土壤中的磷素的转化特点与提高有效性措施
- 格式:ppt
- 大小:3.17 MB
- 文档页数:26
土壤中的磷素土壤是作物磷素营养的主要来源,土壤中的磷素包括有机和无机两种形态,主要是磷酸钙(镁)盐、磷酸铁、铝盐。
大部分有机磷多作物是有效的,但大部分无机磷酸盐在水中的溶解都很低,作物非常难以吸收。
进入土壤的各种磷酸盐,都非常迅速地与土壤中的钙、铁、铝等离子作用,形成难溶性的磷酸盐沉淀,或吸附在土壤胶体上,并逐渐转化为难溶性磷酸盐。
土壤pH 值和氧化还原状况是影响磷酸盐有效性的主要因素。
1土壤中磷的含量、形态及其有效性1.1 土壤磷素含量土壤中的磷来自于成土矿物、有机物质和所施用的肥料。
我国大多数土壤的全磷含量为0.04% ~0.25%,一般说来有机质含量高、熟化程度高、质地粘重的土壤,全磷含量都比较高。
土壤磷素含量不仅有明显的地带性分布,而且也呈现出有规律性的局部变化。
从南往北、由东向西,我国土壤中的全磷含量逐渐增加;离城镇村庄越远,土壤含磷量越低1.2 土壤磷素的形态及其有效性土壤中的磷可分为有机态磷和无机态磷,有机态磷主要是植酸盐、磷脂和核酸,耕地土壤一般占全磷的20%左右,对作物几乎都是有效的。
无机态磷占土壤全磷的80% 以上,主要有钙(镁)磷酸盐(Ca - P) 、铁铝磷酸盐(Fe - P 、Al - P )、闭蓄态磷(O - P )。
1)钙(镁)磷酸盐:磷酸根与钙、镁结合形成不同溶解度的磷酸钙、镁盐类,主要是磷酸钙盐,是我国北方石灰性土壤中磷酸盐的主要形态。
磷酸钙盐有多种,常见的磷酸钙盐的溶解度和对作物的有效性大小顺序为:氟磷灰石< 羟基磷灰石< 磷酸八钙< 磷酸二钙< 磷酸一钙。
2)铁、铝磷酸盐:磷酸根与Fe3+ 、Fe2+ 、Al3+ 结合形成各种形态的磷酸铁、铝类化合物,是酸性土壤磷酸盐的主要形态,常见的有粉红磷酸铁(Fe(OH)2·H2PO4 )和磷铝石(Al(OH)2·H2PO4 ),其溶解度极小,对作物的有效性很低。
在水田主要是蓝铁矿(Fe3(PO4)2·3H2O ),有效性有所提高。
土壤磷素的转化及固定土壤中各种形态的磷酸盐可以在一定条件下互相转化。
这种转化可以概括为难溶性磷(包括闭蓄态磷、吸附态磷等)的有效转化过程与土壤磷的固定作用。
这两个过程互相转化的速率与方向决定着土壤供磷能力以及磷肥的有效施用。
一、土壤磷的释放1.难溶性磷酸盐的释放指原生或次生的矿物态磷酸盐、化学沉淀形成的磷酸盐,经过物理的、化学的、生物化学的风化作用转变为溶解度较大的磷酸盐的过程。
例如,在石灰性土壤上,通过植物根系与微生物呼吸作用以及有机肥分解所产生的碳酸、有机酸可将难溶性的磷酸钙盐转变为有效性高的磷酸盐。
2.无机磷的解吸指吸附态磷重新进入土壤溶液的过程,但土壤中呈吸附态的磷并不能全部被解吸下来。
土壤吸附态磷解吸的原因包括两个方面:一是化学平衡反应,土壤溶液中磷浓度因植物的吸收而降低,从而改变了原有的平衡,使反应向解吸的方向进行;二是竞争吸附,所有能进行阴离子吸附的阴离子大多可与磷酸根离子进行竞争吸附作用,而导致吸附态磷的解吸。
3.有机磷的矿化土壤中有机态磷的化合物(植素、核酸、磷脂等)在土壤中磷酸酶的作用下,逐步分解,最终释放出磷酸,以供作物吸收利用,或与土壤中的金属离子结合,形成溶解度较低的磷酸盐,而降低其有效性。
二、土壤中无机磷的固定磷的固定作用是指土壤液相中的无机磷酸盐等有效态磷转变为无效态磷的过程。
土壤磷酸根离子被固定的两个主要反应是化学沉淀和吸附;其次是磷的生物固定。
1.沉淀反应在中性和石灰性土壤中,如施用可溶性磷肥后,提高了土壤中有效磷的浓度,磷酸根离子可与碳酸钙或方解石以及交换性钙生成二水磷酸二钙、无水磷酸二钙、磷酸八钙和羟基磷灰石等难溶性磷酸钙盐。
在酸性土壤中,当当过磷酸钙施入土壤中后,因发生异成分溶解而使土壤酸性增强,促使土壤中如赤铁矿、针铁矿、三水铝石等矿物溶解,转变为活性铁铝,开始形成无定型磷酸铁铝盐,然后转化成晶质的粉红磷铁矿、磷铝石等。
此外,土壤中交换性铁、铝、锰等离子也可与水溶性磷产生沉淀反应,不同程度地降低了磷的有效性。
