当前位置:文档之家› 液压缸零部件图63392

液压缸零部件图63392

液压缸零部件图63392
液压缸零部件图63392

一、缸体的技术要求

(1) 缸体采用H8、H9配合。表面粗糙并:当活塞采用橡胶密封圈密封时,Ra为0.1~0.4μm,当活塞用活塞环密封时,

Ra为0.2~0.4μm。

(2) 缸体内径D的圆度公差值可按9、10或11级精度选取,圆柱度公差值可按8能精度选取。

(3) 缸体端面T的垂直度公差值可按7级精度选取。

(4) 当缸体与缸头采用螺纹联接时,螺纹应取为6级精度的米制螺纹。

(5) 当缸体带有耳环或销轴时,孔径D1或轴径d2的中心线对缸体内孔轴线的垂直度公差应按9级精度选取。

(6) 为了防止腐蚀和提高寿命,缸体内应镀以厚度为30~40μm的铬层,镀后进行珩磨或抛光。

(7)缸筒的材料:一般要求有足够的强度和冲击韧性,对焊接的缸筒还要求有良好的焊接性能。根据液压缸的参数、用途和毛坯的来源等可选用以下各种材料:25、S35、S45、2CrMo、35CrMo、38CrMoAl、

ZG200-400、ZG230-450、1Cr18Ni9、ZL105、LF3、LF6、ZQA19-4、ZQA10-3-1.5等.

二、缸体端部联接型式

1.对于固定机械,若尺寸与质量没有特殊要求时,建议采用法兰联接或拉杆联接。

2.对于活动机械,若尺寸和质量有特殊要求时,推荐采用外螺纹联接或外半环联接。

三、缸盖

缸盖的材料

液压缸缸盖的常用材料为35、45号锻钢或ZG35、ZG45铸钢或HT200、HT300、HT350铸铁等材料。

缸盖的技术要求

1)直径D、D2、D3的圆柱度公差应按9、10、11级精度选取;

2)D2、D3与d同轴度公差值为0.03mm;

3)端面A、B与直径d轴心线的垂直度公差值按7级精度选取;

4)导向孔的表面粗糙度Ra=1.25μm

四、活塞的材料

液压缸活塞常用的材料为耐磨铸铁、灰铸铁(HT300、HT350)、钢(有的在外径上套有尼龙66、尼龙1010或夹布酚醛塑料的耐磨环)及铝合金等。

活塞的技术要求

1)活塞外径D对内径D1的径向跳动公差值,按7、8级精度选取。

2)端面T对内孔D1轴线的垂直度公差值,应按7级精度选取。

3)外径D的圆柱度公差值,按9、10或11级精度选取。

五、活塞杆

端部结构

端部尺寸(螺纹联接形式(mm))

注:1.螺纹长度L :内螺纹时,是指最小尺寸;外螺纹时,是指最大尺寸。 2.当需要用锁紧螺母时,采用长型螺纹长度。 3.带*号的螺纹尺寸,为气缸专用。

端部尺寸(耳环型联接(mm ))

注:1.耳环材料推荐采用45钢

2.表中MR1=CD,MR2=1.2CD,EW=(1.2~1.4)CD(低压选小值,高压选大值)。

端部尺寸(单耳球铰型联接(mm))

