1.2 展开与折叠 (一)
- 格式:doc
- 大小:250.00 KB
- 文档页数:3
新北师大版七年级数学上册?睁开与折叠〔第一课时〕 ?教案学目1、在操作活中棱柱的某些特征.2、认识棱柱睁开的形状,能正确地判断和制作的立体模型.学要点1、在操作活中,展空念,累数学活.棱柱的某些特征,形成范的言。
2、能依据棱柱的睁开判断和制作的立体形.学点依据棱柱的睁开判断和操作的立体形.教课程一、授新从做一做中棱柱的特征〔生互〕1、棱柱的特色假定有假定干几何体,你能马上找到棱柱?棱柱有什么独出心裁的特色呢?(1)棱柱的上、下底面是.(2)棱柱的面都是 ______________.(3)棱柱的所有棱都 _____________.(4)棱柱面的个数与底面多形的数______________ 。
(5* )棱柱各元素的数目关系以下:名称底面形状点数棱数棱数面数面形状面数n棱柱2、棱柱的分我已认识了棱柱,那么棱柱之能否有区呢?往常依据底面形的数将棱柱分三棱柱、四棱柱、五棱柱⋯⋯方体和正方体都是____________________.二、你来一〔 * 做〕1、如:( 1〕方体有_________个点,_________条棱,_________个面,些面形状都是 _________。
( 2〕哪些面的形状和大小必定完整同样?( 3〕哪些棱的度必定相等?2.想想,再折一折,下边两图经过折叠可否围成棱柱?师生小结:三、专心做一做[例 1]三棱柱有_______条棱,_______个面,此中侧面是_______形,_______面的形状必定完整同样.[ 例 2]如以下列图,哪些图形经过折叠能够围成一个棱柱?先想想,再折一折.[ 例 3] 一个六棱柱模型如右图,它的底面边长都是 5 cm ,侧棱长 4 cm 。
察看这个模型,回复以下问题:( 1〕这个六棱柱一共有多少个面?它们分别是什么形状?哪些面的形状和大小完整同样?( 2〕这个六棱柱一共有多少条棱?它们的长度分别是多少?学生小结:四、牢固加强:1、下边图形经过折叠可否围成棱柱?2、以下列图中哪一个是六棱柱的平面睁开图(A)(B)(C)(D)3、如右图所示的八棱柱,它的底面边长都是 5 ㎝,侧棱长都是 8 cm .请回复以下问题:(1〕这个八棱柱一共有多少个面?它们的形状分别是什么图形?哪些面的形状、面积完整同样?( 2 〕这个八棱柱一共有多少条棱?它们的长度分别是多少?( 3 〕沿一条侧棱将其侧面所有展成一个平面图形,这个图形是什么形状?面积是多少?4*、一个棱柱有 12 个极点,所有侧棱长和为36 cm,求每条侧棱的长.反省小结:预习资料: 1、棱柱的睁开图一定知足什么条件?2、准备一个用纸做的正方体。
课时教案1.2展开与折叠第一课时一、教学目标:【知识与技能】1.经历展开与折叠、模型制作等活动过程,发展空间观念,积累数学学习的经验.2.在操作活动中认识棱柱的某些特征.3.培养合作学习的能力.【过程与方法】通过学生的动手制作,在学习的过程中学生不仅认识了立体图形与平面图形的关系(平面图形经过折叠成立体图形,立体图形沿某些棱剪开展成平面图形),而且培养了学生观察思考和自己动手操作、合作学习的能力,为以后学习平面图形的有关知识作好引入的准备.【情感、态度与价值观】体验数学与日常生活是密切相关的,认识到许多数学研究的原型都源于生活实际,反过来,众多的实际问题也可以借助数学方法来解决.二、学情分析:.三、教学重点、难点及关键:重点通过图形的展开与折叠发展空间观念.难点正确判断哪些平面图形可以折叠为立体图形.关键通过剪,折等操作发展学生的空间观念,逐步学会正确判断简单几何模型与展开图之间的相互联系.突破方法分析探索、问题解决.四、教法与学法导航教学方法引导法,探索交流法.学习方法自主、合作、交流、探究.五、教学准备教师准备:标上号码、上面可以活动的五棱柱及展开图;一底面可以活动的六棱柱、三棱柱的展开图;正方体、长方体模型.学生准备:预习本堂课内容;课纸板;本堂课所需的五棱柱、六棱柱、三棱柱、四棱柱的展开图;剪刀、粘胶.六、教学过程(一)复习引入投影展示立方体模型.小组讨论回答:(1)这个立方体一共有多少个面?它们分别是什么形状?那些面的形状、面积完全相同?(2)这个立方体一共有多少条棱?它们的长度分别是多少?(二)、讲授新课活动一探索立方体的展开图将一个正方体的表面展开,你能得到哪些平面图形?与同伴交流.正方体有六个面,沿着不同的棱裁剪,展开图也形状各异,可分为11种,下面归类梳理:6个图形第二类:“132”型;特点:三个连成一排,两侧分别连着1个和2个正方形。
如下面3个图形第三类:“222”型;特点:两个连成一排的正方形的两侧又各有两个连成一排的正方形。
1.2 展开与折叠【学习目标】:1.通过折叠几何体,发展学生空间观念,积累数学活动经验。
2.2.能根据展开图判断和制作简单的立体模型。
3.经历和体验图形的变化过程,体会几何体与它的展开图之间的关系。
【学习重点】:利用模型将展开图折叠成几何体是重点。
