OB•AB=,∴k=AB•BO=BC•OE=14,故答案为14.12.解:∵直线y=﹣2x+4与y轴,x轴分别相交于A,B两点,∴A(0,4),B(2,0),∴OA=4,OB=2,在BC是截取BP=OB,连接OP交AB于Q,∵∠ABC=∠ABO,∴OP⊥AB,OQ=QP,∴在直线OP的解析式为y=x,解得,∴Q(,),∴p(,),设直线BC的解析式为y=kx+b,把B(2,0),P(,)代入得,解得,∴直线BC的解析式为y=x﹣,设CD=h,∵S=,△BCD∴BD•CD=,∴BD=,∴OD=2+,∴C(2+,h),代入y=x﹣得,h=(2+)﹣,解得h=2或h=﹣2(舍去),∴C(,2),∵反比例函数y=(x>0)的图象经过C点,∴k=×2=7,故答案为7.13.解:延长BC交y轴于E,如图,∵四边形OABC为平行四边形,∴BC=OA,BC∥OA,OC∥AB,OC=AB=2,∴BE⊥y轴,∠OCE=∠B,在Rt△OCE中,sin∠OCE==sin B=,∴OE=×2=4,∴CE==2,∴C(2,4),设B(t+2,4),∵D点为AB的中点,∴D(t+1,2),∵点C、D在反比例函数y=的图象上,∴2(t+1)=2×4,解得t=3,∴BC=4,∴四边形OABC的面积=3×4=12.故答案为12.14.解:连接OB,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵C(0,2),∴OC=2,∵⊙B的半径为,∴OB=,AC=2,∴,∴OE=2,A(﹣4,0),∴,∵OD是⊙B的切线,∴∠BOD=90°,∴∠BOE+∠DOF=∠DOF+∠ODF=90°,∴∠BOE=∠ODF,∵∠BEO=∠OFD=90°,∴△OBE∽△DOF,∴,设OD的解析式为:y=kx(k≠0),设D(a,b),则k=,∴OD的解析式为:y=2x,设直线AC的解析式为:y=mx+n(m≠0),则,解得,,∴直线AC的解析式为:y=x+2,联立方程组,解得,,设经过点D的反比例函数解析式为:y=,∴,∴k=,∴反比例函数的解析式为:.故答案为:.15.解:设点A的坐标为(,a),点B的坐标为(,a),∵△ABC的面积为1,∴×((﹣)×a=1,解得,k =1,故答案为:1.16.解:由已知得OA =2,OB =4,根据勾股定理得出,AB =2,如图,过点C 作CE ⊥x 轴于E ,作CG ⊥y 轴G ,过点D 作DH ⊥x 轴于H ,作DF ⊥y 轴于F ,连接GH ,GD ,CH ,∵点C ,D 是反比例图象上的点,∴S 矩形FDHO =S 矩形GCEO , ∴S 矩形FDHO =S 矩形GOEC .∴S △DGH =S △GHC .∴点C ,D 到GH 的距离相等.∴CD ∥GH .∴四边形BDHG 和四边形GHAC 都是平行四边形.∴BD =GH ,GH =CA .即BD =AC ;设AC =BD =m ,∵∠AOC =∠ADO ,CAO =∠DAO ,∴△AOC ∽△ADO , ∴,∴AO 2=AC •AD ,∴22=m (2﹣m ), ∴m =±1(舍去+1), 过点C 作CE ⊥x 轴于点E ,∴△ACE ∽△ABO , ∴, ∴, ∴AE =,CE =,∴OE=OA﹣AE=2﹣=∴CE•OE==,故答案为:.17.解:∵点M、N都在y=的图象上,∴S△ONC =S△OAM=|k|.∵四边形ABCO为正方形,∴OC=OA,∠OCN=∠OAM=90°,∴OC•CN=OA•AM.∴CN=AM.将△OAM绕点O逆时针旋转90°,点M对应M′,点A对应C,如图所示.∵∠OCM′+∠OCN=180°,∴N、C、M′共线.∵∠COA=90°,∠NOM=45°,∴∠CON+∠MOA=45°.∵△OAM旋转得到△OCM′,∴∠MOA=∠M′OC,∴∠CON+∠COM'=45°,∴∠M'ON=∠MON=45°.在△M'ON与△MON中,,∴△M'ON≌△MON(SAS),∴MN=M'N.∵CN=AM.又∵BC=BA,∴BN=BM.设AM=CN=x,则BM=BN=1﹣x,MN=2x,又∵∠B=90°,∴BN2+BM2=MN2,∴(1﹣x)2+(1﹣x)2=(2x)2,解得,x=﹣1,或x=﹣﹣1(舍去),∴AM=﹣1,∴M(1,﹣1),∵M点在反比例函数y=(k≠0,x>0)的图象上,∴k=1×(﹣1)=﹣1),故答案为:﹣1).18.解:如图,过点C作CH⊥x轴于H,∵点C在反比例函数图象上,点C的纵坐标为1,∴点C(3,1)∴CH =1,OH =3,∵∠ABO =∠CBH ,∠A =∠BHC =90°,∴∠HCB =∠AOB =30°,∴CH =BH , ∴BH =,∴OB =OH ﹣BH =,∴△OBC 的面积=×OB ×CH =, 故答案为:.19.解:如图所示,过B 作BC ⊥y 轴于C ,过A 作AD ⊥CB 于D , ∵△ABO 是等腰直角三角形,∴∠ABO =∠ADB =∠BCO =90°,BO =AB ,∴∠CBO =∠BAD ,∴△BCO ≌△ADB (AAS ),∴BC =AD ,CO =BD ,∵点B 在反比例函数y 2=﹣(x >0)的图象上,点B 的横坐标为2,∴可设B (2,﹣k ),∴CO =BD =k ,CB =AD =2,∴A (2+k ,2﹣k ),∵点A 在反比例函数y 1=(x >0)的图象上, ∴(2+k )(2﹣k )=3k ,解得k 1=1,k 2=﹣4(舍去),∴k 的值为1,故答案为:1.三.解答题(共4小题)20.解:(1)设P(a,b),则OA=a,∵=,∴OC=AC,∴C(a,0),∵点C在直线y=kx+3上,∴0=ak+3,即ka=﹣9,∴DB=3﹣b=3﹣(ka+3)=﹣ka=9,∵BP=a,=×DB•BP=27,∴S△DBP∴×9a=27,∴a=6,∴k=﹣,∴一次函数的表达式为y=﹣x+3;将x=6代入一次函数解析式得:y=﹣6,即P(6,﹣6),∴AP=6,由一次函数表达式得:点D(0,3),故OD=3;(2)将点P的坐标代入反比例解析式得:m2﹣13m=﹣36,解得:m=4或9;(3)由(1)得,点C(2,0)、而点B(0,﹣6),设点M(m,﹣6);则BC2=4+36=40,CM2=(m﹣2)2+36,MB2=m2,当BC=CM时,40=(m﹣2)2+36,解得:m=4或0(舍去0);当BC=MB时,同理可得:m=±2;当MB=CM时,同理可得:m=10,故点M的坐标为(4,﹣6)或(10,﹣6)或(±,﹣6).21.解:(1)设点C(a,),点A(b,0),∵四边形ABCO是平行四边形,∴CD=AD,∴点D(,),∵双曲线y=(x>0)经过C,D两点,∴×=6,∴b=3a,∴点A(3a,0),∴▱ABCO的面积=3a×=18;(2)①∵▱ABCO是菱形,∴OA=CO=3a,∴(a﹣0)2+(﹣0)2=9a2,∴a=,∴点C(,2),∴tan∠AOC==2,故答案为2;②∵a=,∴点A坐标为(3,0),点C(,2),当0≤t≤,y=×t×2t=t2,当<t≤3,y=×2×(t+t﹣)=2t﹣3,当3<t ≤4,y =×2×(t +t ﹣)﹣×2×(t ﹣3)×(t ﹣3)=﹣t 2+8t ﹣30,综上所述:y =.22.解:(1)当x =3时,y 1=﹣3+3=2,∴A (3,2), 把A (3,2)代入y 2=得,k =3×2=6,∴反比例函数的解析式为:y 2=;(2)解得,,,当y 1<y 2时,x 的取值范围为:0<x <3或x >6.23.解:(1)如图1中,作CD ⊥y 轴于D .∵CA ∥y 轴,CD ⊥y 轴,∴CD ∥OA ,AC ∥OD ,∴四边形OACD 是平行四边形,∵∠AOD =90°,∴四边形OACD 是矩形,∴k =S 矩形OACD =2S △ABC =2,∴反比例函数的解析式为y =.(2)如图2中,作BD ⊥AC 于D ,交反比例函数图象于N ,连接CN ,AN .∵△ABC是等边三角形,面积为,设CD=AD=m,则BD=m,∴×2m×m=,∴m=1或﹣1(舍弃),∴B(0,1),C(,,2),A(,0),∴N(2,1),∴BD=DN,∵AC⊥BN,∴CB=CN,AB=AN,∵AB=BC,∴AB=BC=CN=AN,∴四边形ABCN是菱形,∴N(2,1).(3)如图3中,连接PB,PA,OP.设P(a,).S四边形OAPB =S△POB+S△POA=×1×a+××=a+=(﹣)2+,∴当a=时,四边形OAPB的面积最小,解得a=或﹣(舍弃),此时P(,).。
2018-2020年广东中考数学各地区模拟试题分类(深圳专版)(一)——三角形一.选择题1.(2020•龙华区二模)如图,直线a∥b∥c,等边三角形△ABC的顶点A、B、C分别在直线a、b、c上,边BC与直线c所夹的角∠1=25°,则∠2的度数为()A.25°B.30°C.35°D.45°2.(2020•宝安区二模)如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,连接MN,交AB于点H,以点H为圆心,HA的长为半径作的弧恰好经过点C,以点B为圆心,BC的长为半径作弧交AB于点D,连接CD,若∠A =22°,则∠BDC=()A.52°B.55°C.56°D.60°3.(2020•福田区一模)如图,正方形ABCD中,E是BC延长线上一点,在AB上取一点F,使点B关于直线EF的对称点G落在AD上,连接EG交CD于点H,连接BH交EF于点M,连接CM.则下列结论,其中正确的是()①∠1=∠2;②∠3=∠4;③GD=CM;④若AG=1,GD=2,则BM=.A.①②③④B.①②C.③④D.①②④4.(2020•光明区一模)如图,AB∥CE,∠A=40°,CE=DE,则∠C=()A.40°B.30°C.20°D.15°5.(2020•南山区模拟)如图,△ABC中,AB=5,AC=4,以点A为圆心,任意长为半径作弧,分别交AB、AC于D和E,再分别以点D、E为圆心,大于二分之一DE为半径作弧,两弧交于点F,连接AF并延长交BC于点G,GH⊥AC于H,GH=2,则△ABG的面积为()A.4 B.5 C.9 D.106.(2020•龙岗区模拟)平面直角坐标系中,已知A(1,2)、B(3,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8 7.(2020•宝安区三模)如图,在三角形ABC中,AB=AC,BC=6,三角形DEF的周长是7,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,则AF=()A.B.C.D.7 8.(2020•龙岗区校级模拟)如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC9.(2020•南山区校级一模)等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或22 10.(2020•福田区校级模拟)如图,在正方形ABCD中,对角线AC、BD相交于点O,以AD 为边向外作等边△ADE,AE=,连接CE,交BD于F,若点M为AB的延长线上一点,连接CM,连接FM且FM平分∠AMC,下列选项正确的有()=;③∠AMC=60°;④CM+AM=MF.①DF=﹣1;②S△AECA.1个B.2个C.3个D.4个二.填空题11.(2020•龙岗区校级模拟)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,M为AB边的中点,连结ME、MD、ED,设AB=10,∠DBE=30°,则△EDM的面积为.12.(2020•深圳模拟)如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F,若AB=8,AC=4,则CF的长为.13.(2020•宝安区校级一模)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA8的长度为.14.(2020•龙岗区模拟)如图△ABC 中,AB =AC ,∠BAC =120°,∠DAE =60°,BD =5,CE =8,则DE 的长为 .15.(2020•龙岗区校级模拟)如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD =2BD ,BE =CE .设△ADF 的面积为S 1,△CEF 的面积为S 2,若S △ABC =6,则S 1﹣S 2= .16.(2020•深圳模拟)如图,在Rt △ABC 中,∠C =90°,AC =5,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O ,OC =4,则BC 边的长为 .17.(2020•深圳模拟)若等腰三角形ABC 的周长为16cm ,底边BC 上高线AD 长为4cm ,则三角形ABC 的面积是 cm 2.三.解答题18.(2020•宝安区二模)如图1,在平面直角坐标系中,等边△ABC 的边BC 在x 轴上,A (0,3),B (﹣,0),点M (m ,0)为x 轴上的一个动点,连接AM ,将AM 绕点A 逆时针旋转60°得到AN .(1)当M 点在B 点的左方时,连接CN ,求证:△BAM ≌△CAN ;(2)如图2,当M点在边BC上时,过点N作ND∥AC交x轴于点D,连接MN,若S四边形ACDN =S△MND,试求D点的坐标;(3)如图3,是否存在点M,使得点N恰好在抛物线y=﹣2x2+4x+3上,如果存在,请求出m的值,如果不存在,请说明理由.19.(2020•龙岗区模拟)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.20.(2020•龙岗区模拟)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.21.(2019•南山区一模)如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.(1)△BCD的形状为;(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.参考答案一.选择题1.解:∵b∥c,∴∠3=∠1=25°,∵△ABC是等边三角形,∴∠ABC=60°,∴∠4=∠ABC﹣∠3=60°﹣25°=35°,∵a∥b,∴∠2=∠4=35°,故选:C.2.解:连接CH,由题意得,直线MN是线段AB的垂直平分线,∴AH=BH,∵CH=AH,∴CH=AB,∴∠ACB=90°,∵∠A=22°,∴∠ACH=∠A=22°,∴∠BCH=∠B=68°,∵BC=BD,∴∠BDC=∠BCD=(180°﹣68°)=56°,故选:C.3.解:如图1中,过点B作BK⊥GH于K.∵B,G关于EF对称,∴EB=EG,∴∠EBG=∠EGB,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=∠BCD=90°,AD∥BC,∴∠AGB=∠EBG,∴∠AGB=∠BGK,∵∠A=∠BKG=90°,BG=BG,∴△BAG≌△BKG(AAS),∴BK=BA=BC,∠ABG=∠KBG,∵∠BKH=∠BCH=90°,BH=BH,∴Rt△BHK≌Rt△BHC(HL),∴∠1=∠2,∠HBK=∠HBC,故①正确,∴∠GBH=∠GBK+∠HBK=∠ABC=45°,过点M作MQ⊥GH于Q,MP⊥CD于P,MR⊥BC于R.∵∠1=∠2,∴MQ=MP,∵∠MEQ=∠MER,∴MQ=MR,∴MP=MR,∴∠4=∠MCP=∠BCD=45°,∴∠GBH=∠4,故②正确,如图2中,过点M作MW⊥AD于W,交BC于T.∵B,G关于EF对称,∴BM=MG,∵CB=CD,∠4=∠MCD,CM=CM,∴△MCB≌△MCD(SAS),∴BM=DM,∴MG=MD,∵MW⊥DG,∴WG=WD,∵∠BTM=∠MWG=∠BMG=90°,∴∠BMT+∠GMW=90°,∵∠GMW+∠MGW=90°,∴∠BMT=∠MGW,∵MB=MG,∴△BTM≌△MWG(AAS),∴MT=WG,∵MC=TM,DG=2WG,∴DG=CM,故③正确,∵AG=1,DG=2,∴AD=AB=TM=3,EM=WD=TM=1,BT=AW=2,∴BM===,故④正确,故选:A.4.解:∵AB∥CE,∴∠AEC=∠A=40°,∵CE=DE,∴∠C=∠D,∴∠AEC=∠C+∠D=2∠C,∴∠C=∠AEC=×40°=20°.故选:C.5.解:作GM⊥AB于M,如图,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,=×5×2=5.∴S△ABG故选:B.6.解:∵点A、B的坐标分别为(1,2)、B(3,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(B点除外),即(﹣1,0)、(0,2+)、(0,2﹣),即满足△ABC是等腰三角形的C点有3个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个.综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有7个.故选:C.7.解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=BC=3,∴△DEF的周长=DE+DF+EF=AB+3=7,∴AB=4,由勾股定理知AF==,故选:B.8.解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.9.解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.10.解:如图,过点F作FG⊥CD于G,作∠HFC=∠DCE,交CD于H,连接OE交AD于P,连接AF,在AM上截取MQ=MC,连接FQ,∵四边形ABCD是正方形,△ADE是等边三角形,∴AD=CD,AE=AD=,∠ADE=60°,∠ADC=90°,∠ADB=∠CDB=45°,∴∠EDC=150°,DE=DC=,∴∠DEC=∠DCE=15°,∴∠HFC=∠DCE=15°,∴HC=HF,∠FHG=30°,∵FG⊥CD,∠BDC=45°,∠FHG=30°,∴DG=GF,GH=GF,HF=2GF=HC,∴DF=GF,∵CD=DG+HG+HC=(3+)GF=,∴GF=,∴DF=GF=﹣1,故①正确;∵DE=AE,DO=AO,∴EO垂直平分AD,∴EP⊥AD,又∵△AED是等边三角形,AD=DE=,∴AP=,EP=AP=,∵DO=AO,∠AOD=90°,OP⊥AD,AD=,∴OP=,∴EO=OP+EP=,∵S△AEC =S△AEO+S△EOC=××=,故②正确;∵FM平分∠AMC,∴∠CMF=∠AMF,又∵CM=QM,FM=FM,∴△CMF≌△QMF(SAS),∴∠MCF=∠FQM,FC=FQ,∵AD=CD,∠ADB=∠CDB,DF=DF,∴△ADF≌△CDF(SAS),∴AF=CF,∠DCF=∠DAF=15°,∴∠FAQ=75°,FA=FQ=FC,∴∠FQA=FAQ=75°,∴∠FQM=∠FCM=105°,∴∠DCM=120°,∵DC∥AB,∴∠AMC+∠DCM=180°,∴∠AMC=60°,故③正确;如图,过点C作CN⊥MF于N,设BM=a,∵∠CBM=90°,∠CMB=60°,∴CM=2BM=2a,CB=a=AB,∴AM=a+a,∴AM+CM=(+3)a,∵∠CMF=∠CMA=30°,∴∠CFM=180°﹣105°﹣30°=45°,∵CN⊥FM,∠CMN=30°,∠CFM=45°,∴CN=CM=a,MN=a,FN=CN=a,∴MF=a+a,∴AM+CM=MF,故④错误,故选:C.二.填空题(共7小题)11.解:∵在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,∴△ABE,△ADB是直角三角形,∴EM,DM分别是它们斜边上的中线,∴EM=DM=AB=5,∵ME=AB=MA,∴∠MAE=∠MEA,∴∠BME=2∠MAE,同理,MD=AB=MA,∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∴∠EMD=∠BME﹣∠BMD=2∠MAE﹣2∠MAD=2∠DAC=60°,∴△EDM是边长为5的等边三角形,∴S=×52=.△EDM故答案为:.12.解:连接CD,DB,过点D作DM⊥AB于点M,∵AD平分∠FAB,∴∠FAD=∠DAM,在△AFD和△AMD中,,∴△AFD≌△AMD(AAS)∴AF=AM,FD=DM,∵DE垂直平分BC∴CD=BD,在Rt△CDF和Rt△BDM中,,∴Rt △CDF ≌Rt △BDM (HL )∴BM =CF ,∵AB =AM +BM =AF +MB =AC +CF +MB =AC +2CF , ∴8=4+2CF ,解得,CF =2,故答案为:2.13.解:∵△OAA 1为等腰直角三角形,OA =1, ∴AA 1=OA =1,OA 1=OA =;∵△OA 1A 2为等腰直角三角形,∴A 1A 2=OA 1=,OA 2=OA 1=2;∵△OA 2A 3为等腰直角三角形,∴A 2A 3=OA 2=2,OA 3=OA 2=2;∵△OA 3A 4为等腰直角三角形,∴A 3A 4=OA 3=2,OA 4=OA 3=4.∵△OA 4A 5为等腰直角三角形,∴A 4A 5=OA 4=4,OA 5=OA 4=4.∵△OA 5A 6为等腰直角三角形,∴A5A6=OA5=4,OA6=OA5=8.∴OA8的长度为=16.故答案为:16.14.解:∵AB=AC,∴可把△AEC绕点A顺时针旋转120°得到△AE′B,∴BE′=EC=8,AE′=AE,∠E′AB=∠EAC,∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠EAC=60°,∴∠E′AD=∠E′AB+∠BAD=60°,在△E′AD和△EAD中,∴△E′AD≌△EAD(SAS),∴E′D=ED,过E′作EF⊥BD于点F,∵AB=AC,∠BAC=120°,∴∠ABC=∠C=∠E′BA=30°,∴∠E′BF=60°,∴∠BE′F=30°,∴BF=BE′=4,E′F=4,∵BD=5,∴FD=BD﹣BF=1,在Rt△E′FD中,由勾股定理可得E′D==7,∴DE=7.