注:1.耳环材料推荐用45号钢。

2.表中MS=1.4CX,EP=(1.2~1.4)CX(低压选用小值,高压选用大值)。

活塞杆结构

活塞杆有实心杆和空心杆两种,见下图。空心活塞杆的一端,要留出焊接和热处理时用的通气孔d2。

a)实心活塞杆 b)空心活塞杆

活塞杆材料

实心活塞杆材料为35、45钢;空心活塞杆材料为35、45无缝钢管。

活塞杆的技术要求

1)活塞杆的热处理:粗加工后调质到硬度为229~285HB,必要时,再经高频淬火,硬度达45~55HRC。

2)活塞杆d和d1的圆度公差值,按9、10或11级精度选取。

3)活塞杆d的圆柱度公差值,应按8级精度选取。

4)活塞杆d对d1的径向跳动公差值,应为0.01mm。

5)端面T的垂直度公差值,则应按7级精度选取。

6)活塞杆上的螺纹,一般应按6级精度加工;如载荷较小,机械振动也较小时,允许按7级或8级精度制造。

7)活塞杆上若有联接销孔时,该孔径按H11级加工。该孔轴线与活塞杆轴线的垂直公差值,按6级精度选取。

8)活塞杆上下工作表面的粗糙度为R a0.63μm,必要时,可以镀铬,镀层厚度约为0.05mm,镀后

六、活塞杆的导向、密封和防尘

导向套材料

导向套常用材料为铸造青铜或耐磨铸铁。

导向套的技术要求

导向套内径的配合,一般取为H8/f9(或H9/f9),其表面粗糙度则为R a0.63μm~1.25μm。

注:采用薄钢片组合防尘圈时,防尘圈与活塞杆的配合可按H9/f9选取。薄钢片厚度为0.5mm。

最小导向长度:在缸径小于80mm时A=(0.6∽1.0)D(缸径);当缸径大于80mm时取A=(0.6∽1.0)d(杆径)

最小导向长度是指导向套滑动面长度.

七、液压缸的缓冲装置

缓冲装置是为了防止或减小液压缸活塞在运动到两个端点时因惯性力造成的冲撞。通常是通过节流作用,使液压缸运动到端点附近时形成足够的内压,降低液压缸的运动速度,以减小冲击。

常用的液压缸缓冲装置见下表。

液压缸的缓冲装置

可调型恒节流面积的缓冲装置中设有缓冲调节阀,其常见结构如下图。

为使反向进油时不受节流阻力影响,液压缸中可设置单向阀与缓冲调节阀一同使用,其结构可参见下图。

★缓冲柱塞δ不能过小,以免在活塞导向环磨损后,缓冲柱塞可能碰撞端盖,通常δ≥0.10-0.20,缓冲行程不可过长,以免外形尺寸过大.

八、液压缸的排气装置

为使液压缸运动稳定,在新装上液压缸之后,必须将缸内的空气排出,排气的方法之一是使液压缸反复运动,直到运动平稳。但更可靠的方法是在液压缸上设置排气塞(排气阀),排气塞的位置一般放在液压缸的端部,双作用液压则应设置两个排气塞。

排气塞结构

排气塞零件图尺寸

技术要求:锥面热处理硬度38~44HRC。材料:3Cr13。标记:排气塞M12

排气塞(mm)

注:1.d=M16排气阀的标记为:排气阀M16。

2.阀座材料为25钢,阀杆材料为3Cr13。

3.孔的尺寸d3、t,见排气塞零件图。

九、液压缸安装联接部分的型式及尺寸

液压缸进出油口的型式

注:1)锥面上,不得有纵向的或螺旋形刀痕,允许有1.6μm环形刀痕。

液压缸进出油口的尺寸(mm)

注:1.尺寸U和螺纹中径D2的圆跳动不大于0.1mm。

2.表中给出的螺纹底孔深度是要求使用平顶丝锥攻出的螺纹长度。当使用标准丝锥时应适当地增加螺纹度孔深度。

液压缸为单耳环的主要安装尺寸(mm)

注:1.耳环材料推荐采用45钢。销轴直径按45钢材决定。

2.表中尺寸MR1=CD;R2=1.2CD;L1=1.2MR1;L2=1.2MR2;EW=(1.2~1.4)CD(低压选小值,高压选大值)

液压缸为单耳球铰的主要安装尺寸 (mm)

注:1.耳环材料推荐采用45钢。销轴直径按45钢材决定。

2.表中尺寸MS=1.4CX;LT=1.2MS;EP=(1.2~1.4)CX,低压选小值,高压选大值。

液压缸为销轴的主要安装尺寸 (mm)

