Eviews面板数据之随机效应模型
- 格式:doc
- 大小:397.00 KB
- 文档页数:10
面板数据模型的分析及Eviews实现一、面板数据和模型概述在经济学研究和实际应用中,我们经常需要同时分析和比较横截面观察值和时间序列观察值结合起来的数据,即:数据集中的变量同时含有横截面和时间序列的信息。
这种数据被称为面板数据(panel data),它与我们以前分析过的纯粹的横截面数据和时间序列数据有着不同的特点。
简单地讲,面板数据因同时含有时间序列数据和截面数据,所以其统计质既带有时间序列的性质,又包含一定的横截面特点。
因而,以往采用的计量模型和估计方法就需要有所调整。
例1 表1中展示的数据就是一个面板数据的例子。
其他类似的例子还有:历次人口普查中有关不同年龄段的受教育状况;同行业不同公司在不同时间节点上的产值等。
这里,不同的年龄段和公司代表不同的截面,而不同时间节点数据反映了数据的时间序列性。
研究和分析面板数据的模型被称为面板数据模型(panel data model)。
它的变量取值都带有时间序列和横截面的两重性。
一般的线性模型只单独处理横截面数据或时间序列数据,而不能同时分析和对比它们。
面板数据模型,相对于一般的线性回归模型,其长处在于它既考虑到了横截面数据存在的共性,又能分析模型中横截面因素的个体特殊效应。
当然,我们也可以将横截面数据简单地堆积起来用回归模型来处理,但这样做就丧失了分析个体特殊效应的机会。
二、一般面板数据模型介绍 符号介绍:ity ——因变量在横截面i 和时间t 上的数值;j it x ——第j 个解释变量在横截面i 和时间t 上的数值;假设:有K 个解释变量,即K j ,,2,1 =;有N 个横截面,即N i ,,2,1 =; 时间指标T t ,,2,1 =。
记第i 个横截面的数据为⎪⎪⎪⎪⎪⎭⎫⎝⎛=iT i i i y y y y21; ⎪⎪⎪⎪⎪⎭⎫⎝⎛=K iT iT iT Ki i i K i i i i x x x x x x x x x X 212221212111;⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=iT i i i μμμμ 21 其中对应的i μ是横截面i 和时间t 时随机误差项。
1.已知 1996—2002年中国东北、 华北、华东 15 个省级地区的居民家庭人均消费(cp ,不变价格)和人均收入(ip ,不变价格)居民,利用数据(1)建立面板 数据( panel data )工作文件;( 2)定义序列名并输入数据; ( 3)估计选择面板 模型;( 4)面板单位根检验。
年人均消费(con sume )和人均收入(in come )数据以及消费者价格指数(p )分别见表 9.1, 9.2 和 9.3。
表 9.1 1996— 2002 年中国东北、华北、华东 15 个省级地区的居民家庭人均消费(元)数据人均消费1996 1997 1998 1999 2000 2001 2002 CONSUMEAH 3607.43 3693.55 3777.41 3901.81 4232.98 4517.65 4736.52 CONSUMEBJ 5729.52 6531.81 6970.83 7498.48 8493.49 8922.72 10284.6 CONSUMEFJ 4248.47 4935.95 5181.45 5266.69 5638.74 6015.11 6631.68 CONSUMEHB3424.354003.71 3834.43 4026.3 4348.47 4479.75 5069.28 CONSUMEHLJ 3110.92 3213.42 3303.15 3481.74 3824.44 4192.36 4462.08 CONSUMEJL 3037.32 3408.03 3449.74 3661.68 4020.87 4337.22 4973.88 CONSUMEJS 4057.5 4533.57 4889.43 5010.91 5323.18 5532.74 6042.6 CONSUMEJX 2942.11 3199.61 3266.81 3482.33 3623.56 3894.51 4549.32 CONSUMELN3493.023719.91 3890.74 3989.93 4356.06 4654.42 5342.64 CONSUMENMG 2767.84 3032.3 3105.74 3468.99 3927.75 4195.62 4859.88 CONSUMESD 3770.99 4040.63 4143.96 4515.05 5022 5252.41 5596.32 CONSUMESH 6763.12 6819.94 6866.41 8247.69 8868.19 9336.1 10464 CONSUMESX 3035.59 3228.71 3267.7 3492.98 3941.87 4123.01 4710.96 CONSUMETJ 4679.61 5204.15 5471.01 5851.53 6121.04 6987.22 7191.96 CONSUMEZJ5764.276170.146217.936521.547020.227952.398713.08人均收入1996 1997 1998 1999 