2017年甘肃省白银市平川四中中考数学二模试卷及解析答案word版
- 格式:doc
- 大小:443.00 KB
- 文档页数:26
2017-2018学年甘肃省白银市平川四中九年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)下列方程,是一元二次方程的是()①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.A.①②B.①②④⑤C.①③④D.①④⑤2.(3分)下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形3.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.4.(3分)已知关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围是()A.k≤1 B.k≥1 C.k<1 D.k>15.(3分)顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形;②菱形;③等腰梯形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④6.(3分)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.7.(3分)以3、4为两边的三角形的第三边长是方程x2﹣13x+40=0的根,则这个三角形的周长为()A.15或12 B.12 C.15 D.以上都不对8.(3分)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4 B.3 C.2 D.9.(3分)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:510.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570二、填空题(每题3分,共30分)11.(3分)在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为cm.12.(3分)关于x的方程是一元二次方程,则a=.13.(3分)两个相似多边形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个多边形的周长分别是.14.(3分)一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有个.15.(3分)市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是.16.(3分)已知=,则=.17.(3分)如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于.18.(3分)已知线段AB=6cm,点C为AB的黄金分割点,且AC>BC,则AC=.19.(3分)如图,把一个长方形分成两个全等的小长方形,若使每一个小长方形与原长方形相似,则原长方形长和宽之比为.20.(3分)Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D,则△BCD与△ABC的周长之比为.三、解答题(本大题共90分)3x2-2x-8=021.(20分)用适当的方法解下列方程(1)3x2﹣6x=﹣3;(2)3x2﹣2x﹣8=0;(3)3(x﹣2)2=x(x﹣2);(4)2(x﹣3)2=8.22.(10分)小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.23.(8分)已知菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.24.(10分)在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB 于点E,点F在DE上,且AF=CE=AE,(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形AECF是菱形?并说明理由.25.(10分)关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.26.(10分)如图,在△ABC中,AB=8,BC=16,点P从点A开始沿AB边向点B 以2个单位/秒的速度移动,点Q从点B开始沿BC边向点C以4个单位/秒的速度移动,如果P、Q分别从A、B同时出发,经过秒后,△PBQ与△ABC 相似.27.(10分)某软件商店经销一种热门益智游戏软件,进货成本为每盘8元,若按每盘10元销售,每天能售出200盘;但由于货源紧缺,商店决定采用尽量提高软件售价减少销售量的办法增加利润,如果这种软件每盘售价提高2元其销售量就减少40盘,问应将每盘售价定为多少元时,才能使每天利润为640元?这时的销售量应为多少?28.(12分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.2017-2018学年甘肃省白银市平川四中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列方程,是一元二次方程的是()①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.A.①②B.①②④⑤C.①③④D.①④⑤【解答】解:①符合一元二次方程的条件,正确;②含有两个未知数,故错误;③不是整式方程,故错误;④符合一元二次方程的条件,故正确;⑤符合一元二次方程的条件,故正确.故选:D.2.(3分)下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.3.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选:B.4.(3分)已知关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围是()A.k≤1 B.k≥1 C.k<1 D.k>1【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4k≥0,解之得k≤1.故选:A.5.(3分)顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形;②菱形;③等腰梯形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【解答】解:由一组对边平行且相等的四边形为平行四边形得①是平行四边形;根据有一个角是直角的平行四边形是矩形推得②④是矩形;根据四条边形等的四边形为菱形得③是菱形.故选:D.6.(3分)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是:=.故选:C.7.(3分)以3、4为两边的三角形的第三边长是方程x2﹣13x+40=0的根,则这个三角形的周长为()A.15或12 B.12 C.15 D.以上都不对【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,则x﹣5=0,x﹣8=0,解得:x1=5,x2=8,设三角形的第三边长为x,由题意得:4﹣3<x<4+3,解得1<x<7,∴x=5,三角形周长为3+4+5=12,故选:B.8.(3分)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4 B.3 C.2 D.【解答】解:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴BC×AE=CD×AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴BE=2,∴AE==2,∴EF=AE=2,过A作AM⊥EF,∴AM=AE•sin60°=3,∴△AEF的面积是:EF•AM=×2×3=3.故选:B.9.(3分)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:5【解答】解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE∥BC,∴CE:AC=BD:AB=5:8,∵EF∥AB,∴CF:CB=CE:AC=5:8.故选:A.10.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.二、填空题(每题3分,共30分)11.(3分)在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为5cm.【解答】解:根据勾股定理得,斜边==10cm,∴斜边上的中线=×斜边=×10=5cm.故答案为:5.12.(3分)关于x的方程是一元二次方程,则a=3.【解答】解:由题意得:,解得:a=3.故答案为:a=3.13.(3分)两个相似多边形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个多边形的周长分别是40cm、100cm.【解答】解:设最长边为10cm的多边形周长为x,则最长边为24cm的多边形的周长为(x+60)cm.∵周长之比等于相似比.∴=.解得x=40cm,x+60=100cm.14.(3分)一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有15个.【解答】解:黄球的概率近似为=,设袋中有x个黄球,则=,解得x=15.故答案为:15.15.(3分)市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是20%.【解答】解:设这种药品平均每次降价的百分率为x,则第一次下调后的价格为200(1﹣x),第二次下调的价格为200(1﹣x)2,根据题意列得:200(1﹣x)2=128,解得:x=0.2=20%,或x=1.8=180%(舍去),则这种药品平均每次降价的百分率为20%.故答案为:20%16.(3分)已知=,则=.【解答】解:由比例的性质,得b=a.====,故答案为:.17.(3分)如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于2.【解答】解:由题意得,a﹣1=0,b﹣4=0,解得a=1,b=4,∵菱形的两条对角线的长为a和b,∴菱形的面积=×1×4=2.故答案为:2.18.(3分)已知线段AB=6cm,点C为AB的黄金分割点,且AC>BC,则AC=3﹣3.【解答】解:由于C为线段AB=6的黄金分割点,且AC>BC,则AC=a==3﹣3.故答案为:3﹣3.19.(3分)如图,把一个长方形分成两个全等的小长方形,若使每一个小长方形与原长方形相似,则原长方形长和宽之比为:1.【解答】解:设AE=ED=a,AB=b,∵每一个小长方形与原长方形相似,∴,∴b2=2a2,∵a,b均为正数,∴b=a,∴,∴原长方形的长与宽之比为:1.故答案为::1.20.(3分)Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D,则△BCD与△ABC的周长之比为.【解答】解:已知Rt△ABC中,∠ACB=90°,∠A=30°,∵CD⊥AB,∴∠BCD=∠A=30°,∴BC=AB,BD=BC,CD=AC,∴BC+BD+CD=(AB+BC+AC),则=,∴△BCD与△ABC的周长之比为:,故答案为:.三、解答题(本大题共90分)3x2-2x-8=0 21.(20分)用适当的方法解下列方程(1)3x2﹣6x=﹣3;(2)3x2﹣2x﹣8=0;(3)3(x﹣2)2=x(x﹣2);(4)2(x﹣3)2=8.【解答】解:(1)3x2﹣6x=﹣3;x2﹣2x+1=0,∴(x﹣1)2=0,∴x1=x2=1.(2)3x2﹣2x﹣8=0;(x﹣2)(3x+4)=0,∴x﹣2=0或3x+4=0,∴x1=2,x2=﹣(3)3(x﹣2)2=x(x﹣2);3(x﹣2)2﹣x(x﹣2)=0(x﹣2)(3x﹣6﹣x)=0(x﹣2)(2x﹣6)=0,∴x1=2,x2=3(4)2(x﹣3)2=8.(x﹣3)2=4,∴x﹣3=±2,∴x1=5,x2=1.22.(10分)小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.【解答】解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是=,即小明获胜的概率是;故小芳获胜的概率是.而<,故小芳获胜的可能性大,这个“配色”游戏对双方是不公平的.23.(8分)已知菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.24.(10分)在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB 于点E,点F在DE上,且AF=CE=AE,(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形AECF是菱形?并说明理由.【解答】解:(1)四边形ACEF是平行四边形;∵DE垂直平分BC,∴D为BC的中点,ED⊥BC,又∵AC⊥BC,∴ED∥AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD∥AC.∴BD=CD,∴Rt△ABC中,CE是斜边AB的中线,∴CE=AE=AF.∴∠F=∠5=∠1=∠2.∴∠FAE=∠AEC.∴AF∥EC.又∵AF=EC,∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF为菱形;理由:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE又∵四边形ACEF为平行四边形∴四边形ACEF为菱形;25.(10分)关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.【解答】解:(1)△=b2﹣4ac=22﹣4×1×(2k﹣4)=20﹣8k.∵方程有两个不相等的实数根,∴20﹣8k>0,∴k<.(2)∵k为正整数,=﹣1±.∴0<k<,即k=1或2,x1,2∵方程的根为整数,∴5﹣2k为完全平方数,当k=1时,5﹣2k=3;当k=2时,5﹣2k=1.∴k=2.26.(10分)如图,在△ABC中,AB=8,BC=16,点P从点A开始沿AB边向点B 以2个单位/秒的速度移动,点Q从点B开始沿BC边向点C以4个单位/秒的速度移动,如果P、Q分别从A、B同时出发,经过2或秒后,△PBQ与△ABC 相似.【解答】解:设经过x秒后,△PBQ与△ABC相似,则BP=AB﹣AP=8﹣2x,BQ=4x,(1)当BP与AB是对应边时,,即,解得x=2;(2)当BP与BC是对应边时,,即,解得x=.故经过2或秒后,△PBQ与△ABC相似.27.(10分)某软件商店经销一种热门益智游戏软件,进货成本为每盘8元,若按每盘10元销售,每天能售出200盘;但由于货源紧缺,商店决定采用尽量提高软件售价减少销售量的办法增加利润,如果这种软件每盘售价提高2元其销售量就减少40盘,问应将每盘售价定为多少元时,才能使每天利润为640元?这时的销售量应为多少?【解答】解:设销售单价定为x元,根据题意,得:(x﹣8)[200﹣20(x﹣10)]=640,整理得:x2﹣28x+192=0,解得:x1=16,x2=12,但本着尽量提高软件销售价的原则,定价为单价是每件16元最好.销售量:[200﹣20(x﹣10)]=80盘,答:销售单价应定为16元,才能使每天利润为640元.销售量:[200﹣20(x ﹣10)]=80盘.28.(12分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【解答】(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF;(2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2,∴AC=2BC=4,∴AB===6.。