【学习难点】:不用模型,展开想象,由展开图怎样叠成几何体。
基础知识1.棱柱的表面展开图棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的.沿棱柱表面不同的棱剪开就可以得到不同的表面展开图.如图是棱柱的一种展开图.棱柱的表面展开图是两个完全相同的多边形(底面)和几个长方形(侧面).【例题点拨1】如图,请你在横线上写出哪种立体图形的表面能展开成下面的图形.解析:(1)三棱柱两个底面是三角形(2)六棱柱两个底面是六边形(3)长方体两个底面是长方形(4)三棱柱两个底面是三角形答案:三棱柱六棱柱长方体三棱柱2.圆柱、圆锥的表面展开图(1)圆柱的表面展开图沿着圆柱的一条高把圆柱剪开,就得到圆柱的表面展开图.圆柱的表面展开图是两个圆(底面)和一个长方形(侧面),如图所示.如果两个底面圆在长方形的同一侧(如图所示),折叠后上端没有底,下端有两个底,则它不能折叠成圆柱.(2)圆锥的表面展开图如图所示,圆锥的表面展开图是一个圆(底面)和一个扇形(侧面).【例题点拨2】如图所示图形都是几何体的展开图,你能说出这些几何体的名称吗?分析:主要根据顶点、棱、面的数量及侧面展开图的形状进行判断.解:圆锥、圆柱、五棱柱.3.平面图形的折叠平面图形沿某些直线折叠可以围成一定形状的立体图形,与立体图形展开成平面图形是一个互逆过程.我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.根据平面展开图判断立体图形的方法:(1)能够折叠成棱柱的特征:①棱柱的底面边数=侧面的个数.②棱柱的两个底面要分别在侧面展开图的两侧.(2)圆柱的表面展开图一定是两个相同的圆形和一个长方形.(3)圆锥的表面展开图一定是一个圆形和一个扇形.(4)能够折叠成正方体的特征:①6个面都是完全相同的正方形.②正方体展开图连在一起的(指在同一条直线上的)正方形最多只能为4个.③以其中1个为底面,前、后、左、右、上面都有,且不重叠.4.正方体展开图上的数字问题正方体是立体图形的展开与折叠的代表图形,与正方体的展开图有关的数字问题主要是相对面的找法,确定了三组相对面,数字问题便可迎刃而解.正方体的平面展开图共有11种,可分为四类:(1)1-4-1型相对面的确定:①第一行与第三行的正方形是相对面;②中间一行的4个正方形中,相隔一个是相对面.(2)1-3-2型相对面的确定:①第一行的正方形与第三行的左边第1个正方形是相对面;②中间一行第1个与第3个为相对面;第2个与第三行第2个为相对面.(3)2-2-2型相对面的确定:①第一行的第1个与第二行的第2个是相对面;②第二行第1个与第三行的第2个是相对面;③第三行的第1个与第一行的第2个为相对面.(4)3-3型相对面的确定:①第一行的第1个与第3个为相对面;②第二行的第1个与第3个为相对面;③第一行的第2个与第二行的第2个为相对面.【例题点拨3-1】如图所示,哪些图形经过折叠可以围成一个棱柱?分析:(1)底面是四边形,侧面有3个,显然与三棱柱、四棱柱的特征不符;(3)的两个底面在侧面同侧,折叠后也不能围成棱柱;(2)(4)折叠后可以围成棱柱.解:(2)(4)可以.【例题点拨3-2】生活中我们经常可以见到各种各样的包装盒,你能用线将图中的实物和它的平面展开图连接起来吗?分析:根据能折叠成不同几何体的特征去判断即可.解:如图所示.【例例题点拨4-1】如图所示,假定用A,B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.分析:先判断属于哪种类型,再确定相对面.前三种的相对面都是隔一个即可;第四种的A与上面第一行中的第2个是相对面.解:如图所示.【例例题点拨4-2】要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,则x=__________,y=__________.解析:这里关键是要找到相对的面,折叠之后可知,x与1相对,所以x=5,y与3相对,所以y=3.答案:5 3【例例题点拨4-3】小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是( ).解析:这个正方体的平面展开图属于1-4-1型的,根据规律可知,第一行的与第三行的为相对面,中间一行的第1个与第3个、第2个与第4个为相对面,故应选A.答案:A5.表面展开图的应用正方体与图案正方体前面、上面、右面有不同的图案,按不同的类型展开后,其图案也会发生相应的变化.根据展开图判断是否与模型对应的方法:(1)三个面上的不同图案不会对立,所以可排除三种图案对立的情况;(2)位置判断:相邻三个面的图案位置是否一致.当前面和上面的图案确定位置后,另一个图案是在左面还是右面,图案放置的角度是否正确.【例5】图中给出的是哪个正方体的展开图?( ).解析:显然带有黑色的面是相对的面,所以A,B错误.又因为两个黑色小正方形应该是相对的,所以选D.答案:D基本方法【基础训练】1.下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应连线。