故答案为7.15.解:∵BE=CE,∴BE=BC,∵S△ABC=6,∴S△ABE =S△ABC=×6=3.∵AD=2BD,S△ABC=6,∴S△BCD =S△ABC=×6=2,∵S△ABE ﹣S△BCD=(S△ADF+S四边形BEFD)﹣(S△CEF+S四边形BEFD)=S△ADF﹣S△CEF,即S△ADF ﹣S△CEF=S△ABE﹣S△BCD=3﹣2=1.故答案为:116.解:作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,5).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,,∴△ACB≌△BQE(AAS),∴AC=BQ=5,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得:x=3,则BC=3.故答案为:3.17.解:如图,∵AB=AC,AD⊥BC,AD=4cm∴BD=BC∵等腰三角形ABC的周长为16cm∴2AB+2BD=16cm,即AB+BD=8①,在Rt△ABD中,根据勾股定理得:BD2=AB2﹣AD2=AB2﹣42②,联立①②方程,解得,AB=5cm,DB=3cm∴BC=6cm=BC•AD=×6×4=12cm2∴S△ABC三.解答题(共4小题)18.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵将AM绕点A逆时针旋转60°得到AN,∴AM=AN,∠MAN=60°=∠BAC,即∠CAN+∠BAN=∠MAB+∠BAN,∴∠CAN=∠MAB,∴△BAM≌△CAN(SAS);(2)如图1,连接CN,由(1)可知△BAM≌△CAN,∴∠B=∠ACN=60°,∵DN∥AC,∴∠NDC=∠ACB=60°,∴∠NCD=60°,∴△CDN是等边三角形,∴CN=DN,∠CND=60°,∵AM=AN,∠MAN=60°,∴△AMN是等边三角形,∴AN=MN,∠ANM=60°,∴∠ANC=∠MND,∴△ANC≌△MND(SAS),∴S△ACN =S△MND,∵S 四边形ACDN =S △MND =S △ACN +S △CDN , ∴,∴CD =AB ,∵A (0,3),B (﹣,0),∴OA =3,OB =,∴AB ==2,∴CD =,∴OD =OC +CD ==,∴D (,0);(3)如图2,过点C 作CE ∥AB 交y 轴于点E ,由(1),(2)可知点N 在直线CE 上,CE 与抛物线交于点N 1,N 2,∴∠ABC =∠OCE =60°,OC =OB =,∴OE =3,∴E (0,﹣3),设直线CE 的解析式为y =kx +b , ∴,解得:,∴直线CE 的解析式为y =x ﹣3, ∴, 解得:,,∴N 1(2,3),N 2(﹣,﹣),若AM 绕点A 逆时针旋转60°得到AN 1时,M (m ,0),∴AM =AN 1=2, ∵AB =2,AN 1∥x 轴,∴点M 与点C 重合,即m =,若AM 绕点A 逆时针旋转60°得到AN 2时,M (m ,0),∵C (0,), ∴CN 2==3,由(1)可知BM 2=CN 2=3, ∴OM 2=OB +BM 2==4, ∴m =﹣4.综合以上可得,m=或﹣4.19.证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.20.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.21.解:(1)∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC,∠CBD=60°.∵点D是AB中点,∴BD=BC,∴△BCD为等边三角形.故答案为:等边三角形.(2)∠DBF的度数不变,理由如下:∵∠ACB=90°,点D是AB中点,∴CD=AB=AD,∴∠ECD=30°.∵△BDC为等边三角形,∴BD=DC,∠BDC=60°.又∵△DEF为等边三角形,∴DF=DE,∠FDE=60°,∴∠BDF+∠FDC=∠EDC+∠FDC=60°,∴∠BDF=∠CDE.在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),∴∠DBF=∠DCE=30°,即∠DBF的度数不变.(3)∵△DEF为等边三角形,∴∠DEF=∠DFE=60°.∵∠A=∠ECD=30°,∴∠ADE=∠CDF=30°,∴△CDF、△ADE为等腰三角形,∴CF=DF=EF=DE=AE,∴DE=AE=AC=2.。
2023年广东省深圳市中考数学初中学业水平考试模拟试卷(一)学校:___________姓名:___________班级:___________考号:___________一、单选题1.23-的绝对值是()A .23-B .123C .23D .123-2.下面的几何体中,主视图为三角形的是()A.B.C.D.3.深圳2022年市地区生产总值约为32400亿元,32400用科学记数法表示为()A .123.2410⨯B .83240010⨯C .43.2410⨯D .1132.410⨯4.某班进行演讲比赛,其中6人的成绩如下:9.4,9.0,9.6,9.6,9.3,9.5(单位:分),则下列说法不正确的是()A .这组数据的众数是9.6分B .这组数据的方差是13300C .这组数据的平均数是9.4分D .这组数据的中位数是9.5分5.下列运算正确的是()A .()222a b a b +=+B .()326a a -=C .()22236ab a b =D .()()2224b a ab -⋅-=-6.如图,将一副三角尺按图中所示位置摆放,点F 在AC 上,其中90ACB ∠=︒,60ABC ∠=︒,90EFD ∠=︒,45DEF ∠=︒,//AB DE ,则AFD ∠的度数是()A .15︒B .30︒C .45︒D .60︒7.一元一次不等式组71143x x +>⎧⎪-⎨≤⎪⎩解集为()A .B .C .D .8.下列命题中真命题是()A .平分弦的直径必垂直于弦B .有一组邻边相等的四边形为菱形C .()43-,关于x 轴的对称点为()43,-D .有两边及其夹角对应相等的两个三角形全等9.《九章算术》中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?现有一类似问题:今有人组团购一物,如果每人出10元,则多了6元;如果每人出8元,则少了8元,问组团人数和物价各是多少?若设x 人参与组团,物价为y 元,则以下列出的方程组正确的是()A .10688x y x y -=⎧⎨-=⎩B .10688y x y x -=⎧⎨-=⎩C .10688x y y x -=⎧⎨-=⎩D .10688y x x y -=⎧⎨-=⎩10.如图,在菱形ABCD 中,120BAD ∠=︒,DE BC ⊥交BC 的延长线于点E .连接AE 交BD 于点F ,交CD 于点G .FH CD ⊥于点H ,连接CF .有下列结论:①AF CF =;②2CF EF FG =⋅;③:4:5FG EG =;④cos 14GFH ∠=则上述结论中正确的有()A .1个B .2个C .3个D .4个二、填空题11.分解因式:3244x x x -+=______.12.欢欢考试需要复习语文、数学和英语三科,现在需要安排科目顺序,从前到后的顺序恰好为“数学、英语、语文”的概率是____________.13.如图,在Rt △ABC 中,∠C =90°,AC =BC ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AC ,AB 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在∠BAC 内交于点O ;③作射线AO ,交BC 于点D .若点D 到AB 的距离为2,则BC 的长为___.14.如图,在平面直角坐标系中,OABC 的顶点A ,B 在第一象限内,顶点C 在y 轴上,经过点A 的反比例函数()0ky x x=>的图象交BC 于点D .若3BC BD =,OABC 的面积为6,则k 的值为___.15.如图,在ABC 中,90ACB ∠=︒,AC DC =,AB AE ⊥,且AE=AB ,连接DE 交AC 的延长线于点F ,32AC CF =,则BD CD=______.三、解答题16.计算:()202311|12cos302π⎛⎫-+---+︒ ⎪⎝⎭.17.先化简,再求值:2361693x x x x +⎛⎫÷+ ⎪-+-⎝⎭,其中3x =.18.6月14日是“世界献血日”,某市组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O 人数*105*(1)这次随机抽取的献血者人数为________人,m =________;(2)本次抽取的样本中,A 型部分所占的圆心角的度数是________°;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果估计这3000人中大约有多少人是A 型血?19.如图,O 是ABC 的外接圆,点E 是BAC ∠和ABC ∠角平分线的交点,AE 的延长线交BC 于点F ,O 交于点D ,连接BD .(1)求证:DB DE =;(2)若34AE DF ==,,求DB 的长.20.某公司根据市场需求代理甲,乙两种型号的电脑,每台甲型电脑比每台乙型电脑进价多600元,用5万元购进甲型电脑与用4.4万元购进乙型电脑的数量相等.(1)求每台甲型、乙型平板的进价各是多少元?(2)该公司计划购进甲、乙两种型号的电脑共80台进行试销,其中甲型电脑为m 台,购买资金不超过39.16万元.并且甲型电脑不少于乙型电脑的3倍,试销时甲型电脑每台售价5500元,乙型电脑每台售价4800元,问该公司应如何购进甲、乙两种型号的电脑使得销售完后获得的利润W 最大?21.小爱同学学习二次函数后,对函数()21y x =--进行了探究,在经历列表、描点、连线步骤后,得到如下的函数图像.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:__________;②方程()211x --=-的解为:__________;③若方程()21x a --=有四个实数根,则a 的取值范围是__________.(2)延伸思考:将函数()21y x =--的图象经过怎样的平移可得到函数()21213y x =---+的图象?写出平移过程,并直接写出当123y <≤时,自变量x 的取值范围.22.如图,在Rt ABC 中,∠ACB =90°,∠A =60°,点D 为AB 的中点,连接CD ,将线段CD 绕点D 顺时针旋转α(60°<α<120°)得到线段ED ,且ED 交线段BC 于点G ,∠CDE 的平分线DM 交BC 于点H .(1)如图1,若α=90°,则线段ED 与BD 的数量关系是,GDCD=;(2)如图2,在(1)的条件下,过点C 作CF ∥DE 交DM 于点F ,连接EF ,BE .①试判断四边形CDEF 的形状,并说明理由;②求证:BE FH =(3)如图3,若AC =2,tan(60)a m ︒-=,过点C 作过点C 作CF ∥DE 交DM 于点F ,连接EF ,BE ,请直接写出BEFH的值(用含m 的式子表示).参考答案:1.C【分析】直接利用绝对值的定义得出答案.【详解】解:23-的绝对值是23.故选:C .【点睛】此题主要考查了绝对值,解答此题的关键是要明确:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数a -;③当a 是零时,a 的绝对值是零.2.A【分析】分别判断每个选项中的正视图是否满足条件即可.【详解】解:A 的主视图是三角形,符合题意;B 的主视图不是三角形,不符合题意;C 的主视图是矩形,不符合题意;D 的主视图是矩形,不符合题意;故选:A .【点睛】本题主要考查空间几何体的三视图的判断,要求熟练掌握常见空间几何体的三视图.3.C【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.【详解】∵432400=3.2410⨯,故选C .【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.4.D【分析】根据平均数、众数、中位数和方差的定义分别计算即可.【详解】解:这组数据从大到小排列为9.6,9.6,9.5,9.4,9.3,9.0,9.6分出现次数最多,则这组数据的众数是9.6分,故A 选项正确,不符合题意;处于中间的两个数是9.5,9.4,则这组数据的中位数是9.45分,故D 选项错误,符合题意;这组数据的平均数为9.629.59.49.399.46⨯++++=,故C 选项正确,不符合题意;方差为()()()()()22222129.69.49.59.49.49.49.39.49.09.46⎡⎤⨯⨯-+-+-+-+-⎣⎦13300=,故B 选项正确,不符合题意;故选:D .【点睛】本题主要考查方差,解题的关键是掌握平均数、众数、中位数和方差的定义.5.D【分析】直接利用同底数幂的乘法运算法则以及积的乘方、幂的乘方运算法则、完全平方公式分别计算得出答案.【详解】解:A 、()222222a b a ab b a b +=++≠+,该选项不符合题意;B 、()3266a a a -=-≠,该选项不符合题意;C 、()22222396ab a b a b =≠,该选项不符合题意;D 、()()2224b a ab -⋅-=-,该选项符合题意;故选:D .【点睛】此题考查同底数幂的乘法运算以及积的乘方、幂的乘方、完全平方公式,正确掌握相关运算法则是解题关键.6.A【分析】设AB 与EF 交于点M ,根据//AB DE ,得到45AMF E ∠=∠=︒,再根据三角形的内角和定理求出结果.【详解】解:设AB 与EF 交于点M ,∵//AB DE ,∴45AMF E ∠=∠=︒,∵90ACB ∠=︒,60ABC ∠=︒,∴30A ∠=︒,∴1803045105AFM ∠=︒-︒-︒=︒,∵90EFD ∠=︒,∴AFD ∠=15︒,故选:A ..【点睛】此题考查平行线的性质,三角形的内角和定理,熟记平行线的性质并应用是解题的关键.7.B【分析】先解每个不等式的解集,再求两个不等式的解集的公共部分即可.【详解】解:解不等式71x +>得:6x >-,解不等式143x -≤得:13x ≤,∴不等式组的解集为613x -<≤,在数轴上表示为:,故选:B .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.8.D【分析】根据菱形的判定、垂径定理、轴对称和全等三角形的判定判断即可.【详解】解:A 、平分弦(非直径)的直径必垂直于弦,原命题是假命题,本选项不符合题意;B 、有一组邻边相等的平行四边形为菱形,原命题是假命题,本选项不符合题意;C 、()43-,关于x 轴的对称点为()43--,,原命题是假命题,本选项不符合题意;D 、有两边及其夹角对应相等的两个三角形全等,真命题,本选项符合题意;故选:D .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.C【分析】根据等量关系“每人出10元,则多了6元;每人出8元,则少了8元”列出方程组即可.【详解】解:设x 人参与组团,物价为y 元,由题意可得,10688x y y x -=⎧⎨-=⎩.故选:C .【点睛】此题考查了由实际问题抽象出二元一次方程组,根据物价得到等量关系是解决本题的关键.10.D【分析】利用菱形的性质和全等三角形的判定证明①,证明FCE FGC △∽,从而证明②,由含30°直角三角形的性质和相似三角形的性质分析求解,从而证明③和④.【详解】解:在菱形ABCD 中,AD DC ADB CDB =∠=∠,,又∵DF DF =,∴()SAS ADF CDF ≌,∴DAF DCF AF CF ∠=∠=,,故①正确;∵AD BC ∥,∴DAF FEC ∠=∠,∴DCF FEC ∠=∠,又∵CFG EFC ∠∠=,∴CFG CFG ∠=∠,∴FC FGEF FC=,即2FC EF FG =⋅,故②正确;∵在菱形ABCD 中,120BAD ∠=︒,∴113022DBC BDC ABC ADC ∠=∠===︒∠∠,又∵DE BC ⊥,∴在Rt DCF 中,30∠=︒CDE ,∴12CE DC =,∴在菱形ABCD 中,12,23CE AD AD BE ==,又∵AD BC ∥,∴ADF BEF ∽,∴23AF AD EF BE ==,∴23FC EF =由②已证2FC EF FG =⋅,设23FC k EF k ==,,∴43FG k =,53EG k =,∴:4:5FG EG =,故③正确;由③已知23DF AD BF BE ==,设23DF a BF a ==,,∴5BD a =,∴在Rt BDE △中,1522DE BD ==,在Rt CDE △中,CE DE a,23CD CE ==,在Rt DFH △中,12FH FD a ==,DH ,∴CH =,∴在Rt FCH △中,3FC a =,又由②③已证,2FC EF FG =⋅,:4:5FG EG =,设45FG m EG m ==,,则9EF m =,∴2493m m ⎛⎫⋅= ⎪ ⎪⎝⎭,解得18m a =±(负值舍去),∴FG a =,∴4cos 1GFH FH FG ∠==,故④正确,故选D .【点睛】本题考查菱形的性质,相似三角形的性质与判定,勾股定理以及解直角三角形,题目有一定难度,掌握相关性质定理正确推理计算是解题关键.11.2(2)x x -【分析】首先提取公因式x ,然后利用完全平方式进行因式分解即可.【详解】解:3244x x x-+()244x x x =-+2(2)x x =-,故答案为2(2)x x -.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.16【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顺序恰好为“数学、英语、语文”的情况,再利用概率公式求解即可求得答案.【详解】解:画树形图由树形图可知所有可能情况共6种,其中顺序恰好为“数学、英语、语文”的情况只有1种,所以顺序恰好为“数学、英语、语文”的概率为16.故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率等于所求情况数与总情况数之比.13.2+【分析】由题目作图知,AD 是∠CAB 的平分线,过点D 作DH ⊥AB ,则CD =DH =2,进而求解.【详解】解:过点D 作DH ⊥AB ,则DH =2,由题目作图知,AD 是∠CAB 的平分线,则CD =DH =2,∵△ABC 为等腰直角三角形,故∠B =45°,则△DHB 为等腰直角三角形,故BD ,则BC =CD +BD =2+,故答案为:2+【点睛】本题考查的是角平分线的性质,涉及到几何作图、等腰直角三角形的性质等,解题的关键是灵活运用所学知识解决问题.14.365【分析】过点D 作DN y ⊥轴于N ,过点B 作BM y ⊥轴于M ,可得2CN MN =,设OC a =,2CN b =,则MN b =,根据OABC 的面积为6表示出BM 的长度,根据3BC BD =求出ND 的长,进而表示出A ,D 两点的坐标,根据反比例函数系数k 的几何意义即可求出.【详解】解:过点D 作DN y ⊥轴于N ,过点B 作BM y ⊥轴于M ,∴DN BM ∥,∴CN CD MN BD=,∵3BC BD =,∴2CN CD MN BD ==,即2CN MN =,设OC a =,2CN b =,则MN b =,∵OABC 的面积为6,∴6BM a=,∵DN BM ∥,∴CDN CBM ∽△△,∴DN CD BM CB=,∵3BC BD =,∴23CD CB =,∴243ND BM a ==,∴A ,D 点坐标分别为6432b a b a a ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,,,,∴()6432b a b a a⋅=+,∴25b a =,∴623356365k b a a a =⋅=⨯=,故答案为:365.【点睛】本题主要考查了平行四边形的性质和反比例函数的几何意义,相似三角形的性质和判定,利用数形结合思想是解题的关键.15.43【分析】在CD 上截取CG =CF ,连接AG ,可得ACG DCF ≌,设AC =CD =3x ,则CF =CG =2x ,GD =x ,再证明GAB FEA ≌,进而即可求解.【详解】解:在CD 上截取CG =CF ,连接AG ,∵AC =CD ,∠ACG =∠DCF =90°,∴ACG DCF ≌,∴∠AGC =∠CFD ,设AC =CD =3x ,则CF =CG =2x ,GD =x ,∵∠EAB =∠EAF +∠CAB =∠CAB +∠B =90°,∴∠EAF =∠B ,∴∠E =∠CFD -∠EAF =∠AGC -∠B =∠GAB ,又∵AE =AB ,∴GAB FEA ≌,∴AF =BG =5x ,∴BD =BG -GD =4x ,∴BD CD =43.【点睛】本题主要考查全等三角形的判定和性质,添加辅助线,构造全等三角形,是解题的关键.16.1【分析】利用有理数的乘方、零指数幂法则、绝对值的意义以及特殊角的三角函数值进行化简即可得到结果.【详解】解:()0202311|12cos302π⎛⎫-+---+︒ ⎪⎝⎭11122=-+-+⨯1=++1=.【点睛】本题考查有理数的乘方,零指数幂,化简绝对值,特殊角的三角函数值,准确熟练地化简各式是解题的关键.17.13x -,3.