注:TD值按45钢计算所得

十、柱塞式液压缸的端部型式及尺寸

液压柱塞缸端部型式及尺寸

液压缸端部主要零件名称和材料

液压与气压传动第五章习题答案

第五章习题答案 5-1 填空题 1.液压控制阀按连接方式不同,有(管式)、(板式及叠加式)、(插装式)三种连接。 2.单向阀的作用是(允许油液单方向通过),正向通油时应(压力损失要小),反向时(密封性要好)。 3.按阀芯运动的控制方式不同,换向阀可分为(手动)、(机动)、(电动或电磁)、(液动)和(电液动)换向阀。 4.电磁换向阀的电磁铁按所接电源的不同,可分为(直流电)和(交流电)两种。 5.液压系统中常见的溢流阀按结构分有(直动式)和(先导式)两种。前者一般用于(低压),后者一般用于(中、高压)。 6.压力继电器是一种能将(压力信号)转换为(电信号)的能量装置。 5-2 判断题 1.高压大流量液压系统常采用电磁换向阀实现主油路换向。(×) 2.节流阀和调速阀分别用于节流和调速,属于不同类型的阀。(×) 3.当顺序阀的出油口与油箱接通时,即成为卸荷阀。(×) 4.顺序阀和溢流阀在某些场合可以互换。(√) 5.背压阀是一种特殊的阀,不可用其它阀代替。(×) 6.通过节流阀的流量与节流阀的通流面积成正比,与阀两端的压力差大小无关。(×) 5-3 问答题 1.什么是三位换向阀的“中位机能”?有哪些常用的中位机能?中位机能的作用如何? 答:对于各种操纵方式的三位换向阀,阀芯在中间位置时各油口的连通方式,称为换向阀的中位机能。常用的中位机能有:O 、P 、Y、 H、M 、K 。中位机能的作用:满足液压系统提出的各种性能要求如:卸荷、保压、启动平稳性及液压缸浮动和任意位置停留等。 2.从结构原理和图形符号上,说明溢流阀、减压阀和顺序阀的异同点及各自的特点。 答:略 3.先导式溢流阀中的阻尼小孔起什么作用?是否可以将阻尼小孔加大或堵塞? 答:产生压力降,从而使主阀芯动作。不可。 4.为什么说调速阀比节流阀的调速性能好?两种阀各用在什么场合较为合理? 答:调速阀比节流阀多了定差减压阀,油液流过时先经过减压阀产生一次压力降,并利用减压阀阀芯的自动调节,使节流阀前后的压力差保持不变,因而使通过节流阀的流量保持平稳,所以调速阀比节流阀的调速性能好。

液压缸设计

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

工况负载组成负载值F 工况负载组成负载值F 启动981 保压3150×103加速537 补压3150×103快速491 快退+G 10301 按上表绘制负载图如图***所示。 F/N v/mm s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

液压缸全套图纸说明书范本

液压缸全套图纸说 明书

绪论——————————————第3页 第1章液压传动的基础知识————————第4页 1.1 液压传动系统的组成————————第4页 1.2 液压传动的优缺点—————————第4页 1.3 液压传动技术的发展及应用——————第6页 第2 章液压传动系统的执行元件 ——液压缸——————————第8页 2.1 液压缸的类型特点及结构形式——————第8页 2.2 液压缸的组成——————————第11页 第3章 D G型车辆用液压缸的设计——————第19页 3.1 简介—————————————第19页 3.2 DG型液压缸的设计----------- —————第20页 第4章液压缸常见故障分析与排除方法—————第27页总结——————————————第29 页

绪论 第一章液压传动的基础知识 1.1液压传动系统的组成 液压传动系统由以下四个部分组成: 〈1〉动力元件——液压泵其功能是将原动机输出的机械能转换成液体的压力能,为系统提供动力。 〈2〉执行元件——液压缸、液压马达。它们的功能是将液体的压力能转换成机械能,以带动负载进行直线运动或者旋转运动。 〈3〉控制元件——压力、流量和方向控制阀。它们的作用是控制和调节系统中液体的动力、流量和流动方向,以保证执行元件达到所要求的输出力(或力矩)、运动速度和运动方向。 〈4〉辅助元件——保证系统正常工作所需要的辅助装置。包括管道、管接头、油箱过滤器和指示仪表等。 〈5〉工作介质---工作介质即传动液体,一般称液压油。液压系统就是经过工作介质实现运动和动力传递的。 1.2液压传动的优缺点

液压缸结构设计指导

液压缸结构设计指导 液压缸设计是在对整个液压系统进行了工况分析、编制了负载图、选定了工作压力的基础上进行的。因此,首先要根据主机的要求确定缸的结构类型,按照负载、速度、行程等已知条件决定缸的主要尺寸,再迸行结构设计,最后对液压缸的强度、刚度和工作稳定性进行校核。这里,重点对结构设计提出指导性意见,指出校核方法,供课程设计时参考。 1-1 液压缸结构设计的要求 液压缸结构设计的目标是要满足其输出的力、速度、行程等诸项要求,同时要兼顾结构简单,便于加工、装卸、维修,确保一定的效率、寿命等。 一、力 液压缸的推力大小将直接影响其结构。一般来说,推力越大,其工作压力越高。因此,对液压缸的各个零件要进行必要的受力分析。如,活塞杆是受拉还是受压,是否受到偏载,行程末端的冲击压力将有多大等,这就要求正确设计活塞杆的导向装置、密封装置,选定合适的活塞杆长径比和液压缸各零件的连接结构。 二、速度 为实现液压缸的最高速度、最终速度,在结构上就要保证进、出口有一定通径,减少内泄漏量,设置缓冲装置以防止冲击,设置排气装置以免低速爬行等。 三、行程 除了液压缸在起动、制动时所需的附加行程外,其有效行程要达到运动部件的最大行程要求,并力求结构紧凑、占地最小。这就要求合理确定液压缸的结构类型、安装方式,如采用伸缩缸、增程缸的结构型式,或采用活塞杆固定缸体移动的安装方式。 四、其它 在特殊情况下,要考虑防漏、防锈蚀、防尘、防热变形、防自重跌落(如垂直缸或倾斜缸要有锁紧装置)等。 2-2液压缸结构分析实例 一、磨床工作台液压缸 图Ⅲ-2-1所示为小型的卧轴矩台平面磨床M7120A 的工作台液压缸,带动