2017年甘肃省白银市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.4的平方根是()A.16 B.2 C.±2 D.4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=06.将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.已知a ,b ,c 是△ABC 的三条边长,化简|a+b ﹣c|﹣|c ﹣a ﹣b|的结果为( ) A .2a+2b ﹣2c B .2a+2b C .2c D .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=57010.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB→BC 的路径运动,到点C 停止.过点P 作PQ ∥BD ,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm )与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长是( )A .mB .mC .mD .m二、填空题(本大题共8小题,每小题4分,共32分) 11.分解因式:x 2﹣2x+1= .1220.520.5.(填“>”、“=”、“<”)13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m 2015+2016n+c 2017的值为 .14.如图,△ABC 内接于⊙O ,若∠OAB=32°,则∠C= °.15.若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有实数根,则k 的取值范围是 . 16.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.如图,在△ABC 中,∠ACB=90°,AC=1,AB=2,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则弧CD 的长等于 .(结果保留π)18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为 ,第2017个图形的周长为 .三、解答题(一)(本大题共5小题,共38分) 19.(6()113ta n 3042p -骣琪-+--琪桫°.20.(8分)解不等式组()111212x x ì-?ïíï-<î,并写出该不等式组的最大整数解.21.(8分)如图,已知△ABC ,请用圆规和直尺作出△ABC 的一条中位线EF (不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(8分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.四、解答题(二)(本大题共5小题,共50分) 24.(8分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:(1)m= ,n= ; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(10分)已知一次函数y=k 1x+b 与反比例函数2k y x=的图象交于第一象限内的P (12,8),Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式;(2)写出点P 关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(10分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(12分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB 于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据中心对称图形的概念进行判断即可.【解答过程】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【总结归纳】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答过程】解:393000=3.93×105.故选:B.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.4的平方根是()A.16 B.2 C.±2 D.【知识考点】平方根.【思路分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答过程】解:∵(±2)2=4,∴4的平方根是±2,故选C.【总结归纳】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()。
2016-2017学年甘肃省白银市平川四中八年级(上)期中数学试卷一、选择题(本大题共有10个小题,每小题3分,满分30分.)1.在下列各数,5,,3π,,6.1010010001…,中,无理数的个数是()A.1 B.2 C.3 D.42.下列计算结果正确的是()A. B. =±6C.D.3.直角三角形两边长分别是3、4,第三边是()A.5 B. C.5或D.无法确定4.的相反数是()A.﹣B. C.D.25.下列三条线段能构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.5,11,13 D.,,6.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.2t B.Q=20﹣0.2t C.t=0.2Q D.t=20﹣0.2Q7.如图,数轴上点P表示的数可能是()A.B.C. D.8.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限 B.第三象限 C.第二象限 D.第一象限9.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5) C.(﹣2,﹣5) D.(2,﹣5)10.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时二、填空题(本大题共10个小题,每空2分,满分30分)11.的平方根是.12.(6分)点A(3,﹣4)到y轴的距离为,到x轴的距离为,到原点距离为.13.的绝对值是,倒数是.14.,则x y= .15.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为cm.(π取3)16.点(﹣3,2),(a,a+1)在函数y=kx﹣1的图象上,则k= ,a= .17.已知函数y=(n﹣2)x+n2﹣4是正比例函数,则n为.18.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.19.比较大小(用“>”,“<”或“=”表示):(1),(2).20.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC长为.三、解答题(本大题满分90分)21.计算(1)2﹣3﹣(2)+(1﹣)0(3)(3+)2﹣(2﹣)(2+)(4)÷﹣×+.22.已知x=1+,y=﹣1,试求代数式3x2﹣3y2的值.23.已知a,b互为相反数,c,d互为倒数,x是2的平方根,求的值.24.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标为A (0,﹣2)、B (3,﹣1)、C (2,1).(1)请在图中画出△ABC关于y轴对称的图形△AB′C′;(2)写出点B′和C′的坐标.25.(6分)在数轴上找出对应的点.(保留作图痕迹)26.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD 的面积.27.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.28.观察下列运算:由(+1)(﹣1)=1,得=﹣1;由(+)(﹣)=1,得=﹣;由(+)(﹣)=1,得=﹣;…(1)通过观察得= ;(2)利用(1)中你发现的规律计算: ++…+.2016-2017学年甘肃省白银市平川四中八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,满分30分.)1.在下列各数,5,,3π,,6.1010010001…,中,无理数的个数是()A.1 B.2 C.3 D.4【考点】无理数.【分析】根据无理数的定义(无理数是指无限不循环小数)得出即可.【解答】解:无理数有,3π,6.1010010001…,,共4个,故选D.【点评】本题考查了对无理数定义的应用,注意:无理数包括:①含π的,②开方开不尽的根式,③一些有规律的数.2.下列计算结果正确的是()A.B. =±6 C.D.【考点】实数的运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=|﹣3|=3,正确;B、原式=6,错误;C、原式不能合并,错误;D、原式不能合并,错误.故选A.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.直角三角形两边长分别是3、4,第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】此题要考虑两种情况:当第三边是斜边时;当第三边是直角边时.【解答】解:当第三边是斜边时,则第三边==5;当第三边是直角边时,则第三边==.故选C.【点评】熟练运用勾股定理,注意此题的两种情况.4.的相反数是()A.﹣B.C.D.2【考点】实数的性质.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得的相反数是:﹣.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.5.下列三条线段能构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.5,11,13 D.,,【考点】勾股定理的逆定理.【分析】如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,根据勾股定理的逆定理逐一判断即可.【解答】解:A、∵1.52+22=2.52,∴1.5,2,2.5能构成直角三角形,故本选项正确;B、∵42+52=41≠62,∴4,5,6不能构成直角三角形,故本选项错误;C、∵52+112≠132,∴5,11,13不能构成直角三角形,故本选项错误;D、∵()2+()2≠()2,∴,,不能构成三角形,故本选项错误.故选:A.【点评】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解决问题的关键.6.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.2t B.Q=20﹣0.2t C.t=0.2Q D.t=20﹣0.2Q【考点】函数关系式.【分析】利用油箱中存油量20升﹣流出油量=剩余油量,根据等量关系列出函数关系式即可.【解答】解:由题意得:流出油量是0.2t,则剩余油量:Q=20﹣0.2t,故选:B.【点评】此题主要考查了列函数解析式,关键是正确理解题意,找出题目中的等量关系.7.如图,数轴上点P表示的数可能是()A.B.C. D.【考点】实数与数轴;估算无理数的大小.【分析】根据被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:由<<3<4<,点P表示的数大于3小于4,故C符合题意.故选:C.【点评】本题考查了估算无理数的大小,利用了被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大.8.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限 B.第三象限 C.第二象限 D.第一象限【考点】点的坐标.【专题】计算题.【分析】由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限.【解答】解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选C.【点评】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.9.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5) C.(﹣2,﹣5) D.(2,﹣5)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点P(2,﹣5)关于x轴对称,∴对称点的坐标为:(2,5).故选:B.【点评】此题主要考查了关于x轴对称点的坐标性质,正确记忆坐标变化规律是解题关键.10.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时【考点】函数的图象.【专题】行程问题.【分析】结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米;平均速度=总路程÷总时间.【解答】解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店距离无法确定,因为题目没说体育馆,早餐店和家三者在同一直线上,故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.【点评】此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.二、填空题(本大题共10个小题,每空2分,满分30分)11.的平方根是±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.点A(3,﹣4)到y轴的距离为 3 ,到x轴的距离为 4 ,到原点距离为 5 .【考点】点的坐标.【分析】根据点的坐标的几何意义解答即可.【解答】解:根据点的坐标的几何意义可知:点A(3,﹣4)到y轴的距离为3,到x轴的距离为4,到原点距离为=5.故填3、4、5.【点评】本题主要考查了点的坐标的几何意义,横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.13.的绝对值是2﹣,倒数是﹣2﹣.【考点】实数的性质.【分析】根据绝对值的性质解答;根据倒数的定义解答,并分母有理化.【解答】解:∵﹣2<0,∴﹣2的绝对值是2﹣;倒数是==﹣2﹣.故答案为:2﹣;﹣2﹣.【点评】本题考查了实数的性质,主要利用了绝对值的性质,倒数的定义,是基础题,求倒数时注意要分母有理化.14.,则x y= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)2011=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.15.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为15 cm.(π取3)【考点】平面展开-最短路径问题.【分析】本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理求得AB的长.【解答】解:圆柱展开图为长方形,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理得AB====15cm.故蚂蚁经过的最短距离为15cm.(π取3)【点评】解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.16.点(﹣3,2),(a,a+1)在函数y=kx﹣1的图象上,则k= ﹣1 ,a= ﹣1 .【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】将点(﹣3,2),(a,a+1)代入到函数y=kx﹣1中,即可解得k和a的w值.【解答】解:把(﹣3,2)代入y=kx﹣1,得﹣3k﹣1=2.∴k=﹣1.∴解析式为:y=﹣x﹣1,把(a,a+1)代入y=﹣x﹣1,得:﹣a﹣1=a+1,解得a=﹣1.【点评】本题考查的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.17.已知函数y=(n﹣2)x+n2﹣4是正比例函数,则n为﹣2 .【考点】正比例函数的定义.【分析】根据正比例函数:正比例函数y=kx的定义条件是:k为常数且k≠0,可得答案.【解答】解:y=(n﹣2)x+n2﹣4是正比例函数,得,解得n=﹣2,n=2(不符合题意要舍去).故答案为:﹣2.【点评】解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.18.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为16 .【考点】勾股定理;直角三角形全等的判定.【分析】根据已知及全等三角形的判定可得到△ABC≌△CDE,从而得到b的面积=a的面积+c的面积.【解答】解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°∴∠ACB=∠DEC∵∠ABC=∠CDE,AC=CE,在△ABC和△CDE中,∴△ABC≌△CDE(AAS),∴BC=DE∴(如上图),根据勾股定理的几何意义,b的面积=a的面积+c的面积∴b的面积=a的面积+c的面积=5+11=16.【点评】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.19.比较大小(用“>”,“<”或“=”表示):(1)>,(2)<.