2000 2001 2002 INCOMEAH 4512.77 4599.27 4770.47 5064.6 5293.55 5668.86032.4INCOMEBJ 7332.01 7813.16 8471.98 9182.76 10349.69 11577.78 12463.92 INCOMEFJ 5172.93 6143.64 6485.63 6859.81 7432.26 8313.08 9189.36 INCOMEHB 4442.81 4958.67 5084.64 5365.03 5661.16 5984.82 6679.68 INCOMEHLJ 3768.31 4090.72 4268.5 4595.14 4912.88 5425.87 6100.56 INCOMEJL 3805.53 4190.58 4206.64 4480.01 4810 5340.46 6260.16 INCOMEJS 5185.79 5765.2 6017.85 6538.2 6800.23 7375.1 8177.64 INCOMEJX 3780.2 4071.32 4251.42 4720.58 5103.58 5506.02 6335.64 INCOMELN 4207.23 4518.1 4617.24 4898.61 5357.79 5797.01 6524.52 INCOMENMG3431.81 3944.67 4353.02 4770.53 5129.05 5535.89 6051 INCOMESD 4890.28 5190.79 5380.08 5808.96 6489.97 7101.08 7614.36 INCOMESH 8178.48 8438.89 8773.1 10931.64 11718.01 12883.46 13249.8 INCOMESX 3702.69 3989.92 4098.73 4342.61 4724.11 5391.05 6234.36 INCOMETJ 5967.71 6608.39 7110.54 7649.83 8140.5 8958.7 9337.56 INCOMEZJ 6955.797358.727836.768427.959279.1610464.6711715.615 个省级地区的居民家庭人均收入(元)数据表 9.2 1996— 2002 年中国东北、华北、华东< >\ Uinni«d X NewPage -/ 程如下:表9.3 1996 — 2002年中国东北、华北、华东物价指数1996 1997 1998 1999 2000 2001 2002 PAH 109.9 101.3 100 97.8 100.7 100.5 99 PBJ 111.6 105.3 102.4 100.6 103.5 103.1 98.2 PFJ 105.9 101.7 99.7 99.1 102.1 98.7 99.5 PHB 107.1 103.598.4 98.1 99.7 100.5 99 PHLJ 107.1 104.4 100.4 96.8 98.3 100.8 99.3 PJL 107.2 103.7 99.2 98 98.6 101.3 99.5 PJS 109.3 101.7 99.4 98.7 100.1 100.8 99.2 PJX 108.4 102 101 98.6 100.3 99.5 100.1 PLN 107.9 103.1 99.3 98.6 99.9 100 98.9PNMG 107.6 104.5 99.3 99.8 101.3 100.6100.2PSD 109.6 102.8 99.4 99.3 100.2 101.8 99.3 PSH 109.2 102.8 100 101.5 102.5 100 100.5 PSX 107.9 103.1 98.6 99.6 103.9 99.8 98.4 PTJ109 103.1 99.5 98.9 99.6 101.2 99.6 PZJ107.9102.899.798.810199.899.1(1)建立面板数据工作文件首先建立工作文件Tetcli from DB .Update sslectei from DB... Stor* selected to DB... Copy.s^lectedL . selectelFrijit Selected15个省级地区的消费者物价指数Ssntple: E c 回 r@sidGenerate Series. BDisplay Filter *New Obj set...建立面板数据库在窗口中输入15个不同省级地区的标识AH BJ FJHB HLJJL JS JX LNNMG SD SH sx TJ ZJI(2)定义序列名并输入数据产生3*15个尚未输入数据的变量名。
Eviews软件平衡面板数据案例教程Eviews软件平衡面板数据案例教程--医药制造业科技人力资源贡献率本文由杨娟撰写,中国科学软件网发布摘要:本研究从促进经济增长的视角来探讨研发、劳动与资本对产出的贡献率。
本研究收集了2001年—2014年的R&D人员全时当量、GDP等相关数据,实证结果发现,技术进步在解释经济增长时的作用越来越重要,已经超过了传统的资本和劳动力这两种投入要素。
从长期来看,R&D人员全时当量作为技术创新的重要方式,确实在一定程度上推动了经济增长,与长期经济增长之间的确存在稳定的均衡或协整关系。