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示) 什么是液压缸液压缸是将液压能转变为机械 能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸的结构液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。缸体组件缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。(1)法兰式连接,结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。(2)半环式连接,分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。(3)螺纹式连接,有

外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。(4)拉杆式连接,结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。(5)焊接式连接,强度高,制造简单,但焊接时易引起缸筒变形。液压缸的基本作用形式:标准双作用:动力行程在两个方向并且用于大多数应用场合: 单作用缸:当仅在一个方向需要推力时,可以采用一个单作用缸;双杆缸:当在活塞两侧需要相等的排量时,或者当把一个负载连接于每端在机械有利时采用,附加端可以用来安装操作行程开关等的凸轮.弹簧回程单作用缸:通常限于用来保持和夹紧的很小的短行程缸。容纳回程弹簧所需要的长度使得它们在需要长行程时很讨厌;柱塞式单作用缸:仅有一个流体腔,这种类型的缸通常竖直安装,负载重置使缸内缩,他们又是被成为“排量缸”,并且对长行程是实用的;多级伸缩缸:最多可带4个套简,收拢长度比标准缸短.有单作用或双作用,它们与标准缸相比是比较贵的,通常用于安装空间较小但需要较大行程的场合, 串联缸:一个串联缸足由两个同轴安装的缸组成的,两个缸的活塞由一个公共活塞杆链接,在两缸之前设置杆密封件以便使每个缸都能双作用,当安装宽度或高度受限制时.串联

液压缸结构图示共12页

液压缸的结构 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端 盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保 证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防尘圈12。 下面对液压缸的结构具体分析。 3.2.1 缸体组件

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

(4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的 中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变 形。 3.2.1.2 缸筒、端盖和导向套的基本要求 缸 筒 是 液 压 缸 的 主 体, 其 内 孔 一 般 采 用 镗 削、 绞 孔、 滚 压 或 珩 磨等精密加工工艺制造,要求表面粗糙度在0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要 承受很大的液压力,因此,应具有足够的强度和刚度。

液压缸基本结构

液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。下面对液压缸的结构具体分析。 3.2.1 缸体组件 ?

缸体组件与活塞组件形成的 密封容腔承受油压作用,因此, 缸体组件要有足够的强度,较高 的表面精度可靠的密封性。 3.2.1.1 缸筒与端盖的连接 形式 常见的缸体组件连接形式如图3.10所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用 的一种连接形式。 (2)半环式连接(见图b), 分为外半环连接和内半环连 接两种连接形式,半环连接 工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,

但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。 ? (4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。 3.2.1.2 缸筒、端盖和导向套的基本要求 ?缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要

液压缸全套图纸说明书样本

绪论——————————————第3页 第1章液压传动的基础知识————————第4页 1.1 液压传动系统的组成————————第4页 1.2 液压传动的优缺点—————————第4页 1.3 液压传动技术的发展及应用——————第6页 第2 章液压传动系统的执行元件 ——液压缸——————————第8页 2.1 液压缸的类型特点及结构形式——————第8页 2.2 液压缸的组成——————————第11页 第3章 D G型车辆用液压缸的设计——————第19页

3.1 简介—————————————第19页 3.2 DG型液压缸的设计----------- —————第20页 第4章液压缸常见故障分析与排除方法—————第27页 总结——————————————第29 页 绪论 第一章液压传动的基础知识 1.1液压传动系统的组成 液压传动系统由以下四个部分组成: 〈1〉动力元件——液压泵其功能是将原动机输出的机械能转换成液体的压力能,为系统提供动力。