§1.2 展开与折叠【学习目标】1、通过展开与折叠、模型制作等活动,进一步认识棱柱的特征,发展空间观念。
2、了解棱柱、圆柱、圆锥的侧面展开图,能根据展开图判断和制作简单的立体模型。
【课前知多少】1、长方体的面与棱:长方体有个面,个顶点,条棱。
2、正方体的面与棱:正方体有个面,个顶点,条棱。
每个面都是,每条棱的长度都。
3、圆柱体与圆锥体的面:圆柱体是由个面围成的,圆锥体是由个面围成的,它们的底面都是,侧面都是。
【合作探究问题解决】一、棱柱的表面展开图★棱柱的表面展开图是由和一些组成的。
沿棱柱的表面不同的棱剪开,可得到不同组合方式的表面展开图。
例1、右图是某个多边形的表面展开图,那么这个多面体是。
二、总结出正方体的表面展开图将一个正方体的表面沿某些棱剪开,展成一个平面图形回答下列问题。
(1)你能得到那些平面图形,画在下面?(2)、总结出正方体的表面展开图,归纳出它们的特征。
A B C D三、圆柱、圆锥的表面展开图★圆柱的表面展开图是由两个(底面)和(侧面)组成,其中侧面展开图长方形的一边长度是底面圆的,另一边长是圆柱的。
★圆锥的表面展开图是由一个(侧面)和一个(底面)组成,其中扇形的半径是圆锥母线(圆锥底面圆周上任一点与顶点的连线)长,而扇形的弧长则是圆锥底面圆的例2、指出下列图形分别是哪种立体图形的表面展开图。
答:【典型例题】题型一立体图形的展开与折叠例3、右图是一个正方体盒子的表面展开图,若其中的三个正方形A,B,C内分别填入适当的数使得它们折成正方体后相对的面上的两个数之和为6,则正方体A,B,C三个面上各填什么数?题型二求立体图形的表面积例4、下图是一张铁皮,(1)计算该铁皮的面积。
(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,请说明理由。
【中考典题剖析】1、(2011.呼和浩特中考)将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()2、(2011.北京中考)若右图是某几何体的表面展开图,则这个几何体是__________.【 作 业 】1、侧面展开图是一个长方形的几何体是( )A 、圆锥B 、圆柱C 、四棱锥D 、球2、侧面展开图是一个扇形的几何体是( )A 、圆锥B 、圆柱C 、棱柱D 、球3、在图中,( )是四棱柱的侧面展开图4、下列图形不能够折叠成正方体的是( )D C B A 55、在下列各平面图形中,是圆锥的表面展开图的是( )6、下面两个图中所示的平面图形是什么图形的表面展开图。
1.2 展开与折叠(一)姓名
一、学习任务:自学课本P8页完成下列导学任务及随堂练习
二、导学:
1、剪一剪:将一个正方体的表面沿某些棱剪开,展开成一个平面图形。
2、议一议:小组合作,归纳正方体展开图并画出展开图。
三、问题提出:
1、图1-5中的图形经过折叠能否围成一个正方体?
2、如下图中的图形可以折成一个正方体形的盒子,折好以后,与1相邻的数是什么?相对的数是什么?先想一想,再具体折一折,看看你的想法是否正确。
四、初步应用:
1、将一个正方体的表面沿某些棱剪开,能展开成下列平面图形吗?
2、下面哪一个图形经过折叠可以得到正方体?
3、将正方体的表面分别标上数字1,2,3,4,5,6,使它的任意两个相对面的数字之和为7,将它沿某些棱剪开,能展开成下列的平面图形吗?
五、课堂小结
用自己的话说出这节课你学到了什么?
六、验收落实
1.(AB层)在下面的图形中,()是正方体的表面展开图.
2.(AB层)下面的图形经过折叠不能围成一个长方体的是()
3.(A层)如图是一个正方体纸盒展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它折成正方体后相对的面上的两数之和为9,则正方体A、B、C三个面上各填什么数?
4.(A层)将正方体的表面沿某些棱剪开,展开成一个平面图形,你剪开了几条棱?与同伴进行交流,你们的结果是否一致?
学案1.2 展开与折叠课堂小测姓名
一、基础练习(AB层)
1、如图不是正方体的展开图的是()
A C D
2、下面四个图形中不能折成正方体的是()
B、
C、 D、
3、如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()4
、在图中增加1个小正方形使所得图形经过折叠能够围成一个正方体。
二、巩固提高(A层)
5、将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()
A B C D
6、如图所示,将该图形折叠后可以围成一个正方体,折叠后:
(1)点P与哪些点重合?点C与哪些点重合?
(2)点A与哪些点重合?点B与哪些点重合?
Q P
T K
N
M
H
G
F
E
D
C
B
A。