R&D人员全时当量每增加1%,将带来实际GDP约0.179%-0.401%的增长;考虑到间接效应, R&D 人员全时当量可能会渗透到其他要素中发挥作用,那么其贡献部分会更大。
同时,实证分析也表明,省区之间弹性系数的差异很大。
前言总产出与经济增长是一个永久的话题。
古典经济学一直把总产出水平当作一种均衡产出来研究,经济体的作用就是尽可能实现这一潜在的均衡产出。
哈罗德-多玛模型就是一个代表性的模型,该模型暗示,经济增长率等于人口增长率等于资本增长率才能实现“刀锋上的均衡”。
然而,之后的经济实践表明,经济有一种不断增长的趋势,这种趋势甚至可能超出理论的均衡产出水平,经济学家开始对经济增长的原因进行深入剖析。
1956年,美国经济学家罗伯特·索罗在《经济研究评论》上发表了《对经济增长理论的一个贡献》一文,放宽了哈罗德-多玛模型中“资本与劳动是不可替代的”这一隐含假定,在分析中应用了新古典主义的边际生产力理论和生产函数理论,成为新古典经济增长模型的代表。
新古典增长模型使用的总量生产函数中的资本总量以及劳动力总量等存在概念上的问题。
然而萨缪尔森指出,索罗模型正是放弃了概念上的严谨从而得到了应用上最好的近似效果。
同样在这方面做出贡献的还有澳大利亚经济学家斯旺(T.Swan,1956),经济学中常将他们的工作合称为“索罗-斯旺”增长模型。
Eviews实验-面板数据模型可以建立两种Eviews工作文件:(1)混合(pool)数据型工作文件;(2)面板数据型工作文件。
根据教材第10章案例:关于酒后驾车,研究酒精税和关于酒后驾车的法律规定对交通死亡事故的效应。
美国每年有4万高速公路交通事故,约1/3涉及酒后驾车。
这个比率在饮酒高峰期会上升。
早晨1-3点25%的司机饮酒。
饮酒司机出交通事故数是不饮酒司机的13倍。
现有1982-1988年48个州共336组美国公路交通事故死亡人数与啤酒税的数据。
原始数据的excel文件为:fatality.xls或fatality.xlsx一、建立混合数据型工作文件,估计模型首先建立时间序列(年度)工作文件:Fatality_pool.wfl.建立新的对象:Eviews菜单,Object-New object-pool在窗口中输入48个州的标识(注:也可输入_1, _2……类似格式)在新建的混合数据库(Pool)窗口的工具栏中点击Sheet键(第2种路径是,点击View键,选Spreadsheet (stacked data)功能),从而打开Series List(列写序列名)窗口,定义时间序列变量“mrall? Beertax?”,其中“?”表示与marll和beertax相关的48个州标识。
点击OK键,从而打开混合数据库(Pool)窗口(图5)。
点击Edit+-键,使EViwes处于可编辑状态,用复制和粘贴的方法输入数据。
(提示:注意excel 数据中的排序)图所示为以时间为序的阵列式排列(stacked data)。
点击Order+-键,还可以变换为以截面为序的阵列式排列。
输入完成后的情形见图。
点击PoolGener可以通过公式用已有的变量生成新变量(注意:输入变量时,不要忘记带变量后缀“?”)如mrall为每万人死亡率,定义死亡人数:vfrall=10000*mrall。
建立新的页面,对1982年的数据进行分析。
随机效应模型引言随机效应模型是一种用于分析面板数据(panel data)的统计模型。
面板数据是指在时间上对同一组体或个体进行多次观测的数据,例如经济学中的跨国公司的财务数据、医学研究中的病人的长期随访数据等。
随机效应模型能够通过考虑个体间的异质性和时间间的相关性,提供更准确的估计和推断。
一、面板数据的特点面板数据相较于传统的横截面数据(cross-sectional data)和时间序列数据(time series data),具有以下几个特点:1.个体异质性:面板数据中的个体之间可能存在差异,例如不同公司的经营策略、不同病人的基线特征等。
2.时间相关性:面板数据中的观测值在时间上是相关的,例如经济学中的季度数据、医学研究中的长期随访数据等。
3.个体固定效应:个体固定效应是指个体固有的不可观测的特征,例如公司的管理能力、病人的遗传基因等。
4.时间固定效应:时间固定效应是指时间固有的不可观测的特征,例如季节性变化、政策变化等。
面板数据的分析需要考虑上述特点,以充分利用数据并得出准确的结论。
二、随机效应模型的基本原理随机效应模型是一种通过将个体固定效应和时间固定效应引入线性回归模型中,来解决面板数据分析中存在的个体异质性和时间相关性的方法。
随机效应模型的基本形式如下:y it=α+X itβ+c i+λt+ϵit其中,y it表示第i个个体在第t个时间点的观测值,X it表示解释变量矩阵,β表示解释变量的系数,c i表示个体固定效应,λt表示时间固定效应,ϵit表示随机误差项。
个体固定效应c i是与个体相关的不可观测因素,它可以通过引入个体虚拟变量来捕捉。
时间固定效应λt是与时间相关的不可观测因素,它可以通过引入时间虚拟变量来捕捉。
三、随机效应模型的估计方法随机效应模型的估计方法有多种,常用的有最小二乘法(OLS)估计法、差分法(first difference)估计法和最大似然法(maximum likelihood)估计法。