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:2361693x x x x +⎛⎫÷+ ⎪-+-⎝⎭()2336333x x x x x +-⎛⎫=÷+ --⎝⎭-()23333x x x x ++=÷--()23333x x x x +-=⋅+-13x =-,当3x =+时,原式3=.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.(1)50,20;(2)86.4(3)3000人中大约有720人是A 型血【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m 的值;(2)计算出A 型人数百分比,从而可计算出A 型部分所占的圆心角的度数;(3)用3000乘以此百分比可估计这3000人中是A 型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m =1050×100=20;故答案为50,20;(2)A 型献血的人所占百分比为:1-46%-10%-20%=24%,A 型部分所占的圆心角的度数是:,360°×24%=86.4°,故答案为∶86.4;(3)这3000人中大约是A 型血约有:3000×24%=720(人).【点睛】本题考查了用样本估计总体、统计表、扇形统计图,解决本题的关键是综合运用以上知识.19.(1)见解析(2)6【分析】(1)依据三角形内心的性质可得BAD CAD ∠=∠,ABE CBE ∠=∠,由圆周角定理的推论可得CAD CBD BAD ∠=∠=∠.从而可证BED DBE ∠=∠,根据等角对等边即可得结论;(2)由D D DBF CAD BAD ∠=∠∠=∠=∠,,即可判定ABD BFD ∽ ,所以BD AD FD BD=,设EF x =,可化为4744x x x ++=+,解得2x =,从而可求DB 的长;【详解】(1)证明: 点E 是BAC ∠和ABC ∠角平分线的交点,∴AE 平分BAC ∠,BE 平分ABC ∠,∴BAD CAD ABE CBE ∠=∠∠=∠,,又 CAD ∠与CBD ∠所对弧为 DC,∴CAD CBD BAD ∠=∠=∠,∴BED ABE BAD DBE CBE CBD ∠=∠+∠∠=∠+∠,,即BED DBE ∠=∠,故DB DE =;(2)解: D D DBF CAD BAD ∠=∠∠=∠=∠,,∴ABD BFD ∽ ,∴BD AD FD BD=①, 43DF AE ==,,设EF x =,由(1)可得4DB DE x ==+,则①式化为4744x x x++=+,解得:1226x x =,=﹣(不符题意,舍去),则4426DB x =+=+=.【点睛】本题考查了三角形内心的性质、圆周角定理的推论,相似三角形的判定与性质,证明ABD BFD ∽ 是解题的关键.20.(1)每台甲型电脑的进价为5000元,每台乙型电脑的进价为4400元(2)购进66台甲型平板,14台乙型平板时利润W 取得最大,最大利润为38600元.【分析】(1)设每台乙型电脑的进价为x 元,则每台甲型电脑的进价为()600x +元,利用“用5万元购进甲型电脑与用4.4万元购进乙型电脑的数量相等”构建分式方程,解之即可得到答案;(2)由题意:购买资金不超过39.16万元,并且甲型电脑不少于乙型电脑的3倍,列出一元一次不等式组,解得6066m ≤≤,然后由一次函数的性质即可得出W 的最大值.【详解】(1)解:设每台乙型电脑的进价为x 元,则每台甲型电脑的进价为()600x +元,依题意,得:5000044000600x x=+,解得:4400x =,经检验,4400x =是原方程的解,且符合题意,∴6005000x +=.答:每台甲型电脑的进价为5000元,每台乙型电脑的进价为4400元;(2)解:设最大利润是W 元,∵购进m 台甲型电脑,∴购进()80m -台乙型电脑,依题意,得:()()()55005000480044008010032000W m m m =-+--=+.∵购买资金不超过39.16万元.甲型电脑不少于乙型电脑的3倍,∴()()5000440080391600380m m m m ⎧+-≤⎪⎨≥-⎪⎩,解得:6066m ≤≤,由10032000W m =+,∵1000k =>,∴W 随m 值的增大而增大,∴当66m =时,利润W 取得最大值,最大值100663200038600max W =⨯+=(元).答:购进66台甲型平板,14台乙型平板时利润W 取得最大,最大利润为38600元.【点睛】本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.21.(1)①关于y 轴对称;②1232,0,2x x x =-==;③10a -<<;(2)将函数()21y x =--的图象先向右平移2个单位长度,再向上平移3个单位长度可得到函数()21213y x =---+的图象,当123y <≤时,自变量x 的取值范围为02x <<或24x <<.【分析】(1)①根据函数图象可直接进行作答;②由函数图象及方程可得当y =-1时,自变量x 的值,则可看作直线y =-1与函数()21y x =--的图象交点问题,进而问题可求解;③由题意可看作直线y =a 与函数()21y x =--的图象有四个交点的问题,进而问题可求解;(2)由函数图象平移可直接进行求解,然后结合函数图象可求解x 的范围问题.【详解】解:(1)①由图象可得:该函数的一条性质为关于y 轴对称,(答案不唯一);故答案为关于y 轴对称;②由题意及图象可看作直线y =-1与函数()21y x =--的图象交点问题,如图所示:∴方程()211x --=-的解为1232,0,2x x x =-==;故答案为1232,0,2x x x =-==;③由题意可看作直线y =a 与函数()21y x =--的图象有四个交点的问题,如图所示:∴由图象可得若方程()21x a --=有四个实数根,则a 的取值范围是10a -<<;故答案为10a -<<;(2)由题意得:将函数()21y x =--的图象先向右平移2个单位长度,再向上平移3个单位长度可得到函数()21213y x =---+的图象,则平移后的函数图象如图所示:∴由图象可得:当123y <≤时,自变量x 的取值范围为02x <<或24x <<.【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.22.(1)BD =ED (2)正方形,理由见解析【分析】(1)根据直角三角形斜边中线等于斜边的一半可以得到AC =CD =BD ,根据旋转的性质可以得到CD =DE ,则DE =BD ,又在Rt △CGD 中,根据含30°的直角三角形边之间的关系可得结论;(2)①由∠CFD =∠EDM =∠CDM ,得CF =CD =ED ,又CF ∥DE ,则四边形CDEF 是平行四边形,又∠CDE =90°,CD=CE 证出四边形CDEF 是正方形;②由题意可得,∠EGB =∠FCH ,∠EBG =∠CFD ,则BEG FHC ∽,利用相似三角形的性质列比例式,结合DG =BG ,CD =CF ,则得BE BG GD FH FC CD ==;(3)过点D 作DN ⊥BC 于点N ,由()tan tan 60DG NDG a m DN ∠=-︒==,得NG =m ,所以BGm ,根据条件通过角的反复转换求出BEG 和FHC 的两个对应角相等,证明△BEG ∽△FHC ,DG =BG ,CD =CF ,最后得出2BE BG m FH FC ==.【详解】(1)解:∵∠ACB =90°,∴△ACB 为直角三角形,∵点D 为AB 的中点,∴AD =BD =CD ,∵旋转,∴BD =CD ,∴BD =ED ;∵∠A =60°,∴∠B =90°-∠A =30°,∵BD =CD ,∴∠DCG =∠B =30°,∵∠CDE =90°,∴tan tan 303GD DCG CD =∠=︒=;(2)①四边形CDEF 是正方形,理由如下:∵DM 平分∠CDE ,∠CDE =90°,∴∠CDF =∠EDF =45°,∵CF ∥DE ,∴∠DCF =180°-∠CDE =90°,∴△DCF 是等腰直角三角形,∴CD =CF ,∵CD =DE ,∴CF =DE ,∴四边形CDEF 是平行四边形,∵∠CDE =90°,CD =CE ,∴四边形CDEF 是正方形;②由(1)知,∠ADC =60°,∠CGD =60°,BD =DE ,∴∠BDE =∠BDC -∠CDG =30°,∴∠DBG =∠BDG =30°,∠EGB =60°,∴∠DBE =∠DEB =75°,∴45EBG DBE DBC ∠=∠-∠=︒,∵∠GDB =90°-∠ADE =30°,∠ABC =30°,∴∠GDB =∠ABC ,由(1)知∠CFD =∠CDF =45°,∠DCF =90°,∴∠FCH =∠DCF -∠DCB =60°,∴∠EGB =∠FCH ,∠EBG =∠CFD ,∴△BEG ∽△FHC ,∴BE BG FH FC=,∵DG =BG ,CD =CF ,∴BE BG GD FH FC CD ==(3)如图,过点D 作DN ⊥BC 于点N ,∴AC ∥DN ,∴∠ACD =∠CDN ,∵△ACD 是等边三角形,AC =2,∴FC =CD =AC =2,∠CDN =∠ACD =60°,∴∠NDG =α-60°,DN =1,∴tan ∠NDG =tan(α-60°)=DG m DN =,∴NG =m ,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,∴AB =4,BC =,∴BN =CN∴BG m ,∵∠ADC =60°,∠CDG =α,∴∠BDE =120°-α,∴302BEG BED α∠=∠=︒+,∴∠EBG =2α,∴180150BGE BEG EBG α∠=︒-∠-∠=︒-,∵DM 平分∠CDE ,∠CDE =α,∴∠CDM =∠EDM =2α,∵CF DE ,∴2CFD EDM α∠=∠=,∵∠DCF +∠CDE =180°,∴∠DCF =180°-α,∴∠FCG =150°-α,∴∠EGB =∠FCG ,∠EBG =∠CFD ,∴△BEG ∽△FHC ,∴BE BG FH FC =.【点睛】本题主要考查相似三角形的性质与判定,等腰三角形的性质与判定,含30°的直角三角形的边角关系,正方形的性质与判定,旋转的性质,利用三角函数求解,三角形内角和等知识点,证明△BEG ∽△FHC 是解题关键.。
深圳市2020年中考数学暨初中学业水平测试模拟试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2020的相反数的倒数是( )2020.A 2020.-B20201.C 20201.-D 2.(2019·绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.000 2米.将数0.000 2用科学记数法表示为( )A .0.2×10-3B .0.2×10-4C .2×10-3D .2×10-43.如图,直线a ∥b ,直角三角形如图放置,∠DCB =90°,若∠1+∠B =65°,则∠2的度数为( )A .20°B .25°C .30°D .35°4.(2019·深圳)下列哪个图形是正方体的展开图( )5.若分式xx -2在实数范围内有意义,则x 的取值范围是( )A .x≠0B .x≠2C .x =0D .x≠2且x≠0 6.(2019·张家界)下列说法正确的是( )A .打开电视机,正在播放“张家界新闻”是必然事件B .天气预报说“明天的降水概率为65%”,意味着明天一定下雨C .两组数据平均数相同,则方差大的更稳定D .数据5,6,7,7,8的中位数与众数均为77.如图,在直角梯形ABCD 中,AD∥BC,AB⊥BC,AD =2,BC =3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE ,CE ,则△ADE 的面积是( )A .1B .2C .3D .不能确定8.(2019·广州)若点A (-1,y 1),B (2,y 2),C (3,y 3)在反比例函数y =6x的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 1<y 2<y 39.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( )A.12x (x -1)=380 B .x (x -1)=380C.12x (x +1)=380 D .x (x +1)=380 10.(2019潍坊 中考)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin∠CAB =,DF =5,则BC 的长为( )A .8B .10C .12D .1611.(2019潍坊 中考)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2+bx +3﹣t =0(t 为实数)在﹣1<x <4的范围内有实数根,则t 的取值范围是( ) A .2≤t <11 B .t ≥2C .6<t <11D .2≤t <612.如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =的图象上,OA =5,OC =1,则△ODE的面积为( )A .2.5B .5C .7.5D .10第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上) 13.分解因式:a 3-2a 2b +ab 2= .14.对于实数a ,b ,定义运算“*”,a *b =⎩⎪⎨⎪⎧a 2-ab (a >b ),ab -b 2(a≤b),例如4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2= .15.(2019·黄冈)如图,AC ,BD 在AB 的同侧,AC =2,BD =8,AB =8.点M 为AB 的中点.若∠CMD =120°,则CD 的最大值为 .16.(2019聊城 中考)数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是整数)处,那么线段A n A 的长度为 (n ≥3,n 是整数).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(2019山西 中考)(本题共2个小题,每小题5分,共10分) (1)计算:02)2020(60tan 3)21(27-+︒--+-π(2)解方程组:⎩⎨⎧=+-=-②02①823y x y x18. 先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =.19.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数、中位数、众数如下表:学校平均数中位数众数甲校96.35 m99乙校95.85 97.5 99根据以上信息,回答下列问题:(1)m=________;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则他们在各自学校参与测试的老师中成绩的名次相比较更靠前的是________(选填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.20.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC 于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.21.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3 780元,则该水果每千克售价至少为多少元?22. 如图在O中,2,BC AB AC==,点D为AC上的动点,且10 cos B=.(1)求AB的长度;(2)求AD AE⋅的值;(3)过A点作AH BD⊥,求证:BH CD DH=+.点C (0,-3),与抛物线L 2:y =-12x 2-32x +2的一个交点为A ,且点A 的横坐标为2,点P ,Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A ,C ,P ,Q 为顶点的四边形恰为平行四边形,求出点P 的坐标; (3)设点R 是抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.参考答案深圳市2020年中考数学暨初中学业水平测试模拟试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2020的相反数的倒数是( )2020.A 2020.-B 20201.C 20201.-D【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,再结合倒数的定义进而得出答案.【解答】解:-2020的相反数是2020,2020的倒数是1.故选:C.2.(2019·绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.000 2米.将数0.000 2用科学记数法表示为( D )A.0.2×10-3B.0.2×10-4C.2×10-3D.2×10-43.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为( B )A.20°B.25°C.30°D.35°4.(2019·深圳)下列哪个图形是正方体的展开图( B )5.若分式xx-2在实数范围内有意义,则x的取值范围是( B )A.x≠0 B.x≠2 C.x=0 D.x≠2且x≠06.(2019·张家界)下列说法正确的是( D )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为77.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE,CE,则△ADE的面积是( A )A .1B .2C .3D .不能确定8.(2019·广州)若点A (-1,y 1),B (2,y 2),C (3,y 3)在反比例函数y =6x的图象上,则y 1,y 2,y 3的大小关系是( C )A .y 3<y 2<y 1B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 1<y 2<y 39.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( B )A.12x (x -1)=380 B .x (x -1)=380C.12x (x +1)=380 D .x (x +1)=380 10.(2019潍坊 中考)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin∠CAB =,DF =5,则BC 的长为( C )A .8B .10C .12D .1611.(2019潍坊 中考)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2+bx +3﹣t =0(t 为实数)在﹣1<x <4的范围内有实数根,则t 的取值范围是( D )A .2≤t <11B .t ≥2C .6<t <11D .2≤t <612.如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =的图象上,OA =5,OC =1,则△ODE的面积为()A.2.5 B.5 C.7.5 D.10【分析】过E作EF⊥OC于F,由等腰三角形的性质得到OF=DF,于是得到S△ODE=2S△OEF,由于点B、E在反比例函数y=的图象上,于是得到S矩形ABCO=k,S△OEF=k,即可得到结论.【解答】解:过E作EF⊥OC于F,∵OE=DE,∴OF=DF,∴S△ODE=2S△OEF,∵点B、E在反比例函数y=的图象上,∴S矩形ABCO=k,S△OEF=k,∴S△ODE=S矩形ABCO=5×1=5,故选:B.【点评】本题考查反比例函数系数k的几何意义,等腰三角形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上)13.分解因式:a3-2a2b+ab2= a(a-b)2 .14.对于实数a ,b ,定义运算“*”,a*b =⎩⎪⎨⎪⎧a 2-ab (a >b ),ab -b 2(a≤b),例如4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2= ±5 . 15.(2019·黄冈)如图,AC ,BD 在AB 的同侧,AC =2,BD =8,AB =8.点M 为AB 的中点.若∠CMD=120°,则CD 的最大值为 14 .16.(2019聊城 中考)数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是整数)处,那么线段A n A 的长度为 4﹣(n ≥3,n 是整数).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(2019山西 中考)(本题共2个小题,每小题5分,共10分) (1)计算:02)2020(60tan 3)21(27-+︒--+-π【解析】原式=5133433=+-+ (3)解方程组:⎩⎨⎧=+-=-②02①823y x y x【解析】(2)①+②得:84-=x ,解得2-=x ,将2-=x 代入②得:022=+-y ,解得1=y ∴原方程组的解为⎩⎨⎧=-=12y x18. 先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =.解:原式21(1)(1)11(1)1x x x x x x x -++-=⋅=-++把2x =代入得:原式13= 19.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数、中位数、众数如下表:学校 平均数 中位数 众数 甲校 96.35 m 99 乙校95.8597.599根据以上信息,回答下列问题: (1)m =________;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则他们在各自学校参与测试的老师中成绩的名次相比较更靠前的是________(选填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.解:(1)96.5;(2)王;(3)甲校96分以上的人数为20×6=120(人),∴乙校的96分以上的人数为2×120-100=140(人).21.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC 于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.解:(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∠DAD′=15°,∴α=15°.(2)∵∠C′B′D′=60°,∴∠EB′G=120°,∵∠EAG=60°,∴∠EAG+∠EB′G=180°,∴四边形EAGB′四点共圆,∴∠AEB′=∠AGD′,∵∠EAB′=∠GAD′,AB′=AD′,∴△AEB′≌△AGD′(AAS),∴EB′=GD′,AE=AG,∵AH=AH,∠HAE=∠HAG,∴△AHE≌△AHG(SAS),∴EH=GH,∵△EHB′的周长为2,∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,∴AB′=AB=2,∴菱形ABCD的周长为8.21.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3 780元,则该水果每千克售价至少为多少元?解:(1)设水果店第一次购进水果x 元,第二次购进水果y 元, 由题意得⎩⎪⎨⎪⎧x +y =2 000,y 4-1=2×x 4,解得⎩⎪⎨⎪⎧x =800y =1 200. ∴水果店第一次购进水果800元,第二次购进水果1 200元. (2)设该水果每千克售价为m 元,第一次购进800÷4=200(千克), 第二次购进1 200÷3=400(千克),由题意[200×(1-3%)+400×(1-4%)]m -2 000≥3 780. 解得m≥10.∴该水果每千克售价为10元.22. 如图在O 中,2,BC AB AC ==,点D 为AC 上的动点,且10cos B =. (1)求AB 的长度; (2)求AD AE ⋅的值;(3)过A 点作AH BD ⊥,求证:BH CD DH =+.22.解:(1)作AM BC⊥,,2AB AC AM BC BC =⊥=112BM CM BC ===10cos BM B AB ==,在Rt AMB ∆中,1BM = 10cos 110AB BM B ∴=÷=÷=. (2)连接DC AB AC =ACB ABC ∴∠=∠∵四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=,180ACE ACB ∠+∠=,ADC ACE ∴∠=∠CAE ∠公共EAC CAD ∴∆∆∽AC AEAD AC∴=()221010AD AE AC ∴⋅===.(3)在BD 上取一点N ,使得BN CD =在ABN ∆和ACD ∆中31AB AC BN CD =⎧⎪∠=∠⎨⎪=⎩()ABN ACD SAS ∴∆≅∆AN AD∴=,AN AD AH BD =⊥NH HD ∴=,BN CD NH HD ==BN NH CD HD BH ∴+=+=.23.(2019·连云港)如图,在平面直角坐标系xOy 中,抛物线L 1=y =x 2+bx +c 过点C(0,-3),与抛物线L 2:y =-12x 2-32x +2的一个交点为A ,且点A 的横坐标为2,点P ,Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A ,C ,P ,Q 为顶点的四边形恰为平行四边形,求出点P 的坐标; (3)设点R 是抛物线L 1上另一个动点,且CA 平分∠PCR,若OQ∥PR,求出点Q 的坐标. 解:(1)将x =2代入y =-12x 2-32x +2,得y =-3,故点A 的坐标为(2,-3),将A(2,-3),C(0,-3)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧-3=22+2b +c ,-3=0+0+c.解得⎩⎪⎨⎪⎧b =-2,c =-3.所以抛物线L 1对应的函数表达式为y =x 2-2x -3;(2)设点P 的坐标为(x ,x 2-2x -3).第一种情况:AC 为平行四边形的一条边.①当点Q 在点P 右侧时,则点Q 的坐标为(x +2,x 2-2x -3).将Q(x +2,x 2-2x -3)代入y =-12x 2-32x +2,得x 2-2x -3=-12(x +2)2-32(x +2)+2,整理得x 2+x =0,解得x 1=0,x 2=-1.因为x =0时,点P 与点C 重合,不符合题意,所以舍去,此时点P 的坐标为(-1,0);②当点Q 在点P 左侧时,则点Q 的坐标为(x -2,x 2-2x -3).将Q(x -2,x 2-2x -3)代入y =-12x 2-32x +2,得x 2-2x -3=-12(x -2)2-32(x -2)+2,整理得3x 2-5x -12=0,解得x 1=3,x 2=-43.此时点P 的坐标为(3,0)或⎝ ⎛⎭⎪⎫-43,139.第二种情况:当AC为平行四边形的一条对角线时.由AC 的中点坐标为(1,-3),得PQ 的中点坐标为(1,-3),故点Q 的坐标为(2-x ,-x 2+2x -3).将Q(2-x ,-x 2+2x -3)代入y =-12x 2-32x +2,得-x 2+2x -3=-12(2-x)2-32(2-x)+2,整理得x 2+3x =0,解得x 1=0,x 2=-3.因为x =0时,点P 与点C 重合,不符合题意,所以舍去,此时点P 的坐标为(-3,12).综上所述,点P 的坐标为(-1,0)或(3,0)或⎝ ⎛⎭⎪⎫-43,139或(-3,12);(3)点Q 坐标为(-7+652,-7+65)或(-7-652,-7-65)。
广东省深圳市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )A .B .C .D .2.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是( )A .B .C .D .3.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为24.如图,已知直线 PQ ⊥MN 于点 O ,点 A ,B 分别在 MN ,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C ,使△ABC 是等腰三角形,则这样的 C 点有( )A .3 个B .4 个C .7 个D .8 个5.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户)30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是216.2(3)-的化简结果为()A.3 B.3-C.3±D.97.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差8.下列各式计算正确的是()A.a4•a3=a12B.3a•4a=12a C.(a3)4=a12D.a12÷a3=a49.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.16+162B.16+82C.24+162D.4+4210.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π11.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.12.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm宽为bcm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A .4acmB .4()a b cm -C .2()a b cm +D .4bcm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.14.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,OA=OC ,OB=OD ,添加一个条件使四边形ABCD 是菱形,那么所添加的条件可以是___________(写出一个即可).15.如图,在平行四边形ABCD 中,E 为边BC 上一点,AC 与DE 相交于点F ,若CE=2EB ,S △AFD =9,则S △EFC 等于_____.16.分解因式2222x y z yz ---=______.17.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.18.设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在自动向西的公路l 上有一检查站A ,在观测点B 的南偏西53°方向,检查站一工作人员家住在与观测点B 的距离为7132km ,位于点B 南偏西76°方向的点C 处,求工作人员家到检查站的距离AC .(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,tan53°≈43)20.(6分)(1)|﹣2|+327•tan30°+(2018﹣π)0-(15)-1(2)先化简,再求值:(2xx x +﹣1)÷22121xx x-++,其中x的值从不等式组23241xx-≤⎧⎨-⎩<的整数解中选取.21.(6分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.22.(8分)如图,一次函数y=ax﹣1的图象与反比例函数kyx=的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=10,tan∠AOC=1 3(1)求a,k的值及点B的坐标;(2)观察图象,请直接写出不等式ax﹣1≥kx的解集;(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.23.(8分)对x,y定义一种新运算T,规定T(x,y)=22ax byx y++(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T(3,1)=22319314a b a b⨯+⨯+=+,T(m,﹣2)=242am bm+-.填空:T(4,﹣1)=(用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a与b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.24.(10分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.25.(10分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.26.(12分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m为符合条件的最小整数,求此方程的根.27.(12分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据俯视图可确定主视图的列数和每列小正方体的个数.【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.故答案选B.【点睛】由几何体的俯视图可确定该几何体的主视图和左视图.2.D【解析】【分析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.3.A【解析】【分析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.4.D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.5.C【解析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为110(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51-30=21,方差为110[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故选C.考点:1.方差;2.中位数;3.众数;4.极差.6.A【解析】2(3)93-==.故选A.考点:二次根式的化简7.D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。
广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题10小题,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.3-倒数是( )A. B. 13 C. 13- D. 3-2.我国将在2020年发射火星探测器,开展火星全球性和综合性探测.已知地球与火星的最近距离约为5500万千米,将数据”5500万”用科学记数法可表示为( )A. 5.5×106B. 5.5×107C. 55×106D. 0.55×108 3.如图,AB=DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 是( )A. BC=BEB. ∠A=∠DC. ∠ACB=∠DEBD. AC=DE4.下列计算正确的是( )A. 22434a a a +=B. 22(5)25-=-a aC. 28(2)4a b ab ab ÷-=-D. 22()()a b a b a b +-=-5.使式子32x x +-有意义的的取值范围是( ) A. 2x ≠ B. 3x >-且2x ≠C. 3x ≥且2x ≠D. 3x ≥-且2x ≠ 6.已知线段,,小明用如图所示的方法作ABC ∆,他的具体作法是①作射线AM ,以点为圆心,线段的长为半径画弧,交射线AM 于点;②分别以点,为圆心,大于12AB 长为半径画弧,两弧交于,两点;③作直线DE ,交AB 于点;④以点为圆心,线段的长为半径画弧,交直线DE 于点,连接AC ,BC .下列关于小明作的ABC ∆的说法,错误的是( )A AF BF = B. CAB CBA ∠=∠ C. ACF BCF ∠=∠ D. AB BC =7.如图,AB 是半圆的直径,4AB =,点,在半圆上,OC AB ⊥,2BD CD =,点是OC 上的一个动点,则BP DP +的最小值为( )A. 23B. 22C.D. 338.在平面直角坐标系中,点的坐标为(),m n ,从,,这三个数中任取一个数作为的值,再从余下的两个数中任取一个数作为的值,则点在坐标轴上的概率是( )A. 13B. 12C. 23D. 349.如图,是一个几何体的三视图,则该几何体的表面积是( )A. 27cm πB. 2322cm π⎛⎫+ ⎪ ⎪⎝⎭C. 26cm πD. )235cm π 10.如图,在ABOC 中,对角线OA ,BC 交于点,双曲线k y x=()0k <经过,两点若ABOC 的面积为,则的值是( )A. 52-B. 103-C. 4-D.二、填空题(本大题7小题,请将下列各题的正确答案填写在答题卡相应的位置上)11.分解因式:2393a a ++=________.12.已知正n 边形的一个外角是45°,则n =____________13.如图,在四边形ABCD 中,对角线AC ,BD 交于点,OA OC =,OB OD =,试添加一个条件:________,使四边形ABCD 矩形.14.如图,在Rt △ABC 中,∠ACB=90°,点D 、点E 分别是边AB 、AC 的中点,点F 在AB 上,且EF ∥CD .若EF=2,则AB= .15.如图,将半径为,圆心角为120︒的扇形OAB 绕点逆时针旋转,点,的对应点分别为点,.当点恰好落在AB 上时,阴影部分的面积为________.16.规定运算:对于函数n y x =(为正整数),规定1n y nx -=.例如:对于函数4y x =,有3y x '=.已知函数3y x =,若18y '=,则的值为_______.17.如图,正方形ABCD 的边长为2,为坐标原点,AB 和AD 分别在轴、轴上,点是BC 边的中点,过点的直线y kx =交线段DC 于点,连接EF ,若FA 平分DFE ∠,则的值为__________.三、解答题18.解不等351342163x x x x -<+⎧⎪--⎨⎪⎩式组,并把解集在数轴上表示出来.19.先化简,再求值22b a ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中31a =+,b =1. 20.港珠澳大桥(英文名称:Hong Kong-Zhuhai-Macao Bridge )是中国境内一座连接香港、广东珠海和澳门的桥隧工程,位于中国广东省珠江口伶洋海域内,为珠江三角洲地区环线高速公路南环段.港珠澳大桥于2009年月日动工建设;于2017年月日实现主体工程全线贯通;于2018年月日完成主体工程验收;同年月24日上午时开通运营.广东某校数学”综合与实践”小组的同学把”测量港珠澳大桥某一段斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间完成该桥斜拉索实地测量,测量结果如下表 项目内容 课题 测量港珠澳大桥某一段斜拉索顶端到桥面的距离测量示意图说明:两侧斜拉索AC ,BC 相交于点,分别与桥面交于,两点,且点,,在同一竖直平面内测量数据 A ∠的度数B 的度数 AC 的长度37︒29︒416米︒≈,(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点到AB的距离(参考数据:sin370.60︒≈,sin290.48︒≈,cos290.87︒≈,tan370.75cos370.80≈︒);︒,tan290.55≈(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可)?21.北京和上海都有检测新冠肺炎病毒的仪器可供外地使用,其中北京有台,上海有台.(1)已知武汉需要台,温州需要台,从北京、上海将仪器运往武汉、温州的费用如下表所示,有关部门计划用8000元运送这些仪器.请你设计一种运送方案,使武汉、温州能得到所需仪器,而且运费正好够用.(2)为了节约运送资金,中央防控工作组统一调配仪器,分配到温州的仪器不能超过台,则如何调配?终点温州武汉起点北京400800上海30050022.书法是我国的文化瑰宝,研习书法能培养高雅的品格某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用,,,表示,并将测试结果绘制成如下两幅不完整的统计图.书写能力等级测试条形统计图:书写能力等级测试扇形统计图:请根据统计图中的信息解答以下问题:(1)本次抽取的学生共有______人,扇形统计图中所对应扇形的圆心角是_______;(2)把条形统计图补充完整;(3)依次将优秀、良好、及格、不及格记为分、分、70分、分,则抽取的这部分学生书写成绩的众数是_______,中位数是_______,平均数是________;(4)若该校共有学生2800人,请估计一下,书写能力等级达到优秀的学生大约有多少人?23.如图①,在ABC ∆中,AB AC =,点,分别是边BC ,AC 上的点,且ADE B ∠=∠.(1)若5AB =,6BC =,设BD x =,AE y =,求关于的函数关系式;(2)如图②,AB AC =,AD DE ⊥于点,BE DE ⊥于点,AF BC ⊥于点,点在线段DE 上,10BC =,8AF =,6AD =,9BE =,求DE 的长.24.如图,AB 是O 的直径,为O 上一点,点是半径OB 上一动点(不与,重合),过点作射线l AB ⊥,分别交弦BC ,BC 于,两点,在射线上取点,使FC FD =.(1)求证:FC 是O 的切线.(2)当是BC 的中点时;①若60BAC ∠=︒,求证:以,,,为顶点的四边形是菱形; ②若3tan 4ABC ∠=,且20AB =,求DE 的长. 25.如图,已知抛物线2y x bx c =-++与轴交于,两点,过点直线与抛物线交于点,其中点的坐标是()1,0,点的坐标是()2,3-,抛物线的顶点为点.(1)求抛物线和直线AC 的解析式.(2)若点是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点的坐标.(3)若抛物线的对称轴与直线AC 相交于点,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点,以,,M ,为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.