【考点】实数大小比较.【分析】(1)直接比较即可得;(2)由2<<3可得1<﹣1<2,继而可得答案.【解答】解:(1);故答案为:>;(2)∵2<<3,∴1<﹣1<2,∴<,故答案为:<.【点评】本题主要考查实数的大小比较,实数大小比较(1)任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.20.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC长为3cm .【考点】翻折变换(折叠问题).【分析】如图,根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8cm;∠B=∠C=90°;由题意得:AF=AD=10cm,EF=DE=λcm,EC=(8﹣λ)cm;由勾股定理得:BF2=102﹣82,∴BF=6cm,∴CF=10﹣6=4cm;在△EFC中,由勾股定理得:λ2=42+(8﹣λ)2,解得:λ=5,EC=8﹣5=3cm.故答案为:3cm.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.三、解答题(本大题满分90分)21.计算(1)2﹣3﹣(2)+(1﹣)0(3)(3+)2﹣(2﹣)(2+)(4)÷﹣×+.【考点】二次根式的混合运算;零指数幂.【分析】利用二次根式的性质、完全平方公式、平方差公式、二次根式的混合运算法则计算即可.【解答】解:(1)2﹣3﹣=6﹣3﹣=;(2)+(1﹣)0=+1=5+1=6;(3)(3+)2﹣(2﹣)(2+)=9+6+2﹣(4﹣3)=11+6﹣1=10+6;(4)÷﹣×+=4÷﹣+2=4﹣+2=4+.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.22.已知x=1+,y=﹣1,试求代数式3x2﹣3y2的值.【考点】二次根式的化简求值.【分析】利用二次根式的加减运算法则求出x+y和x﹣y,根据平方差公式计算即可.【解答】解:∵x=1+,y=﹣1,∴x+y=2,x﹣y=2,则3x2﹣3y2=3(x+y)(x﹣y)=3×2×2=12.【点评】本题考查的是二次根式的化简求值,掌握平方差公式,二次根式的加减混合运算法则是解题的关键.23.已知a,b互为相反数,c,d互为倒数,x是2的平方根,求的值.【考点】实数的运算.【专题】计算题.【分析】根据相反数、倒数的定义,可得出a+b=0,cd=1,解出x的值后代入即可得出答案.【解答】解:由题意知a+b=0,cd=1,x=,当x=时,原式=﹣+=0.当x=﹣时,原式=﹣﹣=﹣2.故原式的值为0或﹣2.【点评】本题考查了实数的运算,根据倒数、相反数的定义得出a+b=0,cd=1,是解题关键.24.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标为A (0,﹣2)、B (3,﹣1)、C (2,1).(1)请在图中画出△ABC关于y轴对称的图形△AB′C′;(2)写出点B′和C′的坐标.【考点】作图-轴对称变换.【专题】作图题;压轴题.【分析】(1)根据对称轴为y轴,作出△ABC的轴对称图形△AB′C′;(2)根据所画出的图形,求点B′和C′的坐标.【解答】解:(1)△ABC关于y轴对称的图形△AB′C′如图所示;(2)由图形可知B′(﹣3,﹣1),C′(﹣2,1).【点评】本题考查了轴对称变换的作图.关键是明确对称轴,根据对应点的连线被对称轴垂直平分,找对应点的位置.25.在数轴上找出对应的点.(保留作图痕迹)【考点】勾股定理;实数与数轴.【专题】作图题.【分析】因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是.再以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可.【解答】解:因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是..【点评】本题考查勾股定理及实数与数轴的知识,要求能够正确运用数轴上的点来表示一个无理数,解题关键是构造直角三角形,并灵活运用勾股定理.26.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD 的面积.【考点】勾股定理的逆定理;勾股定理.【专题】几何图形问题.【分析】连接BD,根据已知分别求得△ABD的面积与△BDC的面积,即可求四边形ABCD的面积.【解答】解:连接BD,∵AB=3cm,AD=4cm,∠A=90°∴BD=5cm,S△ABD=×3×4=6cm2又∵BD=5cm,BC=13cm,CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用,还涉及了三角形的面积计算.连接BD,是关键的一步.27.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据待定系数法求出一次函数解析式即可;(2)根据图象与函数坐标轴交点坐标求法得出a的值.【解答】解:(1)由题意得,解得.∴k,b的值分别是1和2;(2)将k=1,b=2代入y=kx+b中得y=x+2.∵点A(a,0)在 y=x+2的图象上,∴0=a+2,即a=﹣2.【点评】此题主要考查了待定系数法求一次函数解析式以及一次函数与坐标轴交点求法,此题比较典型应熟练掌握.28.观察下列运算:由(+1)(﹣1)=1,得=﹣1;由(+)(﹣)=1,得=﹣;由(+)(﹣)=1,得=﹣;…(1)通过观察得= ﹣;(2)利用(1)中你发现的规律计算: ++…+.【考点】分母有理化.【专题】计算题;实数.【分析】(1)根据题意确定出所求即可;(2)原式各项化简后,合并即可得到结果.【解答】解:(1)==﹣;故答案为:﹣;(2)原式=﹣1+﹣+…+﹣=﹣1.【点评】此题考查了分母有理化,弄清题中的规律是解本题的关键.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:3的相反数是()A.3 B.﹣3 C.D.﹣试题2:下列运算中,结果正确的是()A.4a﹣a=3a B.a10÷a2=a5C.a2+a3=a5D.a3•a4=a12试题3:下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()A.B.C.D.试题4:如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()评卷人得分A.B.C.D.试题5:如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°试题6:一元二次方程x2+x﹣2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定试题7:分式方程的解是()A.x=﹣2 B.x=1 C.x=2 D.x=3试题8:某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48试题9:已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,错误的个数有()A.1个B.2个C.3个D.4个试题10:如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S 关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.试题11:分解因式:x2﹣9= (x+3)(x﹣3).试题12:不等式2x+9≥3(x+2)的正整数解是1,2,3 .试题13:等腰三角形的周长为16,其一边长为6,则另两边为6,4或5,5 .试题14:如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为 5 米.试题15:如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD .(答案不唯一,只需填一个)试题16:若代数式的值为零,则x= 3 .试题17:已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t= 2或0 .试题18:现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4 .试题19:计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.试题20:先化简,再求值:,其中x=﹣.试题21:两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)试题22:某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.试题23:如图,一次函数与反比例函数的图象相交于点A,且点A的纵坐标为1.(1)求反比例函数的解析式;(2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.试题24:为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?试题25:在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200 名同学;(2)条形统计图中,m= 40 ,n= 60 ;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72 度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?试题26:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.试题27:如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.(1)若OC=5,AB=8,求tan∠BAC;(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.试题28:如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.试题1答案:考点:相反数.分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.试题2答案:考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项、同底数幂的除法法则:底数不变,指数相减,同底数幂的乘法法则:底数不变,指数相加,可判断各选项.解答:解:A、4a﹣a=3a,故本选项正确;B、a10÷a2=a10﹣2=a8≠a5,故本选项错误;C、a2+a3≠a5,故本选项错误;D、根据a3•a4=a7,故a3•a4=a12本选项错误;故选A.点评:此题考查了同类项的合并,同底数幂的乘除法则,属于基础题,解答本题的关键是掌握每部分的运算法则,难度一般.试题3答案:考点:中心对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.解答:解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;D:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.试题4答案:考点:简单组合体的三视图.分析:主视图是从正面看,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看,圆锥看见的是:三角形,两个正方体看见的是两个正方形.故答案为B.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.试题5答案:考点:平行线的性质.分析:根据两直线平行,内错角相等求出∠3,再求解即可.解答:解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选C.点评:本题考查了两直线平行,内错角相等的性质,是基础题,熟记性质是解题的关键.试题6答案:考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵a=1,b=1,c=﹣2,∴△=b2﹣4ac=1+8=9>0∴方程有两个不相等的实数根.故选A点评:本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.试题7答案:考点:解分式方程.分析:公分母为x(x+3),去括号,转化为整式方程求解,结果要检验.解答:解:去分母,得x+3=2x,解得x=3,当x=3时,x(x+3)≠0,所以,原方程的解为x=3,故选D.点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,(2)解分式方程一定注意要验根.试题8答案:考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:三月份的营业额=一月份的营业额×(1+增长率)2,把相关数值代入即可.解答:解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故选D.点评:考查列一元二次方程;得到三月份的营业额的关系是解决本题的关键.试题9答案:考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,利用图象将x=1,﹣1,2代入函数解析式判断y的值,进而对所得结论进行判断.解答:解:①∵由函数图象开口向下可知,a<0,由函数的对称轴x=﹣<0,故b>0,所以2a﹣b<0,①正确;②∵a<0,对称轴在y轴左侧,a,b同号,图象与y轴交于负半轴,则c<0,故abc<0;②正确;③当x=1时,y=a+b+c<0,③正确;④当x=﹣1时,y=a﹣b+c<0,④错误;⑤当x=2时,y=4a+2b+c<0,⑤错误;故错误的有2个.故选:B.点评:此题主要考查了图象与二次函数系数之间的关系,将x=1,﹣1,2代入函数解析式判断y的值是解题关键.试题10答案:考点:动点问题的函数图象;多边形内角与外角;切线的性质;切线长定理;扇形面积的计算;锐角三角函数的定义.专题:计算题.分析:连接OB、OC、OA,求出∠BOC的度数,求出AB、AC的长,求出四边形OBAC和扇形OBC的面积,即可求出答案.解答:解:连接OB、OC、OA,∵圆O切AM于B,切AN于C,∴∠OBA=∠OCA=90°,OB=OC=r,AB=AC∴∠BOC=360°﹣90°﹣90°﹣α=(180﹣α)°,∵AO平分∠MAN,∴∠BAO=∠CAO=α,AB=AC=,∴阴影部分的面积是:S四边形BACO﹣S扇形OBC=2×××r﹣=(﹣)r2,∵r>0,∴S与r之间是二次函数关系.故选C.点评:本题主要考查对切线的性质,切线长定理,三角形和扇形的面积,锐角三角函数的定义,四边形的内角和定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.试题11答案:考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.试题12答案:考点:一元一次不等式的整数解.专题:计算题.分析:先解不等式,求出其解集,再根据解集判断其正整数解.解答:解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.点评:本题考查了一元一次不等式的整数解,会解不等式是解题的关键.试题13答案:考点:等腰三角形的性质;三角形三边关系.分析:此题分为两种情况:6是等腰三角形的腰或6是等腰三角形的底边.然后进一步根据三角形的三边关系进行分析能否构成三角形.解答:解:当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理,故该等腰三角形的另两边为:6,4或5,5.故答案为:6,4或5,5.点评:本题考查了等腰三角形的性质,应从边的方面考查三角形,涉及分类讨论的思想方法,难度适中.试题14答案:考点:相似三角形的应用.分析:易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.解答:解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.点评:本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.试题15答案:考点:全等三角形的判定.专题:开放型.分析:可以添加条件AC=CD,再由条件∠BCE=∠ACD,可得∠ACB=∠DCE,再加上条件CB=EC,可根据SAS定理证明△ABC≌△DEC.解答:解:添加条件:AC=CD,∵∠BCE=∠ACD,∴∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(SAS),故答案为:AC=CD(答案不唯一).点评:此题主要考查了考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.