〈2〉执行元件——液压缸、液压马达。它们的功能是将液体的压力能转换成机械能,以带动负载进行直线运动或者旋转运动。 〈3〉控制元件——压力、流量和方向控制阀。它们的作用是控制和调节系统中液体的动力、流量和流动方向,以保证执行元件达到所要求的输出力(或力矩)、运动速度和运动方向。 〈4〉辅助元件——保证系统正常工作所需要的辅助装置。包括管道、管接头、油箱过滤器和指示仪表等。 〈5〉工作介质---工作介质即传动液体,一般称液压油。液压系统就是经过工作介质实现运动和动力传递的。 1.2液压传动的优缺点 优点: 〈1〉体积小、重量轻,单位重量输出的功率大(一般可达32M P a,个别场合 更高)。 〈2〉可在大范围内实现无级调速。 〈3〉操纵简单,便于实现自动化。特别是和电气控制联合使用时,易于实现

液压缸结构图示

创作编号:BG7531400019813488897SX 创作者:别如克* 液压缸的结构 · 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一

焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防 下面对液压缸的结构具体分析。 3.2.1 缸体组件 ·

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式 用于要求外形尺寸小、重量轻的场合。

液压缸零部件图63392

一、缸体的技术要求 (1) 缸体采用H8、H9配合。表面粗糙并:当活塞采用橡胶密封圈密封时,Ra为0.1~0.4μm,当活塞用活塞环密封时, Ra为0.2~0.4μm。 (2) 缸体内径D的圆度公差值可按9、10或11级精度选取,圆柱度公差值可按8能精度选取。 (3) 缸体端面T的垂直度公差值可按7级精度选取。 (4) 当缸体与缸头采用螺纹联接时,螺纹应取为6级精度的米制螺纹。 (5) 当缸体带有耳环或销轴时,孔径D1或轴径d2的中心线对缸体内孔轴线的垂直度公差应按9级精度选取。 (6) 为了防止腐蚀和提高寿命,缸体内应镀以厚度为30~40μm的铬层,镀后进行珩磨或抛光。 (7)缸筒的材料:一般要求有足够的强度和冲击韧性,对焊接的缸筒还要求有良好的焊接性能。根据液压缸的参数、用途和毛坯的来源等可选用以下各种材料:25、S35、S45、2CrMo、35CrMo、38CrMoAl、 ZG200-400、ZG230-450、1Cr18Ni9、ZL105、LF3、LF6、ZQA19-4、ZQA10-3-1.5等. 二、缸体端部联接型式 1.对于固定机械,若尺寸与质量没有特殊要求时,建议采用法兰联接或拉杆联接。 2.对于活动机械,若尺寸和质量有特殊要求时,推荐采用外螺纹联接或外半环联接。 三、缸盖 缸盖的材料 液压缸缸盖的常用材料为35、45号锻钢或ZG35、ZG45铸钢或HT200、HT300、HT350铸铁等材料。 缸盖的技术要求 1)直径D、D2、D3的圆柱度公差应按9、10、11级精度选取; 2)D2、D3与d同轴度公差值为0.03mm; 3)端面A、B与直径d轴心线的垂直度公差值按7级精度选取; 4)导向孔的表面粗糙度Ra=1.25μm 四、活塞的材料

液压缸的设计计算

液压缸的设计计算-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

液压缸的设计计算 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。 (2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。

力士乐液压缸样本解读

1/44 Hydraulic cylinder Mill type Series CDH2 / CGH2 Component series 1X Nominal pressure 250 bar (25 MPa RE 17334/09.05Replaces: 02.05 Overview of contents Contents Page T echnical data 2Diameter, weights 2Areas, forces, flows 3T olerances 3 IHC-Designer: Engineering software 4Mounting style overview 4Ordering details 4Plain clevis at base MP3 6Self-aligning clevis at base MP5 8 Round flange at head MF3 10Round flange at base MF4 12Trunnions MT4 14Foot mounting MS2

16 H4652_d Features – Standards: DIN 24333, ISO 6022 and VW 39 D 921– 6 mounting styles – Piston ?: 40 to 320 mm – Piston rod ?: 25 to 220 mm – Stroke length up to 6 m Contents Page Flange connections 18Position measuring system 20Proximity switch 24Screwed coupling 26Self-aligning clevis 27Fork clevis 28Mounting block 29Buckling 31 End position cushioning 34Spare parts 37Tightening torques 39Seal kits 40 Engineering software: IHC-Designer from Rexroth Online https://www.doczj.com/doc/9618426306.html,/Rexroth-IHD Download https://www.doczj.com/doc/9618426306.html,/ business_units/bri/de/downloads/ihc Technical data (for applications outside these parameters, please consult us! Standards :