答案与解析一、选择题(本大题10小题,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.3-的倒数是( )A. B. 13C.13- D. 3-【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C2.我国将在2020年发射火星探测器,开展火星全球性和综合性探测.已知地球与火星的最近距离约为5500万千米,将数据”5500万”用科学记数法可表示为()A. 5.5×106B. 5.5×107C. 55×106D. 0.55×108【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】5500万=55000000=5.5×107,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是( )A. BC=BEB. ∠A=∠DC. ∠ACB=∠DEBD. AC=DE【答案】D【解析】【分析】 本题要判定△ABC ≌△DBE ,已知AB=DB ,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.【详解】解:A 、添加BC=BE ,可根据SAS 判定△ABC ≌△DBE ,故正确;B 、添加∠ACB=∠DEB ,可根据ASA 判定△ABC ≌△DBE ,故正确.C 、添加∠A=∠D ,可根据ASA 判定△ABC ≌△DBE ,故正确;D 、添加AC=DE ,SSA 不能判定△ABC ≌△DBE ,故错误;故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.下列计算正确的是( )A. 22434a a a +=B. 22(5)25-=-a a C. 28(2)4a b ab ab ÷-=-D. 22()()a b a b a b +-=- 【答案】D【解析】【分析】直接根据合并同类项法则、完全平方公式、单项式除单项式法则及平方差公式计算即可.【详解】解:22234a a a +=,故选项A 错误; 22(5)1025a a a -=-+,故选项B 错误;28(2)4a b ab a ÷-=-,故选项C 错误;22()()a b a b a b +-=-,故选项D 正确;故选:D .【点睛】本题主要考查了合并同类项法则、完全平方公式、单项式除单项式法则及平方差公式的应用,熟练掌握相关运算法则及乘法公式是解决本题的关键.5.使式子32x x +-有意义的的取值范围是( ) A. 2x ≠ B. 3x >-且2x ≠C. 3x ≥且2x ≠D. 3x ≥-且2x ≠ 【答案】D【解析】【分析】先根据分式和二次根式有意义的条件列出不等式组,再求解即可.【详解】解:由题意得:3020x x +≥⎧⎨-≠⎩解得:3x ≥-且2x ≠故答案为D .【点睛】本题考查了分式和二次根式有意义的条件,根据题意列出不等式组是解答本题的关键. 6.已知线段,,小明用如图所示的方法作ABC ∆,他的具体作法是①作射线AM ,以点为圆心,线段的长为半径画弧,交射线AM 于点;②分别以点,为圆心,大于12AB 长为半径画弧,两弧交于,两点;③作直线DE ,交AB 于点;④以点为圆心,线段的长为半径画弧,交直线DE 于点,连接AC ,BC .下列关于小明作的ABC ∆的说法,错误的是( )A. AF BF =B. CAB CBA ∠=∠C. ACF BCF ∠=∠D. AB BC =【答案】D【解析】【分析】 根据垂直平分线的判定、等腰三角形的性质即可得到答案.【详解】解:由题意得:DE 垂直平分AB ,∴AF =BF (故A 选项正确),CF ⊥AB ,∴CA =CB ,∴∠CAB =∠CBA ,(故B 选项正确)∵CA =CB ,CF ⊥AB ,∴∠ACF =∠BCF ,(故C 项正确)不能证明AB=BC ,故D 错误;故选:D .【点睛】本题主要考查了垂直平分线的判定及性质、等腰三角形的性质,熟练掌握垂直平分线的判定是解决本题的关键.7.如图,AB 是半圆的直径,4AB =,点,在半圆上,OC AB ⊥,2BD CD =,点是OC 上的一个动点,则BP DP +的最小值为( )A. 23B. 22C.D. 33【答案】A【解析】【分析】 连接AD 与OC 相交于点P ,连接BD ,OD ,则由垂直平分线的性质,得到AP=BP ,则BP DP +的最小值为AD 的长度,由圆周角定理得到∠BOD=60°,即可求出的长度.【详解】解:连接AD 与OC 相交于点P ,连接BD ,OD ,如图:∵OC AB ⊥,点O 是AB 的中点,∴OC 垂直平分AB ,∴AP=BP ,∴BP DP +的最小值为AD 的长度;∵AB 为直径,则∠ADB=90°,∵∠BOC=90°,2BD CD=,∴∠BOD=60°,∴△OBD是等边三角形,∴BD=OB=12 2AB=,∴224223AD=-=;∴BP DP+的最小值为23;故选:A.【点睛】本题考查了圆周角定理,垂直平分线的性质定理,等边三角形的判定和性质,以及勾股定理,解题的关键是熟练掌握所学的知识,正确求出BD的长度.8.在平面直角坐标系中,点的坐标为(),m n,从,,这三个数中任取一个数作为的值,再从余下的两个数中任取一个数作为的值,则点在坐标轴上的概率是()A. 13B.12C.23D.34【答案】C【解析】【分析】利用树状图得出所有的情况,从中找到使点P落在坐标轴上的结果数,再根据概率公式计算可得.【详解】解:画树状图如下由树状图知,共有6种等可能结果,其中使点P在轴上的有4种结果,∴点P在坐标轴上的概率是42 63 =故选:C【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.9.如图,是一个几何体的三视图,则该几何体的表面积是()A. 27cm πB. 2322cm π⎛⎫+ ⎪ ⎪⎝⎭C. 26cm πD. ()235cm π+ 【答案】A【解析】【分析】 先根据三视图确定立体图形的形状,然后再运用圆的面积、长方形的面积以及扇形的面积公式计算即可.【详解】解:由题意可知该立体图形为下部是圆柱、上部是圆锥,则侧面积包括一个圆形底面积,一个长方形侧面积和顶部圆锥的扇形侧面积圆形底面积为:22=2ππ⎛⎫ ⎪⎝⎭长方形侧面积为:2π·2=4π由题意可知:顶部圆锥的母线长为2顶部圆锥的扇形侧面积:1122222lr ππ=⨯⨯= 所以该立体图形的侧面积为7π故答案为A .【点睛】本题考查了由三视图确定立体图形的形状、扇形形面积的计算等知识点,其中通过三视图确定立体图形的形状是解答本题的关键.10.如图,在ABOC 中,对角线OA ,BC 交于点,双曲线k y x=()0k <经过,两点若ABOC 的面积为,则的值是( )A. 52-B. 103-C. 4-D.【解析】【分析】设E 的坐标是(m ,n),则mn=k ,平行四边形ABOC 中E 是OA 的中点,则A 的坐标是:(2m ,2n),C 的纵坐标是2n ,表示出C 的横坐标,则可以得到AC 即OB 的长,然后根据平行四边形的面积公式即可求得k 的值.【详解】解:设E 的坐标是(m ,n),则mn=k ,∵平行四边形ABOC 中E 是OA 的中点,∴A 的坐标是:(2m ,2n),C 的纵坐标是2n ,把y=2n 代入k y x= 得:x=2k n ,即C 的横坐标是:2k n . ∴OB=AC=2k n -2m ,OB 边上的高是2n , ∴(2k n,-2m)•2n=10, 即k-4mn=10,∴k -4k=10,解得:k=-103. 故选:B .【点睛】本题是平形四边形与反比例函数的综合应用,根据E 点的坐标表示出AC 的长度是关键.二、填空题(本大题7小题,请将下列各题的正确答案填写在答题卡相应的位置上)11.分解因式:2393a a ++=________.【答案】23(31)a a ++【解析】分析】原式提取公因式3即可.【详解】解:223933(31)a a a a ++=++,故答案为:23(31)a a ++.【点睛】此题考查了因式分解——提公因式法,熟练掌握因式分解的方法是解本题的关键.12.已知正n 边形的一个外角是45°,则n =____________【答案】8【详解】解:∵多边形的外角和为360°,正多边形的一个外角45°,∴多边形得到边数360÷45=8,所以是八边形.故答案813.如图,在四边形ABCD 中,对角线AC ,BD 交于点,OA OC =,OB OD =,试添加一个条件:________,使四边形ABCD 为矩形.【答案】AC =BD【解析】【分析】先证明四边形ABCD 是平行四边形,再由对角线相等即可得出四边形ABCD 是矩形.【详解】解:∵OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当AC =BD 时,四边形ABCD 是矩形(对角线相等的平行四边形是矩形);故答案为:AC =BD .(答案不唯一)【点睛】本题考查了平行四边形的判定、矩形的判定方法,熟练掌握平行四边形和矩形的判定方法,并能进行推理论证是解决问题的关键.14.如图,在Rt △ABC 中,∠ACB=90°,点D 、点E 分别是边AB 、AC 的中点,点F 在AB 上,且EF ∥CD .若EF=2,则AB= .【答案】8.【解析】【分析】由E 是AC 中点且EF ∥CD 知CD=2EF=4,再根据Rt △ABC 中D 是AB 中点知AB=2CD ,据此可得.【详解】解:∵E 是AC 中点,且EF ∥CD ,∴EF是△ACD的中位线,则CD=2EF=4,在Rt△ABC中,∵D是AB中点,∴AB=2CD=8,故答案为8.【点睛】本题主要考查三角形中位线定理,解题的关键是掌握中位线定理及直角三角形斜边上的中线的性质.15.如图,将半径为,圆心角为120︒的扇形OAB绕点逆时针旋转,点,的对应点分别为点,.当点恰好落在AB上时,阴影部分的面积为________.【答案】843 3π+【解析】【分析】连接OC,先证明△AOC是等边三角形,再根据S阴=S扇形ACD﹣(S扇形AOC﹣S△AOC)计算即可.【详解】解:如图,连接OC.由题意得:AO=AC=OC,∴△AOC是等边三角形,∴∠AOC=60°,∴S阴=S扇形ACD﹣(S扇形AOC﹣S△AOC)=21204360π⋅⋅﹣(2604360π⋅⋅﹣14232⨯⨯)=8433π+,故答案为:8433π+.【点睛】本题考查扇形面积计算,旋转变换,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.规定运算:对于函数n y x =(为正整数),规定1n y nx -=.例如:对于函数4y x =,有3y x '=.已知函数3y x =,若18y '=,则的值为_______. 【答案】±6【解析】【分析】首先根据新定义求出函数y=x 3中的n ,再与方程y′=18组成方程组得出:3x 2=18,用直接开平方法解方程即可.【详解】解:由函数y=x 3得n=3,则y′=3x 2,∴3x 2=18,x 2=6,x=±6,故答案为:±6.【点睛】本题考查了利用直接开平方法解一元二次方程,同时还以新定义的形式考查了学生的阅读理解能力;注意:①二次项系数要化为1,②根据平方根的意义开平方时,是两个解,且是互为相反数,不要丢解. 17.如图,正方形ABCD 边长为2,为坐标原点,AB 和AD 分别在轴、轴上,点是BC 边的中点,过点的直线y kx =交线段DC 于点,连接EF ,若FA 平分DFE ∠,则的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF =⎧⎨=⎩∴ Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1 ,222251AE AB BE GE AE AG ∴=+=∴=-=∵在 Rt △FCE 中,EF 2= FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23, ∴点F (23,2) 把点F 的坐标代入y kx =得:2=23k ,解得k=3 ②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2, 2)把点F 的坐标代入y kx =得: 2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..三、解答题18.解不等351342163x x x x -<+⎧⎪--⎨⎪⎩式组,并把解集在数轴上表示出来.【答案】23x -≤<.【解析】【分析】利用不等式的性质解不等式方程组,通过数轴标识出交集. 【详解】351? 342163x x x x -<+⎧⎪--⎨≤⎪⎩由351x x -<+ 得26, 3x x <<;由342163x x --≤ 得34216663x x --⨯≤⨯ 解得()34221x x -≤-, 2x ≥- 所以23x -≤< 是原不等式方程组的解集.如图,数轴中灰色部分为不等式方程解集.【点睛】本题考查解不等式方程组,利用不等式性质解不等式方程为本题的关键.19.先化简,再求值22b a ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中31a =,b =1. 【答案】1a b --,﹣33. 【解析】【分析】先计算括号里,再将除法转换成乘法,约分化简,最后将a 、b 的值代入计算. 【详解】原式=﹣a b a -÷222a ab b a-+=﹣2()a b a a a b --=﹣1a b-, 当a =3+1,b =1时,原式=﹣13=﹣33. 【点睛】考查了分式的化简求值,解题关键是熟记其计算法则,正确化简.20.港珠澳大桥(英文名称:Hong Kong-Zhuhai-Macao Bridge )是中国境内一座连接香港、广东珠海和澳门的桥隧工程,位于中国广东省珠江口伶洋海域内,为珠江三角洲地区环线高速公路南环段.港珠澳大桥于2009年月日动工建设;于2017年月日实现主体工程全线贯通;于2018年月日完成主体工程验收;同年月24日上午时开通运营.广东某校数学”综合与实践”小组的同学把”测量港珠澳大桥某一段斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间完成该桥斜拉索实地测量,测量结果如下表项目内容 课题 测量港珠澳大桥某一段斜拉索顶端到桥面的距离测量示意图说明:两侧斜拉索AC ,BC 相交于点,分别与桥面交于,两点,且点,,在同一竖直平面内测量数据 A ∠的度数B 的度数 AC 的长度37︒29︒416米(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点到AB 的距离(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,sin290.48︒≈,cos290.87≈︒,tan290.55≈︒);(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可)? 【答案】(1)249.6m;(2)测量工具【解析】分析】(1)过点C作CD⊥AB于点D,构造直角三角形,利用∠A的正弦即可求解;(2)根据测量需要填写即可,这是一个开放性的问题,只要合理都行.【详解】解:(1)如图所示,过点C作CD⊥AB于点D.在Rt△ACD中,∠ADC=90°,∠A=37°,AC=416∴sin37CD AC︒=,即CD=AC·sin37°≈416×0.6=249.6(m)(2)测量工具、计算过程、人员分工、指导老师、活动经费、活动感受等.(答案合理即可)【点晴】本题考查了三角函数的实际应用,构造直角三角形是解题的关键.21.北京和上海都有检测新冠肺炎病毒的仪器可供外地使用,其中北京有台,上海有台.(1)已知武汉需要台,温州需要台,从北京、上海将仪器运往武汉、温州的费用如下表所示,有关部门计划用8000元运送这些仪器.请你设计一种运送方案,使武汉、温州能得到所需仪器,而且运费正好够用.(2)为了节约运送资金,中央防控工作组统一调配仪器,分配到温州的仪器不能超过台,则如何调配?终点起点温州武汉北京400800上海300500【答案】(1)从北京运往温州4台,运往武汉6台,从上海运往温州2台,运往武汉2台;(2)从上海配送4台到温州,从北京配送1台到温州,武汉9台【解析】【分析】(1)设北京运往温州x台,则上海运往温州y台,由题意得等量关系列出方程组,解方程组即可.(2)结合表格的数据,即可得到运送资金最低的方案.【详解】解:(1)解:设从北京运往温州x台,从上海运往温州y台.依题意,得6,400(10)800300(4)5008000, x yx x y y+=⎧⎨+-⨯++-⨯=⎩解得4,2. xy=⎧⎨=⎩从北京运往武汉:10-x=10-4=6(台);从上海运往武汉:4-y=4-2=2(台);答:从北京运往温州4台,运往武汉6台;从上海运往温州2台,运往武汉2台.(2)由表格中的数据可得出,上海运送到温州的费用最低,其次是北京运送到温州的费用,且分配到温州的仪器不能超过5台,∴为了节约资金,从上海配送4台到温州,从北京配送1台到温州,武汉9台.【点睛】此题主要考查了二元一次方程组的应用以及一次函数的应用,得到北京和上海运往各地的机器台数的代数式是解决本题的突破点,得到总运费的等量关系是解决本题的关键.22.书法是我国的文化瑰宝,研习书法能培养高雅的品格某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用,,,表示,并将测试结果绘制成如下两幅不完整的统计图.书写能力等级测试条形统计图:书写能力等级测试扇形统计图:请根据统计图中的信息解答以下问题:(1)本次抽取的学生共有______人,扇形统计图中所对应扇形的圆心角是_______;(2)把条形统计图补充完整;(3)依次将优秀、良好、及格、不及格记为分、分、70分、分,则抽取的这部分学生书写成绩的众数是_______,中位数是_______,平均数是________;(4)若该校共有学生2800人,请估计一下,书写能力等级达到优秀的学生大约有多少人?【答案】(1)40,36;(2)见解析;(3)70,70,66.5;(4)280【解析】【分析】(1)由C等级人数及其所占百分比可得总人数,用360°乘以A等级人数所占比例即可得;(2)总人数减去A、C、D的人数可求出B等级的人数,从而补全图形;(3)根据众数、中位数及平均数的定义即可求得答案;(4)利用总人数乘以样本中A等级人数所占比例即可得.【详解】解:(1)本次抽取的学生人数是16÷40%=40(人),扇形统计图中A所对应扇形圆心角的度数是360°×440=36°,故答案为:40、36;(2)B等级人数为40﹣(4+16+14)=6(人),补全的条形统计图如下:(3)∵及格的人数最多,∴众数为70,∵抽取的总人数共40人,∴中位数是第20和第21个的平均数,∴中位数为70,平均数为4906801670145066.540⨯+⨯+⨯+⨯=故答案为:70、70、66.5;(4)等级达到优秀的人数大约有2800×440=280(人). 答:书写能力等级达到优秀的学生大约有280人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确它们各自的含义,利用数形结合的思想解答.23.如图①,在ABC ∆中,AB AC =,点,分别是边BC ,AC 上的点,且ADE B ∠=∠.(1)若5AB =,6BC =,设BD x =,AE y =,求关于的函数关系式;(2)如图②,AB AC =,AD DE ⊥于点,BE DE ⊥于点,AF BC ⊥于点,点在线段DE 上,10BC =,8AF =,6AD =,9BE =,求DE 的长.【答案】(1)216555y x x =-+;(25319+【解析】【分析】(1)先证明△ABD ∽△DCE ,进而可得AB•CE=BD•CD ,由此可得关于的函数关系式;(2)先利用等腰三角形的三线合一证得AF ⊥BC ,BF =5,再利用勾股定理计算即可求得答案.【详解】(1)证明:∵AB=AC ,∴∠B=∠C .∵∠ADC 为△ABD 的外角,∴∠ADC=∠ADE+∠EDC=∠B+∠DAB .∵∠ADE=∠B ,∴∠BAD=∠CDE .又∠B=∠C ,∴△ABD ∽△DCE .∴AB BD CD CE =, ∴AB•CE=BD•CD , 则5×(5-y )=x•(6-x ), 整理,得216555y x x =-+. (2)解:∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=5. ∴在Rt △ACF 中,AC=22228589AF CF +=+=. ∴在Rt △ACD 中,DC=2222(89)653AC AD -=-=. 在Rt △BCE 中,CE=222210919BC BE -=-=.∴DE=DC+CE=5319+.【点睛】本题考查了等腰三角形的性质、相似三角形的判定及性质、勾股定理的应用,熟练掌握相似三角形的判定及性质是解决本题的关键.24.如图,AB 是O 的直径,为O 上一点,点是半径OB 上一动点(不与,重合),过点作射线l AB ⊥,分别交弦BC ,BC 于,两点,在射线上取点,使FC FD =.(1)求证:FC 是O 的切线.(2)当是BC 的中点时;①若60BAC ∠=︒,求证:以,,,为顶点的四边形是菱形;②若3tan 4ABC ∠=,且20AB =,求DE 的长. 【答案】(1)见解析;(2)①见解析,②5【解析】【分析】(1)如图1,连接OC.则OC=OB,根据等腰三角形的性质等边对等角可得:∠OBC=∠OCB.再由垂直的定义可得∠BPD=90°.又根据三角形的内角和定理可得∠OBC+∠BDP=90°.由FC=FD可得∠FCD=∠FDC.又因为∠FDC=∠BDP,所以∠OCB+∠FCD=90°,从而可证明.(2)①如图2,连接OE,BE,CE.先由已知条件证出△BOE,△OCE均为等边三角形,再根据等边三角形的三条边相等可证得:OB=BE=CE=OC,从而根据四条边相等的四边形是菱形可证得结果.②构造直角三角形,利用三角函数和勾股定理求即可.【详解】(1)证明:如图1,连接OC.∵OB=OC,∴∠OBC=∠OCB.∵PF⊥AB,∴∠BPD=90°.∴∠OBC+∠BDP=90°.∵FC=FD,∴∠FCD=∠FDC.又∵∠FDC=∠BDP,∴∠OCB+∠FCD=90°,即∠OCF=90°.∴FC是⊙O的切线.图1(2)①证明:如图2,连接OE,BE,CE.∵AB是⊙O的直径,∴∠ACB=90°.∵∠BAC=60°,∴∠BOC=2∠BAC=120°.∵E是BC的中点,即BE EC,∴∠BOE=∠COE=60°.又∵OB=OE=OC,∴△BOE,△OCE均为等边三角形.∴OB=BE=CE=OC.∴四边形BOCE是菱形.②解:如图2,记OE与BC的交点为H.∵AB是⊙O的直径,∴∠ACB=90°.∴在Rt △ABC 中,tan ∠ABC=AC BC =34. 设AC=3k ,BC=4k (k >0).∵AC 2+BC 2=AB 2, ∴(3k)2+(4k)2=202,解得k=4.∴AC=12,BC=16.∵E 是BC 的中点,OE 是⊙O 的半径,∴OE ⊥BC ,BH=CH=12BC=8. ∵S △BOE=12OE·BH=12OB·PE ,OE=OB=12AB=10, ∴PE=OE BH OB ⋅=10810⨯=8. 在Rt △OPE 中,OP=22OE PE -=22108-=6.∴BP=OB-OP=10-6=4.在Rt △BPD 中,DP BP =tan ∠ABC=34,∴DP=34BP=34×4=3. ∴DE=PE-DP=8-3=5.图2【点晴】本题是圆的综合题,难度较大,灵活运用知识作出合理的辅助线构造直角三角形是解题的关键.25.如图,已知抛物线2y x bx c =-++与轴交于,两点,过点的直线与抛物线交于点,其中点的坐标是()1,0,点的坐标是()2,3-,抛物线的顶点为点.。