试题16答案:考点:分式的值为零的条件;解分式方程.专题:计算题.分析:由题意得=0,解分式方程即可得出答案.解答:解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.点评:此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.试题17答案:考点:圆与圆的位置关系;解一元二次方程-因式分解法.分析:先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况列出关于t的方程讨论求解.解答:解:∵⊙O1、⊙O2的半径分别是方程x2﹣4x+3=0的两根,解得⊙O1、⊙O2的半径分别是1和3.①当两圆外切时,圆心距O1O2=t+2=1+3=4,解得t=2;②当两圆内切时,圆心距O1O2=t+2=3﹣1=2,解得t=0.∴t为2或0.故答案为:2或0.点评:考查解一元二次方程﹣因式分解法和圆与圆的位置关系,同时考查综合应用能力及推理能力.注意:两圆相切,应考虑内切或外切两种情况是解本题的难点.试题18答案:考点:解一元二次方程-因式分解法.专题:新定义.分析:根据题中的新定义将所求式子转化为一元二次方程,求出一元二次方程的解即可得到x的值.解答:解:根据题中的新定义将x★2=6变形得:x2﹣3x+2=6,即x2﹣3x﹣4=0,因式分解得:(x﹣4)(x+1)=0,解得:x1=4,x2=﹣1,则实数x的值是﹣1或4.故答案为:﹣1或4点评:此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边变为积的形式,然后根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.试题19答案:考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据45°角的余弦等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,二次根式的化简,任何非0数的0次幂等于1进行计算即可得解.解答:解:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2﹣1,=+4﹣2﹣1,=3﹣.点评:本题考查了实数的运算,主要利用了特殊角的三角函数值,负整数指数幂,二次根式的化简,零指数幂,是基础运算题,注意运算符号的处理.试题20答案:考点:分式的化简求值.专题:计算题.分析:先通分计算括号里的,再把除法转化成乘法进行约分,最后把x的值代入计算即可.解答:解:原式=•=x﹣1,当x=﹣时,原式=﹣﹣1=﹣.点评:本题考查了分式的化简求值,解题的关键是注意把分式的分子、分母因式分解.试题21答案:考点:作图—应用与设计作图.分析:仔细分析题意,寻求问题的解决方案.到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C.由于两条公路所夹角的角平分线有两条,因此点C有2个.解答:解:(1)作出线段AB的垂直平分线;(2)作出角的平分线(2条);它们的交点即为所求作的点C(2个).点评:本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应用.题中符合条件的点C 有2个,注意避免漏解.试题22答案:考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:在Rt△ABD中,知道了已知角的对边,可用正切函数求出邻边AD的长;同理在Rt△ABC中,知道了已知角的邻边,用正切值即可求出对边AC的长;进而由BC=AC﹣AB得解.解答:解:∵在Rt△ADB中,∠BDA=45°,AB=3米,∴DA=3米,在Rt△ADC中,∠CDA=60°,∴tan60°=,∴CA=3.∴BC=CA﹣BA=(3﹣3)米.答:路况显示牌BC是(3﹣3)米.点评:此题主要考查了解直角三角形的应用,当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.试题23答案:考点:反比例函数与一次函数的交点问题.分析:(1)一次函数是完整的函数,把点A的纵坐标代入即可求得M的坐标;然后把A的坐标代入反比例函数解析式,即可求得反比例函数的解析式;(2)根据交点A的坐标,即可得到当x>0时,一次函数的值大于反比例函数的值的x的取值范围.解答:解:(1)点A在y=x﹣2上,∴1=x﹣2,解得x=6,把(6,1)代入得m=6×1=6.∴y=;(2)由图象得,当x>6时,一次函数的值大于反比例函数的值.点评:本题考查用待定系数法求函数解析式;注意:无论是求自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;同时要注意反比例函数的自变量不能取0.试题24答案:考点:游戏公平性;列表法与树状图法.分析:(1)首先根据题意列出表格或画出树状图,然后求得所有等可能的结果与甲得1分的情况,然后利用概率公式求解即可求得答案;(2)由(1)求得乙的得分,比较概率不相等,即可得这个游戏是不公平.解答:解:(1)列表得:1 2 3 41 ﹣1分1分0分2 1分﹣1分0分3 1分1分﹣0分4 0分0分0分﹣画树状图得:∴P(甲得1分)==(2)不公平.∵P(乙得1分)=∴P(甲得1分)≠P(乙得1分),∴不公平.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.试题25答案:考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)根据艺术类读物所在扇形的圆心角是:×360°=72°;(3)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;解答:解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得(册).答:学校购买其他类读物900册比较合理.点评:此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.试题26答案:考点:矩形的判定;全等三角形的判定与性质.专题:证明题.分析:(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.解答:解:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形.点评:本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.试题27答案:考点:切线的判定;勾股定理;垂径定理.专题:计算题.分析:(1)根据垂径定理由半径OC垂直于弦AB,AE=AB=4,再根据勾股定理计算出OE=3,则EC=2,然后在Rt△AEC中根据正切的定义可得到tan∠BAC的值;(2)根据垂径定理得到AC弧=BC弧,再利用圆周角定理可得到∠AOC=2∠BAC,由于∠DAC=∠BAC,所以∠AOC=∠BAD,利用∠AOC+∠OAE=90°即可得到∠BAD+∠OAE=90°,然后根据切线的判定方法得AD为⊙O的切线.解答:解:(1)∵半径OC垂直于弦AB,∴AE=BE=AB=4,在Rt△OAE中,OA=5,AE=4,∴OE==3,∴EC=OC﹣OE=5﹣3=2,在Rt△AEC中,AE=4,EC=2,∴tan∠BAC===;(2)AD与⊙O相切.理由如下:∵半径OC垂直于弦AB,∵AC弧=BC弧,∴∠AOC=2∠BAC,∵∠DAC=∠BAC,∴∠AOC=∠BAD,∵∠AOC+∠OAE=90°,∴∠BAD+∠OAE=90°,∴OA⊥AD,∴AD为⊙O的切线.点评:本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了勾股定理以及垂径定理、圆周角定理.试题28答案:考点:二次函数综合题.分析:(1)将原点坐标代入抛物线中即可求出k的值,也就得出了抛物线的解析式.(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可.(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P 点的坐标.求△POB的面积时,可先求出OB,OP的长度即可求出△BOP的面积.解答:解:①∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1,∴y=x2﹣3x,②假设存在点B,过点B做BD⊥x轴于点D,∵△AOB的面积等于6,∴AO•BD=6,当0=x2﹣3x,x(x﹣3)=0,解得:x=0或3,∴AO=3,∴BD=4即4=x2﹣3x,解得:x=4或x=﹣1(舍去).又∵顶点坐标为:( 1.5,﹣2.25).∵2.25<4,∴x轴下方不存在B点,∴点B的坐标为:(4,4);③∵点B的坐标为:(4,4),∴∠BOD=45°,BO==4,当∠POB=90°,∴∠POD=45°,设P点横坐标为:﹣x,则纵坐标为:x2﹣3x,即﹣x=x2﹣3x,解得x=2 或x=0,∴在抛物线上仅存在一点P (2,﹣2).∴OP==2,使∠POB=90°,∴△POB的面积为: PO•BO=×4×2=8.点评:本题考查了二次函数解析式的确定、函数图象交点、图象面积求法等知识.利用已知进行分类讨论得出符合要求点的坐标是解题关键.。
甘肃省白银市平川区第四中学2017-2018学年上学期期中考试七年级数学试卷(测试试时间:120分钟 卷总分:120分)题号 一 二 三 四 总分 得分一:选择题 (每题3分,共30分)1、-31的绝对值是 ( ) A .-3 B .3 C . 31- D .312、下列各组数中互为相反数的是 ( )A 、2与21 B 、2)1(-与1 C 、-1与2)1(- D 、2与2- 3、用平面去截四棱柱,在所得的截面中,不可能出现的是( )A 、七边形B 、四边形C 、六边形D 、三角形 4、下列说法不正确...的是 ( ) A .任何一个有理数的绝对值都是正数 B .0既不是正数也不是负数 C .有理数可以分为正有理数,负有理数和零 D .0的绝对值等于它的相反数 5、把一个正方形展开,不可能得到的是 ( )6、一个三位数,百位上的数字是a,十位上的数字是b,个位上的数字是 c.这个三位数是 ( )A 、abcB 、cbaC 、100a+10b+cD 、100c+10b+a 7、有理数a 、b 在数轴上的对应的位置如图所示,则 ( )-11abA .a + b <0B .a + b >0;C .a -b = 0;D .a -b >09、代数式y 2-2y+7的值是-3,则3y 2-6y-5的值是 ( )A 、35B 、-25C 、-35D 、710、观察下列算式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 …… 用你所发现规律写出32014的末位数字是 ( )ABCDA 、3B 、9C 、7D 、110、 有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是( ) A 、 3 B 、12- C 、23D 、 -3二、填空题(每题3分,共30分)11、-2、5的倒数是 ,)2(--的相反数是 ;-35的倒数的绝对值是__12、单项式23x y -的系数是 ,次数 ,多项式2xy 2-3x 2y 3-8是 次 项式.13、点A 在数轴上距离原点3个单位长度,将A 向左移动2个单位长度,再向右移动 4个单位长度,此时A 点所表示的数是 、14、将一个长为6厘米,宽为4厘米的长方形绕它的一边所在的直线旋转一周,得到的几何体的体积是立方厘米.(结果保留π)15、绝对值大于2而小于6的所有整数的和是 、 16、-38040000000用科学记数表示为 , 17、∣3、14-π|= 、18、7-67 19、a,b 两数平方的和除以3的商可以表示为 、 20、用火柴棒按下图的方式搭图形,第n 个图形需要 根火柴.三、作图题:(10分)21、(1)(6分)画出如图所示几何体的主视图、左视图、俯视图.主视图 左视图 俯视图(2)(4分)如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的表示在该位置的正方形的个数.请你画出它的主视图和左视图. 主视图 左视图四、解答题(共50分)22、计算(每小题4分,共16分)解:解:解:解:23、(6分)已知2(3)2x y +-与互为相反数,z 是绝对值最小的有理数,求()yx y xyz ++的值.解:24、(8分)北大登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米): +150, -35, -40,+210,-32, +20, -18, -5, +20, +85,-25、(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0、04升,则他们共耗氧多少升?25、(10分)某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2、5元/吨收费、(1)若小明家3月份用水12吨,应交水费多少元?(2)若小明家4月份交水费35元,那么小明家里用水多少吨?( 3 )若5月份用水x 吨,则应交水费多少元?26、10分)观察下列等式:...),7151(21=751),5131(21=531),31-1(21=311-⨯⨯-⨯⨯⨯⨯ 请解答下列问题:(1) 按以上规律列出第5个算式: (2) 由此计算:)201720151()201520131( (7515313)11⨯+⨯++⨯+⨯+⨯(3)用含n 的代式表示第n 个等式:a n ==(n 为正整数);参考答案 1-10、DCAAB CACBC11、-212、, 三 ,五三13、-1或514、96π或144π15、016、-3、84×10817、π-3、1418、>19、20、(2n+1)21、22、23、24、25、26、。
白银市2017年普通高中招生考试数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A .439.310⨯ B .53.9310⨯ C .63.9310⨯ D .60.39310⨯ 3. 4的平方根是( )A . 16B . 2C . 2±D . 2±4. 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )A .B . C. D .5.下列计算正确的是 ( )A .224x x x += B .824x x x ÷= C. 236x x x =g D .()220x x --=6.将一把直尺与一块三角板如图放置,若0145∠=,则2∠ 为 ( )A . 115°B . 120° C. 135° D .145°7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( )A .0,0k b >>B .0,0k b >< C. 0,0k b <> D .0,0k b << 8.已知,,a b c 是ABC ∆的三条边长,化简a b c c a b +----的结果为 ( ) A .222a b c +- B .22a b + C. 2cD .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( )A .()()32220570x x --=B .322203232570x x +⨯=⨯- C. ()()32203220570x x --=⨯- D .2322202570x x x +⨯-=10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作//,PQ BD PQ 与边AD (或边CD )交于点,Q PQ 的长度()y cm 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长是( )A .22cmB . 32cm C. 42cm D .52cm二、填空题:本大题 共8小题,每小题4分,共32分,将答案填在答题纸上11.分解因式:221x x -+=____________.12. 估计512-与0.5的大小关系:512-___________0.5(填“>”或“=”或“<”) 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016mn c ++的值为 .14.如图,ABC ∆内接于O e ,若032OAB ∠=,则C ∠= .15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 .16.如图,一张三角形纸片ABC ,090,8,6C AC cm BC cm ∠===.现将纸片折叠:使点A与点B 重合,那么折痕长等于 cm .17.如图,在ABC ∆中,090,1,2ACB AC AB ∠===,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则»CD的长等于____________.