不同施磷策略对磷在土壤中挪动、转化及磷肥利用率的影响专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,期望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请依据实际需要进行调整和使用,感谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、进修资料、教室资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想进修、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestyle materials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!不同施磷策略对磷在土壤中挪动、转化及磷肥利用率的影响不同施磷策略对磷在土壤中挪动、转化及磷肥利用率的影响磷是植物生长中必需的营养元素之一,对植物的生长发育和产量产生重要影响。
土壤有效磷的培训总结
土壤有效磷是指土壤中植物可直接吸收利用的磷含量。
以下是有关土壤有效磷
的培训总结:
1. 磷的重要性:磷是植物生长发育所必需的营养元素之一,对植物的根系生长、花芽分化、果实发育等过程至关重要。
2. 磷的形态:土壤中的磷存在于有机磷和无机磷两种形态。
有机磷是通过有机
物分解产生的,需要经过微生物的作用才能转化为植物可利用的无机磷。
3. 磷的吸附和固定:土壤中的磷容易与土壤颗粒表面的铁、铝、钙等离子结合
形成难溶的磷酸盐,导致磷的有效性降低。
酸性土壤中的磷吸附能力较强,碱
性土壤中的磷吸附能力较弱。
4. 磷的施用原则:根据土壤磷素含量和植物对磷的需求,合理施用磷肥。
通常,磷肥应在播种前或移栽前施用,以满足植物在生长初期对磷的需求。
5. 磷的施用方式:磷肥可以通过基肥和追肥两种方式施用。
基肥是在整地或栽
植前将磷肥施入土壤中,追肥是在植物生长期间根据需要补充磷肥。
6. 磷的施用量:磷的施用量应根据土壤磷素含量、植物对磷的需求以及磷肥的
种类来确定。
过量施用磷肥会导致磷的积累,对环境造成污染。
7. 磷的管理:合理管理土壤的pH值、有机质含量和微生物活性可以提高土壤
中磷的有效性。
保持适宜的土壤酸碱度、增加有机质含量和提高土壤微生物活
性有助于磷的释放和转化。
总结起来,合理施用磷肥、控制磷的固定和提高土壤磷的有效性是有效管理土
壤中磷素的关键。
这些措施有助于提高植物对磷的吸收利用效率,促进植物生
长发育,提高农作物产量。
复合微生物肥对农田土壤磷素有效性的影响及其作用机理解析农田土壤中的磷素是植物生长的关键营养元素之一,对提高作物产量和质量具有重要作用。
复合微生物肥是一种结合了多种微生物菌种的肥料,在促进植物生长和增加土壤肥力方面具有显著的效果。
本文将探讨复合微生物肥对农田土壤磷素有效性的影响及其作用机理解析。
首先,复合微生物肥能够提高土壤中磷素的有效性。
一方面,复合微生物肥中的某些微生物菌种具有溶磷能力,能够通过产生有机酸、酶等物质,将土壤中的无机磷转化为可被植物吸收利用的有机磷。
这不仅增加了土壤中的磷素含量,还提高了磷素的有效性。
另一方面,复合微生物肥中的其他微生物菌种,如固氮菌、磷酸溶磷菌等,能够与植物共生,通过菌根共生关系,促进植物吸收土壤中的磷素。
其次,复合微生物肥能够改善土壤环境,进一步提高磷素的有效性。
复合微生物肥中的微生物菌种具有一定的抗逆能力,能够在土壤中生存、繁殖,并保持一定的活性。
这些微生物菌种通过分解有机质、改善土壤结构等方式,提高土壤通气性、保水性和保肥性,促进磷素在土壤中的迁移和利用。
同时,复合微生物肥中的一些微生物菌株能够抑制土壤中的病原微生物,减少土壤传播病害的风险,进一步提高磷素的有效性。
此外,复合微生物肥还能够刺激植物根系的生长发育,增加植物对土壤磷素的吸收能力。
复合微生物肥中的某些菌株能够分泌生长激素,如吲哚乙酸、植酸酶等,促进植物根系的生长发育。
这样一来,植物的根系更加发达,吸收磷素的吸收面积增加,吸收能力也随之提高。
同时,复合微生物肥中的微生物菌株能够分解土壤中的有机质,释放出植物所需的养分,提供植物正常生长所需的条件,进一步增加植物对土壤磷素的吸收能力。
综上所述,复合微生物肥对农田土壤磷素有效性具有显著的影响,并且有着多种作用机理。
复合微生物肥能够通过溶磷作用、菌根共生、改善土壤环境、刺激植物根系生长发育等方式提高土壤中磷素的有效性,进而促进植物的生长和发育。
在实际应用中,合理选择复合微生物肥的菌株组合和施肥时间,结合土壤环境和作物需求,可进一步提高其效果。