广东省珠海市斗门区2020届中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−66的相反数是()A. −66B. 66C. 166D. −1662.下列手机软件图标中,是中心对称图形的有()A. B. C. D.3.人类与病毒的斗争是长期的,不能松懈.据中央电视台报道,截止北京时间2020年6月30日凌晨,全球新冠肺炎患者确诊病例达到1002万.1002万用科学记数法表示,正确的是()A. 1.002×107B. 1.002×106C. 1002×104D. 1.002×102万4.若直线y=kx+b经过一、二、四象限,则直线y=bx−k的图象只能是图中的()A. B. C. D.5.下列计算正确的是()A. 2a+b=2abB. a3÷a=a2C. (a−1)2=a2−1D. (2a)3=6a36.初三一班五个劳动竞赛小组一天植树的棵数分别是:10,10,12,x,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是()A. 8B. 9C. 10D. 117.下列说法中属于平行四边形判别方法的有()①两组对边分别平行的四边形是平行四边形②平行四边形的对角线互相平分③两组对边分别相等的四边形是平行四边形④平行四边形的每组对边平行且相等⑤两条对角线互相平分的四边形是平行四边形⑥一组对边平行且相等的四边形是平行四边形.A. 6个B. 5个C. 4个D. 3个8.已知一元二次方程(m−1)x2−4mx+4m−2=0有实数根,则m的取值范围是()A. m≤1B. m≥13且m≠1C. m≥1D. −1<m≤19.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=10cm,CD=12cm,则AE的长为()A. 2cmB. 8cmC. 16cmD. 18cm10.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A. 50°B. 60°C. 70°D.80°二、填空题(本大题共7小题,共28.0分)11.使√3x−1在实数范围有意义,则x的取值范围是_________.12.因式分解:3y2−27=______ .13.13.一个多边形的内角和是它的外角和的3倍,则这个多边形是_____边形.14.从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是______.15.计算:1a−2+a−3a−2=_____.16.如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=______m.(结果保留根号)17.一串图形按如图所示的规律排列,则第10个图形有个五角星.三、解答题(本大题共8小题,共62.0分)18. 计算:(−12)−2−(2019+π)0−|2−√5|19. 解二元一次方程组:{2x +y =2,8x +3y =9.20. 如图,已知△ABC(AC <BC),用尺规在BC 上确定一点P ,使PA +PC =BC.(不写作法,保留作图痕迹.)21. 2014年西非埃博拉病毒疫情是自2014年2月开始爆发于西非的大规模病毒疫情,截至2014年12月02日,世界卫生组织关于埃博拉疫情报告称,几内亚、利比里亚、塞拉利昂、马里、美国以及已结束疫情的尼日利亚、塞内加尔与西班牙累计出现埃博拉确诊、疑似和可能感染病例17290例,其中6128人死亡.感染人数已经超过一万,死亡人数上升趋势正在减缓,在病毒传播中,每轮平均1人会感染x 个人,若1个人患病,则经过两轮感染就共有81人患病.(1)求x 的值;(2)若病毒得不到有效控制,三轮感染后,患病的人数会不会超过700人?22.如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是______;(2)EB与ED相等吗?证明你的结论.(x>0)的图象与直线y=x−2交于点A(3,m).23.如图,在平面直角坐标系xOy中,函数y=kx(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x−2于点M,过点P作平(x>0)的图象于点N.行于y轴的直线,交函数y=kx①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.24.如图,AB是⊙O的直径,C是BD⏜的中点,CE⊥AB于E,BD交CE于点F,BD交CA于点H.(1)求证:点B、C、H在以点F为圆心的圆上;(2)若CD﹦6,AC﹦8,求⊙O的半径和CE的长.25.抛物线y=ax2−2ax−3a与x轴交于A、B两点(其中A在左侧,B在右侧,且经过点C(2,3).(1)求抛物线解析式;(2)点D为线段AC上一动点(与A、C不重合),过D作直线EF//y轴交抛物线于E.交x轴于F,请求出当DE最大时的E点坐标和DF长;(3)是否存在点E,使△DCE为等腰直角三角形?若存在,请求出点D的坐标;若不存在,请说明理由.-------- 答案与解析 --------1.答案:B解析:解:−66的相反数是66.故选:B.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.答案:C解析:本题考查了中心对称图形的识别,根据中心对称图形的定义进行判断是解决问题的关键.看每一个图形绕一个点旋转180°后能否与原来的图形重合即可作出判定.解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误.故选C.3.答案:A解析:解:1002万用科学记数法表示为1.002×107,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:B解析:解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴−k>0,∴选项B中图象符合题意.故选:B.本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.由直线经过的象限结合四个选项中的图象,即可得出结论.5.答案:B解析:本题考查了合并同类项、完全平方公式、积的乘方、同底数幂的除法,是基础知识要熟练掌握.根据合并同类项、完全平方公式、积的乘方、同底数幂的除法进行计算即可.解:A.2a+b不能合并,故A选项错误;B.a3÷a=a2,故B选项正确;C.(a−1)2=a2−2a+1,故C选项错误;D.(2a)3=8a3,故D选项错误;故选B.6.答案:C解析:本题考查的是中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.解:当众数是10时,∵众数与平均数相等,(10+10+12+x+8)=10,解得x=10.∴15这组数据为:8,10,10,10,12,∴中位数为10;当众数是12时,∵众数与平均数相等,(10+10+12+x+8)=12,此题解出x=20,故不可能;∴15当众数是8时,∵众数与平均数相等,(10+10+12+x+8)=8,此题解出x=0,故不可能.∴15所以这组数据中的中位数是10.故选C.7.答案:C解析:本题考查了平行四边形的判定,平行四边形的判别方法是说明一个四边形为平行四边形的理论依据,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法,采用排除法,逐项分析判断.解:①两组对边分别平行的四边形是平行四边形,故①正确;②平行四边形的对角线互相平分,是平行四边形的性质,不是判别方法,故②错误;③两组对边分别相等的四边形是平行四边形,故③正确;④平行四边形的每组对边平行且相等,是平行四边形的性质,不是判别方法,故④错误;⑤两条对角线互相平分的四边形是平行四边形,故⑤正确;⑥一组对边平行且相等的四边形是平行四边形,故⑥正确;故选C.8.答案:B解析:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.也考查了一元二次方程的定义.根据一元二次方程的定义以及根的判别式得到m−1≠0且b2−4ac≥0,即(−4m)2−4(m−1)(4m−2)≥0,然后求出两个不等式的公共部分即可.解:∵一元二次方程(m−1)x2−4mx+4m−2=0有实数根,∴b2−4ac≥0,即(−4m)2−4(m−1)(4m−2)≥0,且m−1≠0,解得m≥1,且m≠1,3且m≠1.故m的取值范围是m≥13故选B.9.答案:D解析:本题考查了垂径定理以及勾股定理,利用垂径定理结合勾股定理求出OE的长度是解题的关键.根据垂径定理可得出CE的长度,在Rt△OCE中,利用勾股定理可得出OE的长度,再利用AE=AO+ OE即可得出AE的长度.解:∵AB是⊙O的直径,弦CD⊥AB于点E,CD=12cm,CD=6cm,∴CE=12在Rt△OCE中,OC=10cm,CE=6cm,∴OE=√OC2−CE2=8cm,AO=CO=10cm,∴AE=AO+OE=10+8=18cm.故选D.10.答案:D解析:本题考查的是轴对称−最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键,据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°−50°=80°,故选:D.11.答案:x≥13解析:本题主要考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键,根据二次根式有意义的条件列出不等式,解不等式即可.解:由题意得:3x−1≥0,.解得x≥13.故答案为x≥1312.答案:3(y+3)(y−3)解析:解:3y2−27,=3(y2−9),=3(y2−32),=3(y+3)(y−3).故答案为3(y+3)(y−3).先提取公因式3,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.13.答案:八解析:[分析]根据多边形的内角和定理,多边形的内角和等于(n−2)⋅180°,外角和等于360°,然后列方程求解即可.[详解]解:设多边形的边数是n,根据题意得:(n−2)⋅180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.[点睛]本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.14.答案:13解析:解:画树状图如图所示,一共有6种情况,b=2a的有(2,4)和(3,6)两种,所以点(a,b)在直线y=2x上的概率是26=13,故答案为:13.画出树状图,找到b=2a的结果数,再根据概率公式解答本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.15.答案:1解析:本题考查了分式的加减法则,注意:同分母的分式相加减,分母不变,把分子相加减.根据同分母的分式相加减进行计算即可.解:原式=1+a−3a−2=a−2a−2=1.故答案为1.16.答案:2√3解析:解:∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∠BCD=60°,∴∠ABC=∠BCD−∠BAC=30°,∴∠BAC=∠ABC,∴BC=AC=4,在Rt△BDC中,sin∠BCD=BDBC,∴sin60°=BD4=√32,∴BD=2√3(m),答:自动扶梯的垂直高度BD=2√3m,故答案为:2√3.根据等腰三角形的性质个三角形的外角的性质得到BC=AC=4,根据三角函数的定义即可得到结论.此题主要考查了解直角三角形的应用,关键是证明AC =BC ,需要熟练掌握三角形函数定义,此题难度不大.17.答案:200解析:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.通过观察图形得到第①个图形中五角星的个数为2=2×12; 第②个图形中五角星的个数为2+4+2=8=2×4=2×22; 第③个图形中五角星的个数为2+4+6+4+2=18=2×32; … 所以第n 个图形中五角星的个数为2×n 2,然后把n =10代入计算即可. 解:第①个图形中五角星的个数为2=2×12;第②个图形中五角星的个数为2+4+2=8=2×4=2×22;第③个图形中五角星的个数为2+4+6+4+2=18=2×32;第④个图形中五角星的个数为2×42;所以第⑩个图形中五角星的个数为2×102=2×100=200.故答案为200.18.答案:解:原式=4−1−(2−√5)=4−1−2+√5=1+√5.解析:直接利用负指数幂的性质以及绝对值的性质、零指数幂的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键.19.答案:解:{2x +y =2 ①8x +3y =9 ②, 法1:②−①×3,得 2x =3,解得:x =32,把x =32代入①,得 y =−1,∴原方程组的解为{x =32y =−1; 法2:由②得:2x +3(2x +y)=9,把①代入上式,解得:x =32,把x =32代入①,得 y =−1,∴原方程组的解为{x =32y =−1.解析:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法与代入消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 20.答案:解:如图所示.解析:根据线段垂直平分线的性质可知,作AB 的垂直平分线,与BC 的交点即为点P.本题考查的是作图−基本作图,熟知线段垂直平分线的作法是解答此题的关键.21.答案:解:(1)设每轮传染中平均一人传染x 人,则第一轮后有(x +1)人感染,第二轮后有x(x +1)+x +1人感染,由题意得:x(x +1)+x +1=81,即:x 1=8,x 2=−10(不符合题意舍去).所以,每轮平均一人传染8人.(2)三轮感染后的人数为:81+81×8=729.∵729>700,∴3轮感染后,被感染的人数会超过700人.解析:本题主要考查了一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,本题应注意是经过两轮传染后感染的总人数,而不仅仅只是第二轮被传染的人数.(1)设每轮传染中平均一人传染x 人,那么经过第一轮传染后有(x +1)人被感染,那么经过两轮传染后有x(x +1)+x +1人感染,又知经过两轮传染共有81人被感染,以经过两轮传染后被传染的人数相等的等量关系,列出方程求解;(2)利用(1)中所求得出三轮感染后,患病的人数即可.22.答案:解:(1)AC′//BD ;(2)EB 与ED 相等.由折叠可得,∠CBD =∠C′BD ,∵AD//BC,∴∠ADB=∠CBD,∴∠EDB=∠EBD,∴BE=DE.解析:解:(1)连接AC′,则AC′与BD的位置关系是AC′//BD,故答案为:AC′//BD;(2)见答案.(1)根据AD=C′B,ED=EB,即可得到AE=C′E,再根据三角形内角和定理,即可得到∠EAC′=∠EC′A=∠EBD=∠EDB,进而得出AC′//BD;(2)依据平行线的性质以及折叠的性质,即可得到∠EDB=∠EBD,进而得出BE=DE.本题主要考查了折叠问题以及平行四边形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.23.答案:解:(1)将A(3,m)代入y=x−2,∴m=3−2=1,∴A(3,1),,将A(3,1)代入y=kx∴k=3×1=3,(2)①当n=1时,P(1,1),令y=1,代入y=x−2,x−2=1,∴x=3,∴M(3,1),∴PM=2,,令x=1代入y=3x∴y=3,∴N(1,3),∴PN=2∴PM=PN,②0<n≤1或n≥3详解:P(n,n),n>0点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x−2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∵PN=|3n−n|,|3n−n|≥2∴0<n≤1或n≥3解析:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,属于中档题.(1)将A点代入y=x−2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.24.答案:(1)证明:∵AB是⊙O的直径,∴∠ACB﹦90°,又∵CE⊥AB,∴∠CEB﹦90°,∴∠BCE﹦90°−∠ACE﹦∠CAB,∵C是BD⏜的中点,∴CD⏜=BC⏜,∴∠CBD﹦∠CAB,∴∠CBD﹦∠BCE,∴CF﹦BF,∵∠ACF+∠BCF=∠CHF+∠HBC=90°,∴∠CHF =∠HCF , ∴FH =FC ,∴FH =FC =FB ,∴点B 、C 、H 在以点F 为圆心的圆上;(2)解:∵C 是BD⏜的中点,CD =6, ∴BC =CD =6,∵AB 是⊙O 的直径,∴∠ACB =90°,∴AB =√AC 2+BC 2=√62+82=10,则⊙O 的半径为5,S △ABC =12AC ⋅BC =12AB ⋅CE ,∴CE =6×810=4.8,CE 的长是4.8.解析:本题考查了勾股定理,三角形的面积公式,等腰三角形的判定,圆周角定理等知识点的综合运用.(1)求出∠BCE =∠CAB =∠CBD ,根据∠ACF +∠BCF =∠CHF +∠HBC =90°,求出∠CHF =∠HCF ,根据等角对等边求出即可.(2)求出BC =CD =6,根据勾股定理求出AB ,即可根据三角形面积公式求出CE .25.答案:解:(1)把C(2,3)代入y =ax 2−2ax −3a 得4a −4a −3a =3,解得a =−1,所以抛物线的解析式为y =−x 2+2x +3;(2)当y =0时,−x 2+2x +3=0,解得x 1=−1,x 2=3,则A(−1,0),B(3,0),设直线AC 的解析式为y =kx +b ,把A(−1,0),C(2,3)得{−k +b =02k +b =3,解得{k =1b =1, 所以直线AC 的解析式为y =x +1,设D(t,t +1)(−1<t <2),则E(t,−t 2+2t +3),∴DE =−t 2+2t +3−(t +1)=−t 2+t +2=−(t −12)2+94,∴当t =12时,DE 有最大值,最大值为94,此时D 点坐标为(12,32),DF 的长为32;(3)存在.设D(t,t+1)(−1<t<2),则E(t,−t2+2t+3),DE=−t2+t+2,∵DF=t+1,AF=t−(−1)=t+1,∴△ADF为等腰直角三角形,∴∠ADF=45°,当CE=CD,作CH⊥DE于H,如图,∵∠CDE=∠ADF=45°,∴△CDE为等腰直角三角形,∴DH=EH=CH=12DE=−12t2+12t+1,∴t−12t2+12t+1=2,解得t1=1,t2=2(舍去),此时D点坐标为(1,2);当ED=EC,则∠ECD=∠EDC=45°,∴EC//x轴,∴点E的纵坐标为3,当y=3时,−t2+2t+3=3,解得t1=0,t2=2(舍去),此时D点坐标为(0,1);当DE=DC=−t2+t+2,∵DC=√(2−t)2+(3−t−1)2=√2(2−t),∴−t2+t+2=√2(2−t),解得t1=√2−1,t2=2(舍去),此时D点坐标为(√2−1,√2);综上所述,满足条件的D点坐标为(1,2)或(0,1)或(√2−1,√2).解析:(1)把C点坐标代入y=ax2−2ax−3a可求出a的值,从而得到抛物线的解析式;(2)先解方程−x2+2x+3=0得到A(−1,0),B(3,0),再利用待定系数法确定直线AC的解析式为y= x+1,可设D(t,t+1)(−1<t<2),则E(t,−t2+2t+3),所以DE=−t2+t+2,然后利用二次函数的性质解决问题;(3)设D(t,t+1)(−1<t<2),则E(t,−t2+2t+3),DE=−t2+t+2,先把表示出DF=AF=t+1得到△ADF为等腰直角三角形,则∠ADF=45°,然后分类讨论:当CE=CD,作CH⊥DE于H,如图,易得△CDE为等腰直角三角形,则CH=12DE=−12t2+12t+1,于是得到方程t−12t2+12t+1=2,记住解方程求出t即可得到此时D点坐标;当ED=EC,则∠ECD=∠EDC=45°,可判断EC//x 轴,所以点E的纵坐标为3,然后计算二次函数值为3所对应的自变量的值即可得到D点坐标;当DE=DC=−t2+t+2,而利用两点间的距离公式得到DC=√2(2−t),所以−t2+t+2=√2(2−t),接着解方程求出t即可得到此时D点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的判定与性质;会求抛物线与x轴的交点坐标;理解坐标与图形性质,记住两点间的距离公式;学会运用分类讨论的思想解决数学问题.。