(结果保留π) 18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为_____________,第2017个图形的周长为______________.三、解答题(一):本大题共5小题,共38分.解答应写出文字说明、证明过程或演算步骤.19. 计算:()101123tan 3042π-⎛⎫-+-- ⎪⎝⎭20. 解不等式组()111212x x ⎧-≤⎪⎨⎪-<⎩ ,并写出该不等式组的最大整数解.21. 如图,已知ABC ∆,请用圆规和直尺作出ABC∆的一条中位线EF (不写作法,保留作图痕迹).22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得045,65DAC DBC ∠=∠=.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:000sin 650.91,cos 650.42,tan 65 2.14≈≈≈)23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域两数和等于12,则为平局;若指针所指区域两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共50分. 解答应写出文字说明、证明过程或演算步骤.24.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率≤<10 0.055060xx≤<30 0.156070x≤<40 n7080≤<m0.35x8090≤≤50 0.25x90100频数分布直方图根据所给信息,解答下列问题:(1)m=__________,n=______________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在_______________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人? 25.已知一次函数1y k x b =+与反比例函数2k y x=的图象交于第一象限内的()1,8,4,2P Q m ⎛⎫⎪⎝⎭两点,与x 轴交于A 点. (1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.如图,矩形ABCD 中,6,4AB BC ==,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 就菱形时,求EF 的长.27.如图,AN 是M e 的直径,//NB x 轴,AB 交M e 于点C .(1)若点()()00,6,0,2,30A N ABN ∠=,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M e 的切线.28.如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作//NM AC ,交AB 于点M ,当AMN ∆面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系.白银市2017年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项. 题号 1 2 3 4 5 6 7 8 9 10 答案BBCDDCADAB二、填空题:本大题共8小题,每小题3分,共24分.11. 2(1)x - 12. > 13. 0 14. 5815. k ≤5且k ≠1 16.154 17. 3π18. 8(1分),6053(2分) 三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分) 19.(4分)解:原式=323312- 2分 =23312- 3分 31. 4分 20.(4分)解:解1(1)2x - ≤1得:x ≤3, 1分解1-x <2得:x >-1. 2分 则不等式组的解集是:-1<x ≤3. 3分 ∴该不等式组的最大整数解为3x =. 4分 21.(6分)解:如图,5分 (注:作出一条线段的垂直平分线得2分,作出两条得4分,连接EF 得1分.) ∴线段EF 即为所求作. 6分22.(6分) 解:过点D 作DE ⊥AC ,垂足为E ,设BE =x , 1分在Rt △DEB 中,tan DEDBE BE∠=, ∵∠DBC =65°,∴tan65DE x =o . 2分 又∵∠DAC =45°, ∴AE =DE .∴132tan65x x +=o , 3分 ∴解得115.8x ≈, 4分 ∴248DE ≈(米). 5分∴观景亭D 到南滨河路AC 的距离约为248米. 6分 23.(6分)解:(1)画树状图:3分BDCAE3456 7 8 9 6 7 8 9 6 7 8 99 10 11 12 10 11 12 13 11 12 13 14甲乙 和 开始列表6 7 8 93 9 10 11 124 10 11 12 135 11 12 13 143分可见,两数和共有12种等可能性;4分(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为61122=;5分刘凯获胜的概率为31124=. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)24.(7分) 解:(1)m=70, 1分n=0.2;2分(2)频数分布直方图如图所示,3分(3)80≤x<90;5分(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).7分25.(7分) 解:(1)∵点P在反比例函数的图象上,∴把点P(12,8)代入kyx=2可得:k2=4,频数(人)频数分布直方图甲乙成绩(分)∴反比例函数的表达式为4y x=, 1分 ∴Q (4,1) . 把P (12,8),Q (4,1)分别代入1y k x b =+中,得 1118214k bk b⎧=+⎪⎨⎪=+⎩, 解得129k b =-⎧⎨=⎩, ∴一次函数的表达式为29y x =-+; 3分(2)P ′(12-,-8) 4分(3)过点P ′作P ′D ⊥x 轴,垂足为D. 5分∵P ′(12-,-8), ∴OD =12,P ′D =8,∵点A 在29y x =-+的图象上,∴点A (92,0),即OA =92, ∴DA =5, ∴P ′A =2289,D DA P +=' 6分∴sin ∠P ′AD 88989P P D A ''=== ∴sin ∠P ′AO 889=. 7分 26.(8分) 解:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴A B ∥DC ,OB =OD , 1分 ∴∠OBE =∠ODF , 又∵∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ), 2分 ∴EO =FO ,∴四边形BEDF 是平行四边形; 4分 (2)当四边形BEDF 是菱形时,设BE =x 则 DE =x ,6AE x =-,在Rt △ADE 中,222DE AD AE =+, ∴2224(6)x x =+-, ∴133x =,135214332BEDF S BE AD =BD EF,=∴⋅=⨯=⋅菱形 6分15223BD EF ,EF ==∴⨯=∴=又Q27.(8分)解:(1)∵A 的坐标为(0,6),N (0,2)∴AN =4, 1分 ∵∠ABN =30°,∠ANB =90°,∴AB =2AN =8, 2分 ∴由勾股定理可知:NB=∴B(,2) 3分 (2)连接MC ,NC 4分 ∵AN 是⊙M 的直径, ∴∠ACN =90°,∴∠NCB =90°, 5分 在Rt △NCB 中,D 为NB 的中点, ∴CD =12NB =ND , ∴∠CND =∠NCD , 6分 ∵MC =MN , ∴∠MCN =∠MNC . ∵∠MNC +∠CND =90°,∴∠MCN +∠NCD =90°, 7分 即MC ⊥CD .∴直线CD 是⊙M 的切线. 8分 28.(10分)解:(1)将点B ,点C 的坐标分别代入24y ax bx =++,得:424064840a b a b -+=⎧⎨++=⎩, 1分解得:14a =-,32b =.MNB CxA Oy∴该二次函数的表达式为213442y x x =-++. 3分(2)设点N 的坐标为(n ,0)(-2<n <8),则2BN n =+,8CN n =-. ∵B (-2,0), C (8,0), ∴BC =10.令0x =,解得:4y =, ∴点A (0,4),OA =4, ∵MN ∥AC , ∴810AM NC nAB BC -==. 4分 ∵OA =4,BC =10, ∴114102022ABC S BC OA =⋅=⨯⨯=V . 5分 1122222810ABN AMN ABN S BN OA n+n+S AM CN n ,S AB CB =⋅=⨯-===()4=()又V V V Q∴2811(8)(2)(3)51055AMN ABN n S S n n n -==-+=--+V V . 6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大. 7分 (3)当N (3,0)时,N 为BC 边中点.∴M 为AB 边中点,∴12OM AB.=8分 ∵2241625AB OB OA =+=+,22641645AC OC OA =++=∴12AB AC,=9分 ∴14OM AC =. 10分。
2017年甘肃省白银市景泰四中中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内.)1.(3分)计算2﹣3的结果是()A.5 B.﹣5 C.1 D.﹣12.(3分)下列各图中,是中心对称图形的是()A.B.C.D.3.(3分)如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是()A.B.C.D.4.(3分)化简÷(1+)的结果是()A. B. C.D.5.(3分)如图,AB∥DE,∠ABC=20°,∠BCD=80°,则∠CDE=()A.20°B.80°C.60°D.100°6.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:这些运动员跳高成绩的中位数和众数分别是()跳高成绩(m) 1.50 1.55 1.60 1.65 1.70 1.75跳高人数132351A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,57.(3分)下列命题是真命题的是()A.若x1、x2是3x2+4x﹣5=0的两根,则x1+x2=﹣.B.单项式﹣的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3D.若分式方程﹣2=产生增根则m=3.8.(3分)某商品的进价为每件20元.当售价为每件30元时,每天可卖出100件,现需降价处理,且经市场调查:每降价1元,每天可多卖出10件.现在要使每天利润为750元,每件商品应降价()元.A.2 B.2.5 C.3 D.59.(3分)如图,△ABC内接于⊙O,点P是上任意一点(不与A,C重合),∠ABC=55°,则∠POC的取值范围x是()A.0<x<55°B.55°<x<110°C.0<x<110°D.0<x<180°10.(3分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b+2a=0;②abc>0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()个.A.1个 B.2个 C.3个 D.4个二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中的横线上.)11.(4分)分解因式:a3﹣4a2+4a=.12.(4分)函数中.自变量x的取值范围是.13.(4分)不等式组的整数解的和为.14.(4分)据了解,地下综合管廊是建于城市地下用于敷设市政公用管线的公用设施,该系统不仅解决城市交通拥堵问题,还极大方便了电力、通信、燃气、供排水等市政设施的维护和检修.2015年4月8日,白银市被国家确定为全国地下综合管廊试点城市,8月9日,项目采取政府和社会资本合作的PPP模式开工建设,项目总投资22.38亿元.请将22.38亿元用科学记数法表示并保留3个有效数字为元.15.(4分)把函数y=﹣2x2的图象向左平移1个单位,再向上平移6个单位,所得的抛物线的函数关系式.16.(4分)如图,将边长为16cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是cm.17.(4分)如图,直线y1=kx+b与双曲线y2=交于A(1,2),B(m,1)两点,当kx+b>时,自变量x的取值范围是.18.(4分)如图中每个阴影部分是以多边形各顶点为圆心,1为半径的扇形,并且所有多边形的每条边长都>2,则第n个多边形中,所有扇形面积之和是.(结果保留π)三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(6分)计算:cos45°•(﹣)﹣﹣(2﹣)0+|4﹣|+.20.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A (﹣1,2),B(﹣3,4),C(﹣2,6).(1)画出△ABC,并将它绕点A顺时针旋转90°后得到的△A1B1C1,并写出点C1的坐标.(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2,并计算△A2B2C2的面积.21.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.22.(8分)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.23.(8分)有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.(1)若用(m,n)表示小明取球时m与n的对应值,请画出树状图或列表法并写出(m,n)的所有可能的取值;(2)求关于x的一元二次方程x2+mx+n=0有实数根的概率.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(8分)2015年2月28日,在全国精神文明建设工作表彰大会上,白银市荣获中央文明委全国文明城市提名资格.3月11日,市委、市政府召开创建全国文明城市动员大会,确定了“让生活更美好、让城市更美丽”创城主题,以“五城联创”和“六城同建”为抓手.全市上下同心协力、奋勇争先,文明创建热潮此起彼伏,形成了创建全国文明城市抱拳发力、联合攻坚的生动局面.我市某中学数学课外兴趣小组随机走访了部分市民,对A(领导高度重视)、B(整改措施有效)、C(市民积极参与)、D(市民文明素质进一步提高)四个类别进行满意度调查(只勾选最满意的一项),并将调查结果制作了如下两幅不完整的统计图.(1)这次调查共走访市民人,∠α=度.(2)请补全条形统计图.(3)结合上面的调查统计结果,请你对白银市今后的文明城市创建工作提出好的建议.25.(10分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)分别求出该反比例函数和直线AB的解析式;(2)求出交点D坐标.26.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.27.(10分)如图,D是⊙O直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线.(2)若E是劣弧上一点,AE与BC相交于点F,△BEF的面积为9,且cos∠BFA=,求△ACF的面积.28.(12分)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=+bx+c经过B点,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.2017年甘肃省白银市景泰四中中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内.)1.(3分)计算2﹣3的结果是()A.5 B.﹣5 C.1 D.﹣1【解答】解:2﹣3=2+(﹣3)=﹣1.故选D.2.(3分)下列各图中,是中心对称图形的是()A.B.C.D.【解答】解:A、只是轴对称图形.错误;B、只是中心对称图形.正确;C、两者都不是.错误;D、两种都不是,是旋转对称.错误.故选B.3.(3分)如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是()A.B.C.D.【解答】解:从上面看,下面一行第1列只有1个正方形,上面一行横排3个正方形.故选C.4.(3分)化简÷(1+)的结果是()A. B. C.D.【解答】解:原式=÷=•=.故选A.5.(3分)如图,AB∥DE,∠ABC=20°,∠BCD=80°,则∠CDE=()A.20°B.80°C.60°D.100°【解答】解:延长BC交DE于F,∵AB∥DE,∴∠B=BFD=20°,∵∠BCD=80°,∴∠CDE=∠BCD﹣∠BFD=80°﹣20°=60°,故选C.6.