这里N 指截面个体的个数,T 时期个数,k 是解释变量个数。
如果计算的F 统计量的值大于设定的显著性水平的临界值(如5%或10%),拒绝原假设,选择个体固定效应模型更合适;如果小于临界值,接受原假设,混合数据模型更适合。
在stata 中计算临界值disp invFtail(n1,n2,p) 或卡方disp invchi2tail(n,p) 再构造两个F 统计量以检验方程是否符合混合模型、变截矩模型或变系数模型。
3121()/(1)(1)[(1)(1),(*(1)]/(*(1)
S S N k F F N k N T k S N T k −−+=−+−−−−∼如果上述值大于给定的临界值,则拒绝原假设混合数据模型,对不变系数的模型作进一步的检验
2111()/(1)[(1),(*(1)]/(*(1)
S S N k F F N k N T k S N T k −−=
−−−−−∼如果上述值大于给定的临界值,则拒绝原假设,用变系数模型合适,否则,用变截距模型较合适。
S1指变系数模型残差平方和,S2指固定效应模型残差平方和,S3指混合数据模型残差平方和。
1 随机效应模型的估计原理说明与豪斯曼检验 在面板数据的计量分析中,如果解释变量对被解释变量的效应不随个体和时间变化,并且解释被解释变量的信息不够完整,即解释变量中不包含一些影响被解释变量的不可观测的确定性因素,可以将模型设定为固定效应模型,采用反映个体特征或时间特征的虚拟变量(即知随个体变化或只随时间变化)或者分解模型的截距项来描述这些缺失的确定性信息。 但是,固定效应模型也存在一定的不足。例如固定效应模型模型中包含许多虚拟变量时,减少了模型估计的自由度;实际应用中,固定效应模型的随机误差项难以满足模型的基本假设,易于导致参数的非有效估计。更为重要的是,它只考虑了不完整的确定性信息对被解释变量的效应,而未包含不可观测的随机信息的效应。为了弥补这一不足,Maddala(1971)将混合数据回归的随机误差项分解为截面随机误差分量、时间随机误差分量和个体时间随机误差分量三部分,讨论如下随机效应模型或双分量误差分解模型(1):
12Kitkkitititkyxuvw
(1)
2~(0,)iuuN
表示个体随机误差分量;
2~(0,)tvvN
表示时间随机误差分量;
2~(0,)itwwN
表示个体时间(或混合)随机误差分量。
如果模型(1)中只存在截面随机误差分量iu而不存在时间随机误差分量tv,则称为个体随机效应模型,否则称为个体时间小于模型。或者称为但分了误差分解模型。 下面来介绍这两种模型: 1.个体随机效应模型 当利用面板数据研究拥有拥有充分多个体的总体经济特征时,若利用总体数据的固定效应模型就会损失巨大的自由度,使得个体截距项的估计不具有有效性。这时,可以在总体中随机抽取N个样本,利用这N个样本的个体随机效应模型:
12Kitkkitiitkyxuw
(2)
推断总体的经济规律。其中,个体随机误差项iu是属于第i个个体的随机干扰分量,并在整个时间范围(t=1,2,…,T)保持不变,其反映了不随时间变化的不可观测随机信息的效应。 检验:个体随机效应的原假设和备择假设分别是:
20:0uH (混合估计模型) 2
210uH:(个体随机效应模型)
个体随机效应的检验统计量: 22
11211ˆ=12(1)ˆNTitiiNNititNTLMT
其中,ˆit是混合模型OLS估计的残差。在零售下,统计量LM服从1个自由度的2分布,即2~(1)LM
。
2.个体时间随机效应模型
实践: 一、数据:已知1996—2002年中国东北、华北、华东15个省级地区的居民
家庭人均消费(cp,不变价格)和人均收入(ip,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。年人均消费(consume)和人均收入(income)数据以及消费者价格指数(p)分别见表1,2和3。 表1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据 人均消费 1996 1997 1998 1999 2000 2001 2002 CONSUMEAH 3607.43 3693.55 3777.41 3901.81 4232.98 4517.65 4736.52 CONSUMEBJ 5729.52 6531.81 6970.83 7498.48 8493.49 8922.72 10284.6 CONSUMEFJ 4248.47 4935.95 5181.45 5266.69 5638.74 6015.11 6631.68 CONSUMEHB 3424.35 4003.71 3834.43 4026.3 4348.47 4479.75 5069.28 CONSUMEHLJ 3110.92 3213.42 3303.15 3481.74 3824.44 4192.36 4462.08 CONSUMEJL 3037.32 3408.03 3449.74 3661.68 4020.87 4337.22 4973.88 CONSUMEJS 4057.5 4533.57 4889.43 5010.91 5323.18 5532.74 6042.6 CONSUMEJX 2942.11 3199.61 3266.81 3482.33 3623.56 3894.51 4549.32 