2020年广东省中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
2020年广东省中考数学全真模拟试卷(新题型)(解析版)考试时间:90分钟;满分:120学校:___________班级:___________姓名:___________学号:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣2020的相反数是()A.B.C.2020D.﹣20202.(3分)港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为()A.5.5×105B.55×104C.5.5×104D.5.5×1063.(3分)如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>04.(3分)如表是我国近六年“两会”会期(单位:天)的统计结果:时间201420152016201720182019会期(天)111314131813则我国近六年“两会”会期(天)的众数和中位数分别是()A.13,11B.13,13C.13,14D.14,13.55.(3分)在Rt△ABC,∠C=90°,sin B=,则sin A的值是()A.B.C.D.6.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°7.(3分)下列运算中,计算正确的是()A.2a+3a=5a2B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b28.(3分)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=9.(3分)如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是()A.(a﹣b,a)B.(b,a)C.(a﹣b,0)D.(b,0)10.(3分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:x2﹣9=.12.(4分)在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第象限.13.(4分)一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为.14.(4分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k 的取值范围是.15.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.16.(4分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是.17.(4分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.三.解答题(共8小题,满分62分)18.(6分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣119.(6分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.22.(8分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.23.(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cos C=,求AE的长.25.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣2020的相反数是()A.B.C.2020D.﹣2020【分析】直接利用相反数的定义得出答案.【解答】解:﹣2020的相反数是:2020.故选:C.2.(3分)港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为()A.5.5×105B.55×104C.5.5×104D.5.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104,故选:C.3.(3分)如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>0【分析】A、根据数轴上的数右边的总比左边的大,可得结论;B、根据0<b<1<c,可得结论;C、根据数轴上数a表示的点离原点比较远,可得|a|>|b|;D、根据a<0,b>0,c>0,可得结论.【解答】解:A、由数轴得:a<b<c,故选项A不正确;B、∵0<b<1<c,∴>,故选项B正确;C、由数轴得:|a|>|b|,故选项C不正确;D、∵a<0,b>0,c>0,∴abc<0,故选项D不正确;故选:B.4.(3分)如表是我国近六年“两会”会期(单位:天)的统计结果:时间201420152016201720182019会期(天)111314131813则我国近六年“两会”会期(天)的众数和中位数分别是()A.13,11B.13,13C.13,14D.14,13.5【分析】根据中位数和众数的定义解答.第3和第4个数的平均数就是中位数,13出现的次数最多.【解答】解:由表知这组数据的众数13,中位数为=13,故选:B.5.(3分)在Rt△ABC,∠C=90°,sin B=,则sin A的值是()A.B.C.D.【分析】根据互余两角三角函数的关系:sin2A+sin2B=1解答.【解答】解:∵在Rt△ABC,∠C=90°,∴∠A+∠B=90°,∴sin2A+sin2B=1,sin A>0,∵sin B=,∴sin A==.故选:B.6.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度数,再根据直角三角形的性质求出答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故选:C.7.(3分)下列运算中,计算正确的是()A.2a+3a=5a2B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、2a+3a=5a,故此选项错误;B、(3a2)3=27a6,正确;C、x6÷x2=x4,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.8.(3分)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=【分析】根据甲乙的工作时间,可列方程.【解答】解:设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等,得,故选:A.9.(3分)如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是()A.(a﹣b,a)B.(b,a)C.(a﹣b,0)D.(b,0)【分析】如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.【解答】解:如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,∵点P坐标为(a,b),∴BP=b,∵∠PEP′=90°,∴∠AEP′=∠PEB,在△AEP′与△BEP中,,∴△AEP′≌△BEP(ASA),∴AP′=BP=b,∴点P′的坐标是(b,0),故选:D.10.(3分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④【分析】①观察条件,知是当x=1时,有a+b+c=0,因而方程有根.②把x=﹣1和2代入方程,建立两个等式,即可得到2a+c=0.③方程ax2+c=0有两个不相等的实根,则△=﹣4ac>0,左边加上b2就是方程ax2+bx+c=0的△,由于加上了一个非负数,所以△>0.④把b=2a+c代入△,就能判断根的情况.【解答】解:①当x=1时,有若a+b+c=0,即方程有实数根了,∴△≥0,故错误;②把x=﹣1代入方程得到:a﹣b+c=0 (1)把x=2代入方程得到:4a+2b+c=0 (2)把(2)式减去(1)式×2得到:6a+3c=0,即:2a+c=0,故正确;③方程ax2+c=0有两个不相等的实数根,则它的△=﹣4ac>0,∴b2﹣4ac>0而方程ax2+bx+c=0的△=b2﹣4ac>0,∴必有两个不相等的实数根.故正确;④若b=2a+c则△=b2﹣4ac=(2a+c)2﹣4ac=4a2+c2,∵a≠0,∴4a2+c2>0故正确.②③④都正确,故选C.二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.(4分)在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第三象限.【分析】应先判断出所求的点的横纵坐标,进而判断所在的象限.【解答】解:点P(﹣2,3)满足点在第二象限的条件.关于x轴的对称点的横坐标与P 点的横坐标相同,是﹣2;纵坐标互为相反数,是﹣3,则P关于x轴的对称点是(﹣2,﹣3),在第三象限.故答案是:三13.(4分)一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为4.【分析】直接利用平方根的定义得出2m﹣1+(﹣3m+)=0,进而求出m的值,即可得出答案.【解答】解:根据题意,得:2m﹣1+(﹣3m+)=0,解得:m=,∴正数a=(2×﹣1)2=4,故答案为:4.14.(4分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k 的取值范围是k<1.【分析】由于反比例函数y=的图象有一支在第二象限,可得k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.15.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=8.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.16.(4分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是35°.【分析】首先连接BC,由AB是半圆的直径,根据直径所对的圆周角是直角,可得∠C =90°,继而求得∠B的度数,然后由D是的中点,根据弧与圆周角的关系,即可求得答案.【解答】解:连接BC,∵AB是半圆的直径,∴∠C=90°,∵∠BAC=20°,∴∠B=90°﹣∠BAC=70°,∵D是的中点,∴∠DAC=∠B=35°.故答案为:35°.17.(4分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为2.【分析】先根据抛物线解析式求出点A坐标和其对称轴,再根据对称性求出点M坐标,利用点M为线段AB中点,得出点B坐标;用含a的式子表示出点P坐标,写出直线OP 的解析式,再将点B坐标代入即可求解出a的值.【解答】解:∵抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,∴A(0,),抛物线的对称轴为x=1∴顶点P坐标为(1,﹣a),点M坐标为(2,)∵点M为线段AB的中点,∴点B坐标为(4,)设直线OP解析式为y=kx(k为常数,且k≠0)将点P(1,)代入得=k∴y=()x将点B(4,)代入得=()×4解得a=2故答案为:2.三.解答题(共8小题,满分62分)18.(6分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.19.(6分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•=,由a+b﹣=0,得到a+b=,则原式=2.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O 即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,21.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”【分析】即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.22.(8分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.【分析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用360°乘以二等奖人数所占百分比可得答案;(3)画出树状图,由概率公式即可解决问题.【解答】解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;(3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是=.23.(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cos C=,求AE的长.【分析】(1)连结OD、AD,如图,先利用圆周角定理得到∠ADB=90°,则根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,加上DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为⊙O的切线;(2)连结DE,如图,有圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH;(3)利用余弦的定义,在Rt△ADC中可计算出AC=5,在Rt△CDH中可计算出CH =,则CE=2CH=2,然后计算AC﹣CE即可得到AE的长.【解答】(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;(3)解:在Rt△ADC中,CD=BC=5,∵cos C==,∴AC=5,在Rt△CDH中,∵cos C==,∴CH=,∴CE=2CH=2,∴AE=AC﹣CE=5﹣2=3.25.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【分析】(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.。
2020年广东省中考数学模拟试卷一一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分)1.﹣4的绝对值是()A.4 B.﹣4 C.D.2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.一组数据从小到大排列为2,3,4,x,6,9.这组数据的中位数是5,那么这组数据的众数为()A.4 B.5 C.5.5 D.64.下列四边形中,是中心对称而不是轴对称图形的是()A.平行四边形B.矩形 C.菱形 D.正方形5.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE6.下列计算正确的是()A.a2+a2=a4B.(﹣a)2﹣a2=0 C.a8÷a2=a4D.a2•a3=a67.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤18.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠D=55°,使A、C、E在一条直线上,那么开挖点E与D的距离是()A.500sin55°米 B.500cos35°米 C.500cos55°米 D.500tan55°米9.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D 和点E.若CE=2,则AB的长是()A.4 B.4 C.8 D.810.如图,菱形ABCD的对角线AC与BD交于点O,AC=6,BD=8.动点E从点B出发,沿着B ﹣A﹣D在菱形ABCD的边上运动,运动到点D停止.点F是点E关于BD的对称点,EF交BD 于点P,若BP=x,△OEF的面积为y,则y与x之间的函数图象大致为()A.B.C.D.二.填空题(本大题6小题,每小题4分,共24分)11.比较大小:4 (填入“>”或“<”号).12.一个多边形的每个外角都是60°,则这个多边形边数为.13.若|x+2|+=0,则xy的值为.14.分式方程=的根是.15.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是.16.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是.三.解答题(一)(本大题3小题,每题6分,共18分)17.(6分)计算:()﹣1﹣tan60°﹣(1+)0+.18.(6分)先化简,再求值:÷(﹣),其中x=3.19.(6分)在平行四边形ABCD中,AB=2AD.(1)作AE平分∠BAD交DC于E(尺规作图,保留作图痕迹);(2)在(1)的条件下,连接BE,判定△ABE的形状.(不要求证明).四.解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)中秋佳节我国有赏月和吃月饼的传统,英才学校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为度;条形统计图中,“很喜欢”月饼中喜欢“豆沙”月饼的学生有人;(2)若该校共有学生1200人,请根据上述调查结果,估计该校学生中“很喜欢”月饼的有人.(3)李民同学最爱吃莲蓉月饼,陈丽同学最爱吃豆沙月饼,现有重量、包装完全一样的豆沙、莲蓉、蛋黄三种月饼各一个,让李民、陈丽每人各选一个,则李民、陈丽两人都选中自己最爱吃的月饼的概率为.21.(7分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.22.(7分)飞马汽车销售公司3月份销售新上市一种新型低能耗汽车8辆,由于该型汽车的优越的经济适用性,销量快速上升,5月份该公司销售该型汽车达18辆.(1)求该公司销售该型汽车4月份和5月份的平均增长率;(2)该型汽车每辆的进价为9万元,该公司的该型车售价为9.8万元/辆.且销售m辆汽车,汽车厂返利销售公司0.04m万元/辆.若使6月份每辆车盈利不低于1.7万元,那么该公司6月份至少需要销售该型汽车多少辆?(盈利=销售利润+返利)五.解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,一次函数的图象y1=kx+b与反比例函数y2=的图象交于点A(1,5)和点B(m,1).(1)求m的值和反比例函数的解析式;(2)当x>0时,根据图象直接写出不等式≥kx+b的解集;(3)若经过点B的抛物线的顶点为A,求该抛物线的解析式.24.(9分)如图,四边形ABCD内接于⊙O,AB=AD,对角线BD为⊙O的直径,AC与BD交于点E.点F为CD延长线上,且DF=BC.(1)证明:AC=AF;(2)若AD=2,AF=+1,求AE的长;(3)若EG∥CF交AF于点G,连接DG.证明:DG为⊙O的切线.25.(9分)如图,在矩形ABCD中,AB=5,AD=4,E为AD边上一动点(不与点A重合),AF⊥BE,垂足为F,GF⊥CF,交AB于点G,连接EG.设AE=x,S△BEG=y.(1)证明:△AFG∽△BFC;(2)求y与x的函数关系式,并求出y的最大值;(3)若△BFC为等腰三角形,请直接写出x的值.参考答案与试题解析一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分)1.﹣4的绝对值是()A.4 B.﹣4 C.D.【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一组数据从小到大排列为2,3,4,x,6,9.这组数据的中位数是5,那么这组数据的众数为()A.4 B.5 C.5.5 D.6【考点】W5:众数;W4:中位数.【分析】先根据中位数的定义可求得x,再根据众数的定义就可以求解.【解答】解:根据题意得,(4+x)÷2=5,得x=6,则这组数据的众数为6.故选D.【点评】本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.4.下列四边形中,是中心对称而不是轴对称图形的是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【解答】解:A、平行四边形是中心对称图形,不是轴对称图形,故选项正确;B、矩形既是轴对称图形,又是中心对称图形,故选项错误;C、菱形既是轴对称图形,又是中心对称图形,故选项错误;D、正方形,矩形既是轴对称图形,又是中心对称图形,故选项错误.