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:这些运动员跳高成绩的中位数和众数分别是()跳高成绩(m) 1.50 1.55 1.60 1.65 1.70 1.75跳高人数132351A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,5【解答】解:跳高成绩为170的人数最多,故跳高成绩的众数为170;共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为165,故中位数为165;故选A.7.(3分)下列命题是真命题的是()A.若x1、x2是3x2+4x﹣5=0的两根,则x1+x2=﹣.B.单项式﹣的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3D.若分式方程﹣2=产生增根则m=3.【解答】解:A、若x1、x2是3x2+4x﹣5=0的两根,则x1+x2=.错误;B、单项式﹣的系数是,错误;C、若|x﹣1|+(y﹣3)2=0,则x=1,y=3,正确;D、若分式方程﹣2=产生增根则x=3时,错误;故选C8.(3分)某商品的进价为每件20元.当售价为每件30元时,每天可卖出100件,现需降价处理,且经市场调查:每降价1元,每天可多卖出10件.现在要使每天利润为750元,每件商品应降价()元.A.2 B.2.5 C.3 D.5【解答】解:设应降价x元,根据题意得:(100+10x)(30﹣20﹣x)=750,解得:x1=x2=5,则每件商品应降价5元;故选D.9.(3分)如图,△ABC内接于⊙O,点P是上任意一点(不与A,C重合),∠ABC=55°,则∠POC的取值范围x是()A.0<x<55°B.55°<x<110°C.0<x<110°D.0<x<180°【解答】解:连接AO,如图所示.∵∠ABC=55°,∴∠AOC=2∠ABC=110°.∵点P是上任意一点(不与A,C重合),∴0°<∠POC<110°.故选C.10.(3分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b+2a=0;②abc>0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()个.A.1个 B.2个 C.3个 D.4个【解答】解:根据图象可得:抛物线开口向上,则a>0.抛物线与y交与负半轴,则c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∴﹣=1,∴b+2a=0,故①正确;②∵开口向上,∴a>0,∵x=﹣>0,∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,故②正确;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故③正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④正确;故选:D.二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中的横线上.)11.(4分)分解因式:a3﹣4a2+4a=a(a﹣2)2.【解答】解:a3﹣4a2+4a,=a(a2﹣4a+4),=a(a﹣2)2.故答案为:a(a﹣2)2.12.(4分)函数中.自变量x的取值范围是x≤3.【解答】解:根据题意得,3﹣x≥0且x﹣4≠0,解得x≤3且x≠4,所以,x≤3.故答案为:x≤3.13.(4分)不等式组的整数解的和为10.【解答】解:解不等式1﹣2x>3(x﹣7),得:x<,则不等式组的解集为1≤x<,∴不等式组的整数解的和为1+2+3+4=10,故答案为:1014.(4分)据了解,地下综合管廊是建于城市地下用于敷设市政公用管线的公用设施,该系统不仅解决城市交通拥堵问题,还极大方便了电力、通信、燃气、供排水等市政设施的维护和检修.2015年4月8日,白银市被国家确定为全国地下综合管廊试点城市,8月9日,项目采取政府和社会资本合作的PPP模式开工建设,项目总投资22.38亿元.请将22.38亿元用科学记数法表示并保留3个有效数字为 2.24×109元.【解答】解:将22.38亿元用科学记数法表示并保留3个有效数字为2.24×109元.故答案为:2.24×109.15.(4分)把函数y=﹣2x2的图象向左平移1个单位,再向上平移6个单位,所得的抛物线的函数关系式y=﹣2(x+1)2+6.【解答】解:把函数y=﹣2x2的图象向左平移1个单位得到的抛物线的函数关系式为y=﹣2(x+1)2,将函数y=﹣2(x+1)2向上平移6个单位得到的抛物线的函数关系式为y=﹣2(x+1)2+6.故答案为:y=﹣2(x+1)2+6.16.(4分)如图,将边长为16cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是6cm.【解答】解:如图:∵四边形ABCD是正方形,∴AB=BC=CD=AD=16,∵AE=EB=8,EF=FD,设EF=DF=x.则AF=16x,在RT△AEF中,∵AE2+AF2=EF2,∴82+(16﹣x)2=x2,∴x=10,∴AF=16﹣10=6cm,故答案为6.17.(4分)如图,直线y1=kx+b与双曲线y2=交于A(1,2),B(m,1)两点,当kx+b>时,自变量x的取值范围是1<x<2 或x<0.【解答】解:(1)∵双曲线y=过点B(m,1),∴m=2,当kx+b>时,即直线在反比例函数图象的上方时所对应的自变量的取值范围是1<x<2 或x<0,故答案为1<x<2 或x<0.18.(4分)如图中每个阴影部分是以多边形各顶点为圆心,1为半径的扇形,并且所有多边形的每条边长都>2,则第n个多边形中,所有扇形面积之和是.(结果保留π)【解答】解:三角形内角和180°,则阴影面积为;四边形内角和为360°,则阴影面积为π;五边形内角和为540°,则阴影面积为.∴第n个多边形中,所有扇形面积之和是=.故答案为:.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(6分)计算:cos45°•(﹣)﹣﹣(2﹣)0+|4﹣|+.【解答】解:cos45°•(﹣)﹣﹣(2﹣)0+|4﹣|+=×4﹣1+3﹣4+=﹣520.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A (﹣1,2),B(﹣3,4),C(﹣2,6).(1)画出△ABC,并将它绕点A顺时针旋转90°后得到的△A1B1C1,并写出点C1的坐标.(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2,并计算△A2B2C2的面积.【解答】解:(1)△ABC,△A1B1C1如图所示,C1(3,3)(2)△A2B2C2如图所示.=4(2×4﹣•1•2﹣•1•4﹣•2•2)=12.=4•S21.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.22.(8分)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.【解答】解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m,在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m,∴BC=BD﹣CD=40﹣20=20m,则B,C的距离为20m;(2)根据题意得:20÷2=10m/s<15m/s,则此轿车没有超速.23.(8分)有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.(1)若用(m,n)表示小明取球时m与n的对应值,请画出树状图或列表法并写出(m,n)的所有可能的取值;(2)求关于x的一元二次方程x2+mx +n=0有实数根的概率.【解答】解:(1)根据题意列表如下:0123AB0(0,0)(1,0)(2,0)(3,0)1(0,1)(1,1)(2,1)(3,1)2(0,2 )(1,2 )(2,2)(3,2)由列表知,(m,n)有12种可能;(2)由方程得△=m2﹣2n,当(m,n)的对应值是(0,0),(1,0),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)时,△≥0,原方程有实数根,则有实数根的概率是:=.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(8分)2015年2月28日,在全国精神文明建设工作表彰大会上,白银市荣获中央文明委全国文明城市提名资格.3月11日,市委、市政府召开创建全国文明城市动员大会,确定了“让生活更美好、让城市更美丽”创城主题,以“五城联创”和“六城同建”为抓手.全市上下同心协力、奋勇争先,文明创建热潮此起彼伏,形成了创建全国文明城市抱拳发力、联合攻坚的生动局面.我市某中学数学课外兴趣小组随机走访了部分市民,对A(领导高度重视)、B(整改措施有效)、C(市民积极参与)、D(市民文明素质进一步提高)四个类别进行满意度调查(只勾选最满意的一项),并将调查结果制作了如下两幅不完整的统计图.(1)这次调查共走访市民1000人,∠α=54度.(2)请补全条形统计图.(3)结合上面的调查统计结果,请你对白银市今后的文明城市创建工作提出好的建议.【解答】解:(1)这次调查共走访市民人数为:400÷40%=1000(人),∵B类人数所占百分比为:1﹣40%﹣20%﹣25%=15%,∴∠α=360°×15%=54°;故答案为1000,54.(2)D类人数为:1000×20%=200(人),补全条形图如图:(3)由扇形统计图可知,对“整改措施有效”的占被调查人数的15%,是所有4个类别中最少的,故今后应加大整改措施的落实工作.(答案不唯一,合理即可)25.(10分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)分别求出该反比例函数和直线AB的解析式;(2)求出交点D坐标.【解答】解:(1)∵OB=4,OE=2,∴BE=6,B(4,0),又∵CE⊥X轴于点E,tan∠ABO==,∴CE=3,∴C(﹣2,3),设反比例的解析式为y=,∴m=﹣2×3=﹣6,∴反比例的解析式为y=﹣;∵tan∠ABO==,OB=4,∴OA=2,∴A(0,2).设直线AB的解析式为y=kx+b.将A(0,2),B(4,0)代入,得,解得,∴直线AB解析式为y=﹣x+2;(2)联立方程组,解得x1=6,x2=﹣2,当x=6时,y=﹣1;x=﹣2时,y=3.∵C(﹣2,3),∴D(6,﹣1).26.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.27.(10分)如图,D是⊙O直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线.(2)若E是劣弧上一点,AE与BC相交于点F,△BEF的面积为9,且cos∠BFA=,求△ACF的面积.【解答】(1)证明:连接BO,方法一:∵AB=AD∴∠D=∠ABD∵AB=AO∴∠ABO=∠AOB,又∵在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180°∴∠OBD=90°,即BD⊥BO∴BD是⊙O的切线;方法二:∵AB=AO,BO=AO∴AB=AO=BO∴△ABO为等边三角形∴∠BAO=∠ABO=60°∵AB=AD∴∠D=∠ABD又∵∠D+∠ABD=∠BAO=60°∴∠ABD=30°,∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO∴BD是⊙O的切线;方法三:∵AB=AD=AO∴点O、B、D在以OD为直径的⊙A上∴∠OBD=90°,即BD⊥BO∴BD是⊙O的切线;(2)解:∵∠C=∠E,∠CAF=∠EBF∴△ACF∽△BEF∵AC是⊙O的直径∴∠ABC=90°在Rt△BFA中,cos∠BFA==,∴=()2=,=9又∵S△BEF=16.∴S△ACF28.(12分)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=+bx+c经过B点,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.【解答】解:(1)∵抛物线y=+bx+c的顶点在直线x=上,∴可设所求抛物线对应的函数关系式为y=+m∵点B(0,4)在此抛物线上,∴4=×+m∴m=﹣∴所求函数关系式为:y=﹣=﹣x+4(2)在Rt△ABO中,OA=3,OB=4,∴AB==5∵四边形ABCD是菱形∴BC=CD=DA=AB=5∴C、D两点的坐标分别是(5,4)、(2,0);当x=5时,y=×52﹣×5+4=4当x=2时,y=×22﹣×2+4=0∴点C和点D在所求抛物线上;(3)设直线CD对应的函数关系式为y=kx+b′,则;解得:;∴y=x﹣∵MN∥y轴,M点的横坐标为t,∴N点的横坐标也为t;则y M=﹣t+4,y N=t﹣,∴l=y N﹣y M=t﹣﹣(﹣t+4)=﹣+t﹣=﹣+∵﹣<0,=,y M=﹣t+4=.∴当t=时,l最大此时点M的坐标为(,).。
2017年甘肃省白银市平川四中中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分;只有一个答案是正确的)1.(3分)若a与1互为相反数,则|a+1|等于()A.﹣1 B.0 C.1 D.22.(3分)某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A.6.7×10﹣5B.0.67×10﹣6C.0.67×10﹣5D.6.7×10﹣63.(3分)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.4.(3分)函数y=中自变量x的取值范围是()A.x≥﹣3 B.x≠5 C.x≥﹣3或x≠5 D.x≥﹣3且x≠55.(3分)一元二次方程x2﹣2x=0的解是()A.0 B.2 C.0,﹣2 D.0,26.(3分)下列说法中,正确的有()①等腰三角形两边长为2和5,则它的周长是9或12.②无理数﹣在﹣2和﹣1之间.③六边形的内角和是外角和的2倍.④若a>b,则a﹣b>0.它的逆命题是假命题.⑤北偏东30°与南偏东50°的两条射线组成的角为80°.A.1个 B.2个 C.3个 D.4个7.(3分)在一次汉字听写大赛中,10名学生得分情况如表:那么这10名学生所得分数的中位数和众数分别是()A.85和82.5 B.85.5和85 C.85和85 D.85.5和808.(3分)正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>29.(3分)已知关于x的分式方程﹣1=的解是正数,则m的取值范围是()A.m<4且m≠3 B.m<4 C.m≤4且m≠3 D.m>5且m≠610.(3分)如图是用棋子摆成的“H”字,摆成第一个“H”字需要7枚棋子;摆第x 个“H”字需要的棋子数可用含x的代数式表示为()A.5x B.5x﹣1 C.5x+2 D.5x+5二、填空题(本大题共8小题,每小题4分,共32分,只要求填写最简结果.)11.(4分)分解因式m2+2mn+n2﹣1=.12.(4分)对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是.13.(4分)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=.14.(4分)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.15.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.16.(4分)在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.17.(4分)如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是.18.(4分)如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE,并截取EF=DE,连接AF并延长交射线BM于点C,设BE=x,BC=y,则y关于x的函数解析式为.三、解答题(本大题分,解答时写出必要的演算步骤及推理论证过程.)19.(6分)计算:﹣22﹣+|1﹣4sin60°|+(π﹣)0.20.(8分)先化简(1﹣)÷,再从有意义的范围内选取一个整数作为a的值代入求值.21.(8分)如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD 于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.22.(6分)如图,已知在△ABC中,∠A=90°,请用尺规作⊙P,使圆心P在AC 上,且与AB、BC两边都相切.