CONSUMELN 3493.02 3719.91 3890.74 3989.93 4356.06 4654.42 5342.64 CONSUMENMG 2767.84 3032.3 3105.74 3468.99 3927.75 4195.62 4859.88 CONSUMESD 3770.99 4040.63 4143.96 4515.05 5022 5252.41 5596.32 CONSUMESH 6763.12 6819.94 6866.41 8247.69 8868.19 9336.1 10464 CONSUMESX 3035.59 3228.71 3267.7 3492.98 3941.87 4123.01 4710.96 CONSUMETJ 4679.61 5204.15 5471.01 5851.53 6121.04 6987.22 7191.96 CONSUMEZJ 5764.27 6170.14 6217.93 6521.54 7020.22 7952.39 8713.08
表2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据 人均收入 1996 1997 1998 1999 2000 2001 2002 INCOMEAH 4512.77 4599.27 4770.47 5064.6 5293.55 5668.8 6032.4 3
INCOMEBJ 7332.01 7813.16 8471.98 9182.76 10349.69 11577.78 12463.92 INCOMEFJ 5172.93 6143.64 6485.63 6859.81 7432.26 8313.08 9189.36 INCOMEHB 4442.81 4958.67 5084.64 5365.03 5661.16 5984.82 6679.68 INCOMEHLJ 3768.31 4090.72 4268.5 4595.14 4912.88 5425.87 6100.56 INCOMEJL 3805.53 4190.58 4206.64 4480.01 4810 5340.46 6260.16 INCOMEJS 5185.79 5765.2 6017.85 6538.2 6800.23 7375.1 8177.64 INCOMEJX 3780.2 4071.32 4251.42 4720.58 5103.58 5506.02 6335.64 INCOMELN 4207.23 4518.1 4617.24 4898.61 5357.79 5797.01 6524.52 INCOMENMG 3431.81 3944.67 4353.02 4770.53 5129.05 5535.89 6051 INCOMESD 4890.28 5190.79 5380.08 5808.96 6489.97 7101.08 7614.36 INCOMESH 8178.48 8438.89 8773.1 10931.64 11718.01 12883.46 13249.8 INCOMESX 3702.69 3989.92 4098.73 4342.61 4724.11 5391.05 6234.36 INCOMETJ 5967.71 6608.39 7110.54 7649.83 8140.5 8958.7 9337.56 INCOMEZJ 6955.79 7358.72 7836.76 8427.95 9279.16 10464.67 11715.6
表3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数
二、1.输入操作: 步骤:(1)File——New——Workfile
物价指数 1996 1997 1998 1999 2000 2001 2002 PAH 109.9 101.3 100 97.8 100.7 100.5 99 PBJ 111.6 105.3 102.4 100.6 103.5 103.1 98.2 PFJ 105.9 101.7 99.7 99.1 102.1 98.7 99.5 PHB 107.1 103.5 98.4 98.1 99.7 100.5 99 PHLJ 107.1 104.4 100.4 96.8 98.3 100.8 99.3 PJL 107.2 103.7 99.2 98 98.6 101.3 99.5 PJS 109.3 101.7 99.4 98.7 100.1 100.8 99.2 PJX 108.4 102 101 98.6 100.3 99.5 100.1 PLN 107.9 103.1 99.3 98.6 99.9 100 98.9 PNMG 107.6 104.5 99.3 99.8 101.3 100.6 100.2 PSD 109.6 102.8 99.4 99.3 100.2 101.8 99.3 PSH 109.2 102.8 100 101.5 102.5 100 100.5 PSX 107.9 103.1 98.6 99.6 103.9 99.8 98.4 PTJ 109 103.1 99.5 98.9 99.6 101.2 99.6 PZJ 107.9 102.8 99.7 98.8 101 99.8 99.1