故选A.【点评】本题主要考查了中心对称图形与轴对称图形的定义,正确理解定义是解题关键.5.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE【考点】J9:平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、BC、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误;D、∠C=∠ABE不能判断出EB∥AC,故本选项错误;故选:A.【点评】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.下列计算正确的是()A.a2+a2=a4B.(﹣a)2﹣a2=0 C.a8÷a2=a4D.a2•a3=a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2a2,故A错误;(C)原式=a6,故C错误;(D)原式=a5,故D错误;故选(B)【点评】本题考查整式的乘法,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤1【考点】AA:根的判别式.【分析】根据根的判别式,令△≥0,建立关于m的不等式,解答即可.【解答】解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选:D.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠D=55°,使A、C、E在一条直线上,那么开挖点E与D的距离是()A.500sin55°米 B.500cos35°米 C.500cos55°米 D.500tan55°米【考点】T8:解直角三角形的应用.【分析】由∠ABC度数求出∠EBD度数,进而确定出∠E=90°,在直角三角形BED中,利用锐角三角函数定义即可求出ED的长.【解答】解:∵∠ABD=145°,∴∠EBD=35°,∵∠D=55°,∴∠E=90°,在Rt△BED中,BD=500米,∠D=55°,∴ED=500cos55°米,故选C【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.9.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E.若CE=2,则AB的长是()A.4 B.4 C.8 D.8【考点】KO:含30度角的直角三角形;KG:线段垂直平分线的性质.【分析】由ED是线段AB的垂直平分线,根据线段垂直平分线定理得到EA=EB,根据等边对等角可得∠A和∠ABE相等,由∠A的度数求出∠ABE的度数,得出∠EBC=∠EBA=30°,再由角平分线上的点到角的两边的距离相等得出DE=CE=2.由30°角所对的直角边等于斜边的一半,可得AE=2ED=4,由勾股定理求出AD,那么AB=2AD.【解答】解:∵在Rt△ABC中,∠C=90°,∠ABC=60°,∴∠A=30°,∵DE是线段AB的垂直平分线,∴EA=EB,ED⊥AB,∴∠A=∠EBA=30°,∴∠EBC=∠ABC﹣∠EBA=30°,又∵BC⊥AC,ED⊥AB,∴DE=CE=2.在直角三角形ADE中,DE=2,∠A=30°,∴AE=2DE=4,∴AD==2,∴AB=2AD=4.故选B.【点评】此题考查了线段垂直平分线的性质,角平分线的性质,含30°角的直角三角形的性质,勾股定理,解题的关键是熟练掌握含30°角的直角三角形的性质,即在直角三角形中,30°角所对的直角边等于斜边的一半.10.如图,菱形ABCD的对角线AC与BD交于点O,AC=6,BD=8.动点E从点B出发,沿着B ﹣A﹣D在菱形ABCD的边上运动,运动到点D停止.点F是点E关于BD的对称点,EF交BD 于点P,若BP=x,△OEF的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象;H2:二次函数的图象;K3:三角形的面积;L8:菱形的性质.【分析】先根据四边形ABCD是菱形,得到AB=BC=CD=DA,OA=AC=3,OB=BD=4,AC⊥BD,再分两种情况讨论:①当BP≤4时,依据△FEB∽△CBA,得出EF=x,OP=4﹣x,进而得到△OEF的面积y=EF•OP=﹣x2+3x,由此可得y与x之间的函数图象是抛物线,开口向下,过(0,0)和(4,0);②当4<BP<8时,同样得出△OEF的面积y=EF•OP=﹣x2+9x﹣24,进而得出y与x之间的函数图象的形状与①中的相同,开口向下,且过(4,0)和(8,0).【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,OA=AC=3,OB=BD=4,AC⊥BD,①当BP≤4时,∵点F是点E关于BD的对称点,∴EF⊥BD,∴EF∥AC,∴△FEB∽△CBA,∴=,即=,∴EF=x,∵OP=4﹣x,∴△OEF的面积y=EF•OP=×x(4﹣x)=﹣x2+3x,∴y与x之间的函数图象是抛物线,开口向下,过(0,0)和(4,0);②当4<BP<8时,同理可得,EF=12﹣x,OP=x﹣4,∴△OEF的面积y=EF•OP=×(12﹣x)(x﹣4)=﹣x2+9x﹣24,∴y与x之间的函数图象的形状与①中的相同,开口向下,且过(4,0)和(8,0);故选:D.【点评】本题考查了动点问题的函数图象、菱形的性质、相似三角形的判定与性质、三角形面积的计算以及二次函数的运用,解决问题的关键是依据相似三角形的对应边成比例列出比例式得出EF的表达式,根据三角形面积计算公式得到二次函数解析式.二.填空题(本大题6小题,每小题4分,共24分)11.比较大小:4 <(填入“>”或“<”号).【考点】2A:实数大小比较.【分析】根据<和=4,即可求出答案.【解答】解:∵4=,<,∴4<,故答案为:<.【点评】本题考查了有理数的大小比较,注意:4=,题目较好,难度不大.12.一个多边形的每个外角都是60°,则这个多边形边数为 6 .【考点】L3:多边形内角与外角.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.13.若|x+2|+=0,则xy的值为﹣10 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质进行计算即可.【解答】解:∵|x+2|+=0,∴x+2=0,y﹣5=0,解得x=﹣2,y=5,∴xy=﹣10,故答案为﹣10.【点评】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都等于0是解题的关键.14.分式方程=的根是a=﹣1 .【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验即可得到分式方程的解.【解答】解:去分母得:4a=a﹣3,解得:a=﹣1,经检验a=﹣1是分式方程的解,故答案为:a=﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是 2 .【考点】M2:垂径定理;KQ:勾股定理.【分析】根据垂径定理由OC⊥AB得到AD=AB=4,再根据勾股定理开始出OD,然后用OC﹣OD即可得到DC.【解答】解:∵OC⊥AB,∴AD=BD=AB=×8=4,在Rt△OAD中,OA=5,AD=4,∴OD==3,∴CD=OC﹣OD=5﹣3=2.故答案为:2.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.16.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是2.【考点】R2:旋转的性质;KW:等腰直角三角形;LE:正方形的性质.【分析】连接AC1,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1=,求出DC1=﹣1=OD,同理求出A、B1、C三点共线,求出OB1=﹣1,代入AD+OD+OB1+AB1求出即可.【解答】解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,同理求出A、B1、C三点共线,求出OB1=﹣1,∴四边形AB1OD的周长是AD+OD+OB1+AB1=1+﹣1+﹣1+1=2,故答案为2.【点评】本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.三.解答题(一)(本大题3小题,每题6分,共18分)17.计算:()﹣1﹣tan60°﹣(1+)0+.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】利用特殊角的三角函数值、负整数指数幂和零指数幂的意义进行计算.【解答】解:原式=3﹣﹣1+=2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.18.先化简,再求值:÷(﹣),其中x=3.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷(﹣)===,当x=3时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.在平行四边形ABCD中,AB=2AD.(1)作AE平分∠BAD交DC于E(尺规作图,保留作图痕迹);(2)在(1)的条件下,连接BE,判定△ABE的形状.(不要求证明).【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】(1)根据角平分线的作法作∠BAD的平分线即可;(2)延长AE交BC的延长线于点F,先由角平分线的性质得出∠DAE=∠BAE,再由平行线的性质得出∠BAE=∠DEA,故可得出∠DAE=∠DEA,故AD=DE,根据CD=2AD可知DE=CE,利用ASA定理得出△ADE≌△FCE,AD=CF,AE=EF,即△ABF是等腰三角形,据此可知BE⊥AF,△ABE是直角三角形.【解答】解:(1)如图,AE为所求;(2)△ABE为直角三角形.理由:延长AE交BC的延长线于点F,∵AE是∠BAD的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴∠BAE=∠DEA,∠D=∠ECF,∴∠DAE=∠DEA,∴AD=DE.∵CD=2AD,∴DE=CE,在△ADE与△FCE中,∵,∴△ADE≌△FCE(ASA),∴AD=CF,AE=EF,∴△ABF是等腰三角形,∴BE⊥AF,即△ABE是直角三角形.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.四.解答题(二)(本大题3小题,每小题7分,共21分)20.中秋佳节我国有赏月和吃月饼的传统,英才学校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为126 度;条形统计图中,“很喜欢”月饼中喜欢“豆沙”月饼的学生有 4 人;(2)若该校共有学生1200人,请根据上述调查结果,估计该校学生中“很喜欢”月饼的有420 人.(3)李民同学最爱吃莲蓉月饼,陈丽同学最爱吃豆沙月饼,现有重量、包装完全一样的豆沙、莲蓉、蛋黄三种月饼各一个,让李民、陈丽每人各选一个,则李民、陈丽两人都选中自己最爱吃的月饼的概率为.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)利用扇形统计图得到,“很喜欢”所占的百分比,然后用此百分比乘以360°即可得到很喜欢”的部分所对应的圆心角度数;用此百分比乘以60得到“很喜欢”的人数,再利用条形统计图可计算出很喜欢”月饼中喜欢“豆沙”月饼的学生;(2)用很喜欢”所占的百分比乘以1200可估计该校学生中“很喜欢”月饼的人数;(3)(用A、B、C分别表示豆沙、莲蓉、蛋黄三种月饼)画树状图展示所有6种等可能的结果数,再找出李民、陈丽两人都选中自己最爱吃的月饼的结果数,然后根据概率公式求解.【解答】解:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角的度数=(1﹣25%﹣40%)×360°=126°;很喜欢”的人数为(1﹣25%﹣40%)×60=21,所以“很喜欢”月饼中喜欢“豆沙”月饼的学生人数=21﹣6﹣3﹣8=7(人);(2)1200×(1﹣25%﹣40%)=420,所以估计该校学生中“很喜欢”月饼的有420人;(3)画树状图为:(用A、B、C分别表示豆沙、莲蓉、蛋黄三种月饼),共有6种等可能的结果数,其中李民、陈丽两人都选中自己最爱吃的月饼的结果数为1,所以李民、陈丽两人都选中自己最爱吃的月饼的概率=.故答案为126,7;420;.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.21.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.【考点】PB:翻折变换(折叠问题);KD:全等三角形的判定与性质;KQ:勾股定理.【分析】(1)根据折叠的性质以及矩形的性质,运用ASA即可判定△ADF≌△AB′E;(2)先设FA=FC=x,则DF=DC﹣FC=18﹣x,根据Rt△ADF中,AD2+DF2=AF2,即可得出方程122+(18﹣x)2=x2,解得x=13.再根据AE=AF=13,即可得出S△AEF==78.【解答】解:(1)∵四边形ABCD是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′,∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,∴∠DAF=∠B′AE,在△ADF和△AB′E中,,∴△ADF≌△AB′E(ASA).(2)由折叠性质得FA=FC,设FA=FC=x,则DF=DC﹣FC=18﹣x,在Rt△ADF中,AD2+DF2=AF2,∴122+(18﹣x)2=x2.解得x=13.∵△ADF≌△AB′E(已证),∴AE=AF=13,∴S△AEF===78.【点评】本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以及三角形面积的计算公式的运用,解决问题的关键是:设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.22.飞马汽车销售公司3月份销售新上市一种新型低能耗汽车8辆,由于该型汽车的优越的经济适用性,销量快速上升,5月份该公司销售该型汽车达18辆.(1)求该公司销售该型汽车4月份和5月份的平均增长率;(2)该型汽车每辆的进价为9万元,该公司的该型车售价为9.8万元/辆.且销售m辆汽车,汽车厂返利销售公司0.04m万元/辆.若使6月份每辆车盈利不低于1.7万元,那么该公司6月份至少需要销售该型汽车多少辆?(盈利=销售利润+返利)【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)设该公司销售该型汽车4月份和5月份的平均增长率为x,根据3月份和5月份的销售量,即可得出关于x的一元二次方程,解之取其正值即可;(2)根据盈利=销售利润+返利结合每辆车盈利不低于1.7万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其内的最小正整数即可.【解答】解:(1)设该公司销售该型汽车4月份和5月份的平均增长率为x,根据题意得:8(1+x)2=18,解得:x1=﹣2.50(不合题意,舍去),x2=0.5=50%.答:该公司销售该型汽车4月份和5月份的平均增长率为50%.(2)根据题意得:9.8﹣9+0.04m≥1.7,解得:m≥22.5,∵m为正整数,∴该公司6月份至少需要销售该型汽车23辆.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出关于x的一元二次方程:(2)根据盈利=销售利润+返利,列出关于m的一元一次不等式.五.解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,一次函数的图象y1=kx+b与反比例函数y2=的图象交于点A(1,5)和点B(m,1).(1)求m的值和反比例函数的解析式;(2)当x>0时,根据图象直接写出不等式≥kx+b的解集;(3)若经过点B的抛物线的顶点为A,求该抛物线的解析式.【考点】G8:反比例函数与一次函数的交点问题;H8:待定系数法求二次函数解析式.【分析】(1)利用待定系数法求得反比例函数解析式,然后把B的坐标代入求得m的值;(2)不等式≥kx+b的解集就是反比例函数的图象在一次函数的图象的交点以及反比例函数图象在上方时对应的x的范围;(3)利用待定系数法即可求得二次函数的解析式.【解答】解:(1)∵反比例函数的图象交于点A(1,5),∴5=n,即n=5,∴反比例函数的解析式是y=,∵点B(m,1)在双曲线上.∴1=,∴m=5,∴B(5,1);(2)不等式≥kx+b的解集为0<x≤1或x≥5;(3)∵抛物线的顶点为A(1,5),∴设抛物线的解析式为y=a(x﹣1)2+5,∵抛物线经过B(5,1),∴1=a(5﹣1)2+5,解得a=﹣.∴二次函数的解析式是y=﹣(x﹣1)2+5.【点评】本题考查了二次函数与一次函数的图象的交点以及待定系数法求二次函数的解析式,根据特点正确设出二次函数的解析式是关键.24.如图,四边形ABCD内接于⊙O,AB=AD,对角线BD为⊙O的直径,AC与BD交于点E.点F为CD延长线上,且DF=BC.(1)证明:AC=AF;(2)若AD=2,AF=+1,求AE的长;(3)若EG∥CF交AF于点G,连接DG.证明:DG为⊙O的切线.【考点】LO:四边形综合题.【分析】(1)根据四边形ABCD内接于⊙O证得△ABC≌△ADF,利用全等三角形的对应边相等证得AC=AF;(2)根据(1)得,AC=AF=,证得△ADE∽△ACD,利用相似三角形的对应边的比相等得到,代入数值求得AE的长即可;(3)首先根据平行线等分线段定理得到AG=AE,然后证得△ADG∽△AFD,从而证得GD⊥BD,利用“经过半径的外端且垂直于半径的直线是圆的切线”证得DG为⊙O的切线即可.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°.∵∠ADF+∠ADC=180°,∴∠ABC=∠ADF.在△ABC与△ADF中,,∴△ABC≌△ADF.∴AC=AF;(2)解:由(1)得,AC=AF=.∵AB=AD,∴.∴∠ADE=∠ACD.∵∠DAE=∠CAD,∴△ADE∽△ACD.∴.∴;(3)证明:∵EG∥CF,∴.∴AG=AE.由(2)得,∴.∵∠DAG=∠FAD,∴△ADG∽△AFD.∴∠ADG=∠F.∵AC=AF,∴∠ACD=∠F.又∵∠ACD=∠ABD,∴∠ADG=∠ABD.∵BD为⊙O的直径,∴∠BAD=90°.∴∠ABD+∠BDA=90°.∴∠ADG+∠BDA=90°.∴GD⊥BD.∴DG为⊙O的切线.【点评】本题考查了四边形的综合知识,还考查了全等三角形的判定与性质和相似三角形的判定与性质,综合性比较强,特别是(3)中利用平行线等分线段定理证得AG=AE更是解答本题的关键,难度中等.25.如图,在矩形ABCD中,AB=5,AD=4,E为AD边上一动点(不与点A重合),AF⊥BE,垂足为F,GF⊥CF,交AB于点G,连接EG.设AE=x,S△BEG=y.(1)证明:△AFG∽△BFC;(2)求y与x的函数关系式,并求出y的最大值;(3)若△BFC为等腰三角形,请直接写出x的值.【考点】SO:相似形综合题.【分析】(1)先判断出∠GAF=∠FBC,再判断出∠ABF=∠GFC即可得出结论;(2)先判断出.再表示出,BG=5﹣.最后用三角形的面积公式即可得出结论;(3)分三种情况讨论利用等腰三角形的性质和相似三角形的性质即可得出结论.【解答】(1)证明:在矩形ABCD中,∠ABC=90°.∴∠ABF+∠FBC=90°.∵AF⊥BE,∴∠AFB=90°.∴∠ABF+∠GAF=90°.∴∠GAF=∠FBC.∵FG⊥FC,∴∠GFC=90°.∴∠ABF=∠GFC.∴∠ABF﹣∠GFB=∠GFC﹣∠GFB.即∠AFG=∠CFB.∴△AFG∽△BFC;(2)解:由(1)得△AFG∽△BFC,∴.在Rt△ABF中,tan∠ADF=,在Rt△EAB中,tan∠EBA=,∴.∴.∵BC=AD=4,AB=5,∴.∴BG=AB﹣AG=5﹣.∴.∴y的最大值为;(3)解:∵△BFC为等腰三角形∴①当FC=FB时,如图1,过点F作FH⊥BC于H,∴BH=CH=BC=2,过点F作FP⊥AB于P,∴四边形BHFP是矩形,∴FP=BH=2,在Rt△BPF中,tan∠PBF=,在Rt△APF中,tan∠AFP=,∵∠AFP+∠PAF=90°,∠PBF+∠PAF=90°,∴∠PBF=∠AFP,∴,∵AP+PB=AB=5,∴AP=5﹣PB,∴,∴PB=4或PB=1(舍),∵PF∥AE,∴△PBF∽△ABE,∴,∴,∴x=AE=;②当BF=BC=4时,在Rt△ABF中,AF==3,易得,△AEF∽△BAF,∴,∴,∴x=AE=;③当FC=BC=4时,如图2,连接CG,在Rt△CFG和Rt△CBG中,,∴Rt△CFG≌Rt△CBG,∴FG=BG,∵△ABF是直角三角形,∴点G是AB的中点,∴AG=BG=AB=,由(2)知,AG=x,∴x=,∴x=;即:x的值为,或.【点评】此题是相似形综合题,主要考查了相似三角形的判断和性质,锐角三角函数,矩形的判定全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,解(1)的关键是得出∠ABF=∠GFC,解(2)的关键是得出AG和BG,解(3)的关键是分类讨论的思想解决问题,是一道中等难度的中考常考题.。