(要求保留作图痕迹,不必写出作法和证明)23.(10分)某中学为了科学建设“学生健康成长工程”,随机抽取了部分学生家庭对其家长进行了主题“周末孩子在家您关心了吗?”的调查问卷,将收回的调查问卷进行了分析整理,得到了如下的样本统计图表和扇形统计图:(1)求m,n的值;(2)该校学生家庭总数为500,学校决定按比例在B、C、D类家庭中抽取家长组成培训班,其比例为B类20%,C、D类各取60%,请你估计该培训班的家庭数;(3)若在C类家庭中只有一个是城镇家庭,其余是农村家庭,请用列举法求出C类中随机抽出2个家庭进行深度家访,其中有一个是城镇家庭的概率.24.(8分)如图,函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(a,1)、B(1,b)两点.(1)求函数y2的表达式;(2)观察图象,比较当x>0时,y1与y2的大小.25.(10分)如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).26.(10分)某核桃种植基地计划种植A、B两种优质核桃共30亩,已知这两种核桃的年产量分别为800千克/亩、1000千克/亩,收购价格分别是4.2元/千克、4元/千克:(1)若该基地收获两种核桃的年总产量为25800千克,则A、B两种核桃各种植了多少亩?(2)设该基地种植A种核桃a亩,全部收购后,总收入为w元,求出w与a 之间的函数关系式.若要求种植A种核桃的面积不少于B种核桃的一半,那么种植A、B两种核桃各多少亩时,该种植基地的总收入最多?最多是多少元?27.(10分)如图所示,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得C的仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OC的高度以及此人所在的位置点P的垂直高度.(侧倾器的高度忽略不计,结果保留根号)28.(12分)如图,抛物线y=x2﹣x﹣2与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,M是直线BC下方的抛物线上一动点.(1)求A、B、C三点的坐标.(2)连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形?若存在,求出此时点M的坐标;若不存在,说明理由.(3)当点M运动到什么位置时,四边形ABMC的面积最大,并求出此时M点的坐标和四边形ABMC的最大面积.2017年甘肃省白银市平川四中中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分;只有一个答案是正确的)1.(3分)(2015•天水)若a与1互为相反数,则|a+1|等于()A.﹣1 B.0 C.1 D.2【解答】解:因为互为相反数的两数和为0,所以a+1=0;因为0的绝对值是0,则|a+1|=|0|=0.故选B.2.(3分)(2015•天水)某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A.6.7×10﹣5B.0.67×10﹣6C.0.67×10﹣5D.6.7×10﹣6【解答】解:∵0.000067中第一位非零数字前有5个0,∴0.000067用科学记数法表示为6.7×10﹣5.故选A.3.(3分)(2016•陕西)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.【解答】解:根据题意得到几何体的左视图为,故选C4.(3分)(2015•营口)函数y=中自变量x的取值范围是()A.x≥﹣3 B.x≠5 C.x≥﹣3或x≠5 D.x≥﹣3且x≠5【解答】解:由题意可得:x+3≥0,x﹣5≠0,解得:x≥﹣3且x≠5.故选:D.5.(3分)(2017•平川区一模)一元二次方程x2﹣2x=0的解是()A.0 B.2 C.0,﹣2 D.0,2【解答】解:原方程化为:x(x﹣2)=0,解得x1=0,x2=2.故选D.6.(3分)(2015•鄂尔多斯)下列说法中,正确的有()①等腰三角形两边长为2和5,则它的周长是9或12.②无理数﹣在﹣2和﹣1之间.③六边形的内角和是外角和的2倍.④若a>b,则a﹣b>0.它的逆命题是假命题.⑤北偏东30°与南偏东50°的两条射线组成的角为80°.A.1个 B.2个 C.3个 D.4个【解答】解:①∵一个等腰三角形的两边长分别是2和5,∴当腰长为2,则2+2<5,此时不成立,当腰长为5时,则它的周长为:5+5+2=12.即该三角形的周长是12.故①错误;②无理数﹣在﹣2和﹣1之间.故②正确;③=2,即六边形的内角和是外角和的2倍.故③正确;④若a>b,则a﹣b>0.它的逆命题是真命题,故④错误;⑤北偏东30°与南偏东50°的两条射线组成的角为100°.故⑤错误.故选:B.7.(3分)(2016•慈溪市一模)在一次汉字听写大赛中,10名学生得分情况如表:那么这10名学生所得分数的中位数和众数分别是()A.85和82.5 B.85.5和85 C.85和85 D.85.5和80【解答】解:在这一组数据中85是出现次数最多的,故众数是85;排序后处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;故选:C.8.(3分)(2016•宁夏)正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【解答】解:∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.故选B.9.(3分)(2016•德阳)已知关于x的分式方程﹣1=的解是正数,则m 的取值范围是()A.m<4且m≠3 B.m<4 C.m≤4且m≠3 D.m>5且m≠6【解答】解:方程两边同时乘以x﹣1得,1﹣m﹣(x﹣1)+2=0,解得x=4﹣m.∵x为正数,∴4﹣m>0,解得m<4.∵x≠1,∴4﹣m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选A.10.(3分)(2017•平川区一模)如图是用棋子摆成的“H”字,摆成第一个“H”字需要7枚棋子;摆第x个“H”字需要的棋子数可用含x的代数式表示为()A.5x B.5x﹣1 C.5x+2 D.5x+5【解答】解:摆成第一个“H”字需要7个棋子,第二个“H”字需要棋子12个;第三个“H”字需要棋子17个;…第x个图中,有7+5(x﹣1)=5x+2(个).故选C.二、填空题(本大题共8小题,每小题4分,共32分,只要求填写最简结果.)11.(4分)(2017•平川区一模)分解因式m2+2mn+n2﹣1=(m+n﹣1)(m+n+1).【解答】解:m2+2mn+n2﹣1=(m+n)2﹣1=(m+n﹣1)(m+n+1).故答案为:(m+n﹣1)(m+n+1).12.(4分)(2015•达州)对于任意实数m、n,定义一种运运算m※n=mn﹣m ﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是4≤a<5.【解答】解:根据题意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,∴a的范围为4≤a<5,故答案为:4≤a<513.(4分)(2014•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.【解答】解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.14.(4分)(2015•天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是4π.【解答】解:弧CD的长是=,弧DE的长是:=,弧EF的长是:=2π,则曲线CDEF的长是:++2π=4π.故答案为:4π.15.(4分)(2015•南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.16.(4分)(2016•宁夏)在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.17.(4分)(2016•港南区二模)如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是.【解答】解:连接AB,∵OA2=12+32=10,AB2=12+32=10,OB2=22+42=20,∴OA2+AB2=OB2,OA=AB,∴△AOB是等腰直角三角形,即∠OAB=90°,∴∠AOB=45°,∴cos∠AOB=cos45°=.故答案为:.18.(4分)(2017•平川区一模)如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE,并截取EF=DE,连接AF并延长交射线BM于点C,设BE=x,BC=y,则y关于x的函数解析式为y=(0<x≤2).【解答】解:作FM⊥BC于M.∵∠DBE=∠DEF=∠EMF=90°,∴∠DEB+∠BDE=90°,∠DEB+∠FEM=90°,∴∠BDE=∠FEM.在△DBE和△EMF中,,∴△DBE≌△EMF,∴FM=BE=x,EM=BD=2BE=2x,∵FM∥AB,∴=,∴=,∴y=(0<x≤2).三、解答题(本大题分,解答时写出必要的演算步骤及推理论证过程.)19.(6分)(2008•天门)计算:﹣22﹣+|1﹣4sin60°|+(π﹣)0.【解答】解:原式===﹣4.20.(8分)(2017•平川区一模)先化简(1﹣)÷,再从有意义的范围内选取一个整数作为a的值代入求值.【解答】解:原式=•=.∵2a﹣1≥0,∴a≥,∴当a=2时,原式=2.21.(8分)(2017•平川区一模)如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE 的长.【解答】解:∵AD平分∠BAC,BD⊥AD,∴AB=AF=6,BD=DF,∴CF=AC﹣AF=4,∵BD=DF,E为BC的中点,∴DE=CF=2.22.(6分)(2017•平川区一模)如图,已知在△ABC中,∠A=90°,请用尺规作⊙P,使圆心P在AC上,且与AB、BC两边都相切.(要求保留作图痕迹,不必写出作法和证明)【解答】解:如图,⊙O即为所求.23.(10分)(2016•德阳)某中学为了科学建设“学生健康成长工程”,随机抽取了部分学生家庭对其家长进行了主题“周末孩子在家您关心了吗?”的调查问卷,将收回的调查问卷进行了分析整理,得到了如下的样本统计图表和扇形统计图:(1)求m,n的值;(2)该校学生家庭总数为500,学校决定按比例在B、C、D类家庭中抽取家长组成培训班,其比例为B类20%,C、D类各取60%,请你估计该培训班的家庭数;(3)若在C类家庭中只有一个是城镇家庭,其余是农村家庭,请用列举法求出C类中随机抽出2个家庭进行深度家访,其中有一个是城镇家庭的概率.【解答】解:(1)参与调查的家庭数==40(个).B所占的百分比==65%,所以m=65%×40=26(个),n=40﹣(8+26+4)=2(个);(2)C、D所占的百分比=1﹣20%﹣65%=15%,培训班家庭数=500×65%×20%+500×15%×60%=110(个)答:该培训班的家庭数是110个;(3)设城镇家庭为A1,农村家庭为B1,B2,B3,画树状图如下:所有可能结果有12种,其中有一个城镇家庭的结果有6种,设随机抽查2个家庭,其中有一个是城镇家庭为事件E,则P(E)==.24.(8分)(2013•衢州)如图,函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(a,1)、B(1,b)两点.(1)求函数y2的表达式;(2)观察图象,比较当x>0时,y1与y2的大小.【解答】解:(1)把点A坐标代入y1=﹣x+4,得﹣a+4=1,解得:a=3,∴A(3,1),把点A坐标代入y2=,∴k2=3,∴函数y2的表达式为:y2=;(2)∴由图象可知,当0<x<1或x>3时,y1<y2,当x=1或x=3时,y1=y2,当1<x<3时,y1>y2.25.(10分)(2016•沈阳)如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).【解答】(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴的长===π.26.(10分)(2017•平川区一模)某核桃种植基地计划种植A、B两种优质核桃共30亩,已知这两种核桃的年产量分别为800千克/亩、1000千克/亩,收购价格分别是4.2元/千克、4元/千克:(1)若该基地收获两种核桃的年总产量为25800千克,则A、B两种核桃各种植了多少亩?(2)设该基地种植A种核桃a亩,全部收购后,总收入为w元,求出w与a之间的函数关系式.若要求种植A种核桃的面积不少于B种核桃的一半,那么种植A、B两种核桃各多少亩时,该种植基地的总收入最多?最多是多少元?【解答】解:(1)设A种核桃种植了x亩,800x+1000(30﹣x)=25800,解得,x=21∴30﹣x=9,即A、B两种核桃各种植了21亩、9亩;(2)由题意可得,w=800a×4.2+1000(30﹣a)×4=120000﹣640a,即w与a之间的函数关系式为:w=120000﹣640a;∵a≥(30﹣a),得a≥10,∴当a=10时,w=120000﹣640a取得最大值,此时w=113600,30﹣a=20,即种植A、B两种核桃各10亩、20亩时,该种植基地的总收入最多,最多是113600元.27.(10分)(2016•天水)如图所示,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得C的仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OC的高度以及此人所在的位置点P的垂直高度.(侧倾器的高度忽略不计,结果保留根号)【解答】解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=200米,∠CAO=60°,∴CO=AO•tan60°=200(米)(2)设PE=x米,∵tan∠PAB==,∴AE=3x.在Rt△PCF中,∠CPF=45°,CF=200﹣x,PF=OA+AE=200+3x,∵PF=CF,∴200+3x=200﹣x,解得x=50(﹣1)米.答:电视塔OC的高度是200米,所在位置点P的铅直高度是50(﹣1)米.28.(12分)(2015•鄂尔多斯)如图,抛物线y=x2﹣x﹣2与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,M是直线BC下方的抛物线上一动点.(1)求A、B、C三点的坐标.(2)连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形?若存在,求出此时点M的坐标;若不存在,说明理由.(3)当点M运动到什么位置时,四边形ABMC的面积最大,并求出此时M点的坐标和四边形ABMC的最大面积.【解答】解:(1)令y=0,则x2﹣x﹣2=0,解得:x1=4,x2=﹣1,∵点A在点B的左侧,∴A(﹣1,0),B(4,0),令x=0,则y=﹣2,∴C(0,﹣2);(2)存在点M,使四边形MO M′C是菱形,如图1所示:设M点坐标为(x,)若四边形MO M′C是菱形,则M M′垂直平分OC,∵OC=2,∴M点的纵坐标为﹣1,∴x2﹣x﹣2=﹣1,解得:,(不合题意,舍去),∴M点的坐标为(,﹣1);(3)过点M作y轴的平行线与BC交于点Q,与OB交于点H,连接CM、BM,如图2所示:设直线BC的解析式为y=kx+b,将B(4,0),C(0,﹣2)代入得:,b=﹣2,∴直线BC的解析式为,∴可设M(x,),Q(x,),∴MQ=﹣()=,=S△ABC+S△CMQ+S△BQM,∴S四边形ABMC=,=,=,=5+,=﹣x2+4x+5,=﹣(x﹣2)2+9,∴当x=2时,四边形ABMC的面积最大,且最大面积为9,当x=2时,y=﹣3,∴当M点的坐标为(2,﹣3)时,四边形ABMC的面积最大,且最大面积为9.参与本试卷答题和审题的老师有:HJJ;CJX;sks;sd2011;zhangCF;dbz1018;HLing;曹先生;ZJX;sjzx;gbl210;zhxl;守拙;家有儿女;zcx;弯弯的小河;xiu;心若在;知足长乐;nhx600;zgm666(排名不分先后)。
2017学年甘肃省白银市平川四中九年级(上)期中数学试卷
一、选择题(本题共10小题,每小题3分,共30分)
1.(3分)方程x2=3x的解是()
A.x=3 B.x=﹣3 C.x=0 D.x=3或x=0
2.(3分)用配方法解方程x2+4x+1=0,则配方正确的是()
A.(x+2)2=3 B.(x+2)2=﹣5 C.(x+2)2=﹣3 D.(x+4)2=3
3.(3分)如图,E是平行四边形ABCD的边BC延长线上的一点,连接AE交CD于F,则图中共有相似三角形()
A.1对 B.2对 C.3对 D.4对
4.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()
A.k>B.k≥C.k>且k≠1 D.k≥且k≠1