磷肥在土壤中的转化及其与土壤有效磷的关系
磷肥是一种重要的农业肥料,它可以提高作物的产量和品质。
然而,
磷肥在土壤中的转化过程非常复杂,它与土壤有效磷的关系也十分密切。
磷肥在土壤中的转化主要包括磷肥的溶解、磷肥的吸附和磷肥的沉淀。
首先,磷肥在土壤中会溶解成磷酸根离子,这些离子可以被植物吸收
利用。
其次,磷肥会被土壤颗粒表面的氧化铁、氧化铝等物质吸附,
这些物质可以将磷酸根离子吸附在表面形成磷酸铁、磷酸铝等化合物。
最后,磷肥还会与土壤中的钙、镁等离子结合形成难溶性的磷酸钙、
磷酸镁等沉淀物质。
土壤有效磷是指植物可以直接吸收利用的磷,它包括磷酸根离子和磷
酸铁、磷酸铝等化合物。
磷肥与土壤有效磷的关系非常密切,磷肥的
施用可以增加土壤有效磷的含量,从而提高作物的产量和品质。
然而,磷肥的过量施用也会导致土壤中磷的积累,从而影响土壤的生态环境
和植物的生长。
为了合理利用磷肥,减少磷肥的浪费和污染,我们可以采取以下措施:
1.合理施肥。
根据不同作物的需肥量和土壤的磷素含量,合理控制磷肥
的施用量,避免过量施肥。
2.选择合适的磷肥。
不同类型的磷肥在土壤中的转化和吸附能力不同,选择适合自己土壤的磷肥可以提高磷肥的利用效率。
3.加强土壤管理。
保持土壤的肥力和水分,增加土壤有机质含量,可以提高土壤中磷的有效性和利用率。
总之,磷肥在土壤中的转化过程非常复杂,它与土壤有效磷的关系也十分密切。
合理利用磷肥可以提高作物的产量和品质,减少磷肥的浪费和污染,从而实现可持续农业的发展。
磷素长效活化
磷素是植物生长和发育所必需的营养元素之一,它在植物的光合作用、呼吸作用、能量代谢等方面都起着重要的作用。
然而,磷素在土壤中的有效性通常较低,容易被固定,导致植物无法充分吸收利用。
为了解决这一问题,科学家们一直在探索磷素的长效活化方法。
其中一种方法是利用微生物来活化土壤中的磷素。
有些微生物具有分解有机磷化合物的能力,将其转化为可供植物吸收的形态。
通过接种这些有益微生物,可以提高土壤中磷素的有效性,促进植物的生长和发育。
另一种方法是使用化学磷肥。
传统的磷肥在施入土壤后,容易被固定,导致磷素的有效性降低。
为了提高磷肥的长效性,可以采用包膜技术,将磷肥包裹在一层可降解的包膜材料中,控制磷肥的释放速度,使其在植物生长期间持续供应磷素。
此外,还可以通过合理的耕作和管理措施来提高磷素的长效活化。
例如,采用保护性耕作方式,减少土壤的扰动,有助于保持土壤结构和微生物群落的稳定,从而提高磷素的有效性。
同时,合理的施肥管理也可以减少磷素的固定和损失,提高磷素的利用效率。
综上所述,磷素的长效活化是保障植物生长和农业可持续发展的重要因素。
通过微生物活化、使用新型磷肥和合理的耕作管理等措施,可以提高土壤中磷素的有效性,为植物提供充足的营养,同时减少对环境的负面影响。
土壤中磷的调节措施主要包括以下几个方面:
1.调节土壤酸碱度:磷在pH值6-7.5的土壤中有效性最高,因此,需要调节土
壤酸碱度,以提高磷的有效利用率。
具体方法包括提高土壤缓冲性能,维持土壤酸碱反应相对稳定。
同时,增施有机肥料,加强土壤酸碱度的调节,提高土壤腐殖质的含量。
2.合理施肥:根据土壤有效磷含量和作物需求,合理施用磷肥。
对于磷肥的施用,
应遵循“少量多次”的原则,避免过量施用导致土壤磷素富集,同时也要避免磷素不足影响作物生长。
3.轮作和土壤休闲:通过合理的轮作和土壤休闲,可以调节土壤中磷的含量。
在
轮作中,可以将需磷作物(如油菜、大豆)和非需磷作物(如麦类、玉米)进行轮换种植,以保持土壤中有效磷含量的稳定。
在土壤休闲时期,可以通过淹水、烤田等措施,减少土壤中有效磷的含量。
4.生物调节:通过种植绿肥、施用有机肥料等措施,增加土壤中微生物数量,促
进土壤中有机磷的分解和转化,从而提高土壤中有效磷的含量。
同时,合理利用蚯蚓等土壤生物,促进土壤中养分的循环和利用。
5.综合管理:将以上措施进行综合应用,以提高土壤中磷的调节效果。
例如,在
稻田中,可以通过调节水位、施肥、种植绿肥等措施,提高土壤中有效磷的含量。
在旱地中,可以通过调节耕作方式、施肥等措施,促进土壤中有机磷的分解和转化。
总之,对于土壤中磷的调节,应从多个方面入手,包括调节酸碱度、合理施肥、轮作和土壤休闲、生物调节以及综合管理等方面。
在实际操作中,应根据具体情况选择合适的措施,以达到最佳的调节效果。