5.(3分)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()
A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD
6.(3分)如图,AB是斜靠在墙壁上的长梯,梯脚B距墙1.6米,梯上点D距墙1.4米,BD长0.55米,则梯子长为()
A.3.85米B.4.00米C.4.40米D.4.50米
7.(3分)点C是线段AB的黄金分割点(AC>BC),若AB=10cm,则AC等于()
A.6cm B.(5+1)cm C.5(﹣1)cm D.(5﹣1)cm
8.(3分)如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么指针同时落在偶数的概率是()。
2017年甘肃省白银市平川四中中考数学二模试卷一、选择题(每题3分)1.(3分)下列四个图形中,不是中心对称图形的是()A.B.C. D.2.(3分)某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%3.(3分)反比例函数y=的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A.k<2 B.k≤2 C.k>2 D.k≥24.(3分)抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5) B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)5.(3分)三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.6.(3分)如图所示的是一个台阶的一部分,其主视图是()A.B.C.D.7.(3分)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.8.(3分)在相同时刻物高与影长成比例,如果高为1.5m的测竿的影长为2.5m,A.20m B.16m C.18m D.15m9.(3分)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形10.(3分)如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=()A.4 B.6 C.8 D.不能确定二、填空题(每题4分)11.(4分)因式分解:xy2﹣4x=.12.(4分)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=.13.(4分)点A(2,y1),B(3,y2)是二次函数y=(x﹣1)2+3的图象上两点,则y1y2(填“>”、“<”或“=”)14.(4分)若代数式有意义,则x的取值范围是.15.(4分)已知=,则.16.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.17.(4分)如图,已知A(3,0),B(2,3),将△OAB以点O为位似中心,相似比为2:1,放大得到△OA′B′,则顶点B的对应点B′的坐标为.18.(4分)观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=.三、计算题(19,20每题6分),21每题8分,22题10分19.(6分)计算:2﹣2﹣(π﹣)0+|﹣3|﹣cos60°.20.(6分)先化简,再求值:(﹣),其中x=﹣2.21.(8分)已知:如图,⊙O的直径AB与弦AC的夹角∠A=30°,AC=CP.(1)求证:CP是⊙O的切线;(2)若PC=6,AB=4,求图中阴影部分的面积.22.(10分)阅读下列材料解决问题:材料:古希腊著名数学家毕达哥拉斯发现把数1,3,6,10,15,21…这些数量的(石子),都可以排成三角形,则称像这样的数为三角形数.把数1,3,6,10,15,21…换一种方式排列,即1=11+2=31+2+3=61+2+3+4=101+2+3+4+5=15…从上面的排列方式看,把1,3,6,10,15,…叫做三角形数“名副其实”.(1)设第一个三角形数为a1=1,第二个三角形数为a2=3,第三个三角形数为a3=6,请直接写出第n个三角形数为a n的表达式(其中n为正整数).(2)根据(1)的结论判断66是三角形数吗?若是请说出66是第几个三角形数?若不是请说明理由.(3)根据(1)的结论判断所有三角形数的倒数之和T与2的大小关系并说明理由.四、解答题(23题8分,24题8分,25题10分,26题10分,27题10分,28题12分)23.(8分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球B.乒乓球C.羽毛球D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人,在扇形统计图中“D”对应的圆心角的度数为;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).24.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.25.(10分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为100米的点P处.这时,一辆出租车由西向东匀速行驶,测得此车从A处行驶到B 处所用的时间为4秒,且∠APO=60°,∠BPO=45°.(1)求A、B之间的路程;(2)请判断此出租车是否超过了城南大道每小时60千米的限制速度?26.(10分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?27.(10分)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.28.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P 的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.2017年甘肃省白银市平川四中中考数学二模试卷参考答案与试题解析一、选择题(每题3分)1.(3分)下列四个图形中,不是中心对称图形的是()A.B.C. D.【解答】解:A、是中心对称图形.故错误;B、是中心对称图形.故错误;C、不是中心对称图形.故正确;D、是中心对称图形.故错误.故选C.2.(3分)某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.故选:B.3.(3分)反比例函数y=的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A.k<2 B.k≤2 C.k>2 D.k≥2【解答】解:∵反比例函数y=中,当x>0时,y随x的增大而减小,∴k﹣2>0,解得k>2.故选C.4.(3分)抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5) B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)【解答】解:∵y=2(x+3)2+5,∴抛物线顶点坐标为(﹣3,5),故选B.5.(3分)三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.6.(3分)如图所示的是一个台阶的一部分,其主视图是()A.B.C.D.【解答】解:根据主视图是从正面看到的可得:它的主视图是故选B.7.(3分)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.【解答】解:∵k1<0<k2,b=﹣1<0∴直线过二、三、四象限;双曲线位于一、三象限.故选:A.8.(3分)在相同时刻物高与影长成比例,如果高为1.5m的测竿的影长为2.5m,那么影长为30m的旗杆的高度是()A.20m B.16m C.18m D.15m【解答】解:∵,∴,解得旗杆的高度==18m.故选C.9.(3分)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形【解答】解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF是矩形.故选:A.10.(3分)如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=()A.4 B.6 C.8 D.不能确定【解答】解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF :S△PBC=1:4,S△PEF=2,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=8.故选:C.二、填空题(每题4分)11.(4分)因式分解:xy2﹣4x=x(y+2)(y﹣2).【解答】解:xy2﹣4x,=x(y2﹣4),=x(y+2)(y﹣2).12.(4分)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC= 4cm.【解答】解:连接OA,∵OC⊥AB,∴AC=AB=3cm,∴OC==4(cm).故答案是:4cm.13.(4分)点A(2,y1),B(3,y2)是二次函数y=(x﹣1)2+3的图象上两点,则y1<y2(填“>”、“<”或“=”)【解答】解:∵y=(x﹣1)2+3,∴二次函数开口向上,对称轴为x=1,∴当x>1时,y随x的增大而增大,∵1<2<3,∴y1<y2,故答案为:<.14.(4分)若代数式有意义,则x的取值范围是x≥0且x≠2.【解答】解:∵解得:x≥0且x≠2故答案为:x≥0且x≠215.(4分)已知=,则.【解答】解:∵=,∴设a=5k,b=3k(k≠0),∴==.故答案为:.16.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有①②⑤.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故答案为①②⑤.17.(4分)如图,已知A(3,0),B(2,3),将△OAB以点O为位似中心,相似比为2:1,放大得到△OA′B′,则顶点B的对应点B′的坐标为(﹣4,﹣6)或(4,6).【解答】解:∵以原点O为位似中心,相似比为2:1,将△OAB放大为△OA′B′,B(2,3),则顶点B的对应点B′的坐标为(﹣4,﹣6)或(4,6),故答案为(﹣4,﹣6)或(4,6).18.(4分)观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=1016064.【解答】解:因为1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,所以1+3+5+…+2015=1+3+5+…+(2×1008﹣1)=10082=1016064故答案为:1016064.三、计算题(19,20每题6分),21每题8分,22题10分19.(6分)计算:2﹣2﹣(π﹣)0+|﹣3|﹣cos60°.【解答】解:原式=﹣1+3﹣×=2.20.(6分)先化简,再求值:(﹣),其中x=﹣2.【解答】解:原式=•=•=,当x=﹣2时,原式=.21.(8分)已知:如图,⊙O的直径AB与弦AC的夹角∠A=30°,AC=CP.(1)求证:CP是⊙O的切线;(2)若PC=6,AB=4,求图中阴影部分的面积.【解答】解:(1)如图,连接OC;∵OA=OC,AC=CP,∴∠A=∠OCA=30°,∠P=∠A=30°,∴∠POC=∠A+∠OCA=60°,∴∠OCP=180°﹣60°﹣30°=90°,∴CP是⊙O的切线.(2)∵AB=4,∴OC=OB=2,∴=×=6,=2π,∴图中阴影部分的面积=6﹣2π.22.(10分)阅读下列材料解决问题:材料:古希腊著名数学家毕达哥拉斯发现把数1,3,6,10,15,21…这些数量的(石子),都可以排成三角形,则称像这样的数为三角形数.把数1,3,6,10,15,21…换一种方式排列,即1=11+2=31+2+3=61+2+3+4=101+2+3+4+5=15…从上面的排列方式看,把1,3,6,10,15,…叫做三角形数“名副其实”.(1)设第一个三角形数为a1=1,第二个三角形数为a2=3,第三个三角形数为a3=6,请直接写出第n个三角形数为a n的表达式(其中n为正整数).(2)根据(1)的结论判断66是三角形数吗?若是请说出66是第几个三角形数?若不是请说明理由.(3)根据(1)的结论判断所有三角形数的倒数之和T与2的大小关系并说明理由.【解答】解:(1)根据题意得:an=(n为正整数);(2)66是三角形数,理由如下:当=66时,解得:n=11或n=﹣12(舍去),则66是第11个三角形数;(2)T=++++…+=++++…+=2(1﹣+﹣+﹣+…+﹣)=,∵n为正整数,∴0<<1,则T<2.四、解答题(23题8分,24题8分,25题10分,26题10分,27题10分,28题12分)23.(8分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球B.乒乓球C.羽毛球D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人,在扇形统计图中“D”对应的圆心角的度数为72°;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).【解答】解:(1)20÷=200,所以这次被调查的学生共有200人,在扇形统计图中“D”对应的圆心角的度数=×360°=72°;故答案为200,72°;(2)C类人数为200﹣80﹣20﹣40=60(人),完整条形统计图为:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种.所以P(恰好选中甲、乙两位同学)==.24.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【解答】解:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC===,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC=+×3×2=+3.25.(10分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为100米的点P处.这时,一辆出租车由西向东匀速行驶,测得此车从A处行驶到B 处所用的时间为4秒,且∠APO=60°,∠BPO=45°.(1)求A、B之间的路程;(2)请判断此出租车是否超过了城南大道每小时60千米的限制速度?【解答】解:(1)由题意知:PO=100米,∠APO=60°,∠BPO=45°,在直角三角形BPO中,∵∠BPO=45°,∴BO=PO=100米,在直角三角形APO中,∵∠APO=60°,∴AO=PB•tan60°=100米,∴AB=AO﹣BO=(100﹣100)=100(﹣1)(米);(2)∵从A处行驶到B处所用的时间为4秒,∴速度为100(﹣1)÷4=25(﹣1)米/秒,∵60千米/时==米/秒,而25(﹣1)>,∴此车超过了每小时60千米的限制速度26.(10分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?【解答】解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.27.(10分)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.28.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P 的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.【解答】解:(1)∵抛物线过A、C两点,∴代入抛物线解析式可得:,解得:,∴抛物线解析式为y=﹣x2+2x+3,令y=0可得,﹣x2+2x+3=0,解x1=﹣1,x2=3,∵B点在A点右侧,∴B点坐标为(3,0),设直线BC解析式为y=kx+s,把B、C坐标代入可得,解得,∴直线BC解析式为y=﹣x+3;(2)∵PM⊥x轴,点P的横坐标为m,∴M(m,﹣m2+2m+3),N(m,﹣m+3),∵P在线段OB上运动,∴M点在N点上方,∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,MN有最大值,MN的最大值为;(3)∵PM⊥x轴,∴MN∥OC,当以C、O、M、N为顶点的四边形是平行四边形时,则有OC=MN,当点P在线段OB上时,则有MN=﹣m2+3m,∴﹣m2+3m=3,此方程无实数根,当点P不在线段OB上时,则有MN=﹣m+3﹣(﹣m2+2m+3)=m2﹣3m,∴m2﹣3m=3,解得m=或m=,综上可知当以C、O、M、N为顶点的四边形是平行四边形时,m的值为或.赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。