液压缩管机的结构及其工作原理

液压缩管机的结构及其工作原理 1液压缩管机的结构 1.1液压缩管机的主机结构 本设计为径向压块压缩式缩管机设计,所以主要介绍径向压块压缩式缩管机的结构。该缩管机主机和液压系统设计为集中组装箱体式结构,在箱体上留有可与液压站管路相连的胶管管接头插孔。箱体内可存放备用模具、常用工具及其它零配件等。图2.1为主机结构图。 该缩管机的主机为液压缸1,锥套8和活塞杆5用背帽6联接为一体,冲块9和中心套10用螺母与后定位板11联为一体,工作时液压系统的高压液体从口进入活塞腔,推动活塞杆向外伸出,通过锥套8的内锥面压迫冲块的外锥面,使模具弹性径向收缩,压缩金属接头使其产生一定量的径向塑性变形,达到金属接头与液压胶管相连接的目的。反向油口供油时,活塞杆回缩,锥套解除对冲块的压缩,冲块因弹簧弹性恢复,完成接头的一个压接循环。 图2.1液压缩管机的主机结构图 1-外缸体; 2-活塞杆;3-定位伴;4-缸套;5-活塞杆;6-背帽; 7-定位栓;8-锥套;9-冲块;10-中心套;11-定位板;12-螺帽

1.2缩管机的液压系统 为便于说明其液压系统,将其液压系统中的工作元件—主机,用机构简图的形式表示出来。图2.2为该缩管机的工作原理及液压系统图。缩管机由主机和液压站2部分组成,其中主机由缸体1,活塞杆2.锥套3及冲块5等构成;液压站由液泵9、过滤器11和液箱12等组成。为适应井下工作面作业的配套要求,液压站设计初选齿轮泵站提供液压动力。也可根据现场作业情 况,匹配其他液压站。[8] 图2.2缩管机工作原理与液压系统图 1-外缸体; 2-活塞杆;3-锥套;4-管接头;5-冲块;6-液压胶管; 7-操作阀;8-压力表;9-溢流阀;10-油泵;11-滤油器;12-油箱;13-电动机 2液压缩管机的工作原理 工作时,先将液压胶管的端头与金属管接头4套装好,插人冲块内孔预

液压缸结构图示

液压缸的结构 · 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分 组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、 缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保 证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防尘圈12。 下面对液压缸的结构具体分析。 3.2.1 缸体组件 ·

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

· (4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的 中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变 形。 · 3.2.1.2 缸筒、端盖和导向套的基本要求 ·缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要承受很大的液压力,因此,应具有足够的强度和刚度。

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以,高于16乘以 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积 (cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径 (cm) 液压油缸速度 (m/min) V = Q / A Q :流量 (l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度 (m/min) S :液压缸行程 (m) t :时间 (min) 液压油缸出力 (kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时 ) p :压力 (kgf /cm 2 )

液压缸结构图示

液压缸结构图示 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

液压缸的结构·液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底 1、缸筒 6、缸盖 10、活塞 4、活塞杆 7 和导向套 8 等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈 3、5、9、11 和防尘圈 12。 下面对液压缸的结构具体分析。 缸体组件·

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 缸筒与端盖的连接形式 常见的缸体组件连接形式如图所示。 (1)法兰式连接(见图 a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图 b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图 f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

液压缸结构图示

液压缸的结构 ? 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。 下面对液压缸的结构具体分析。 3.2.1 缸体组件 ?

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图3.10(1)法兰式工方便筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 半环连接接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般 用于要求外形尺寸小、重量轻的场合。 较高的表面精 所示。 连接(见图a),结构简单,加,连接可靠,但是要求缸(2)半环式连接(见图b),分为外半环连接和内 两种连接形式,半环连接工艺性好,连 见图f、c),有外螺纹连接和内螺纹连

? 工艺性好,(4)拉杆式连接(见图d),结构简单,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的 ? 3.2.1.2 缸筒、端盖和导向套的基本要求 ? 缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在 0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要 承受很大的液压力,因此,应具有足够的强度和刚度。 中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变 形。

液压缸习题及答案

第五章 液 压 缸 如图所示,液压直径D=150mm ,柱塞直径d=100mm ,缸内充满油液,F=50000N(a ,b 中分别包括柱塞或缸的自重)不计油液重量。 试分别求a)、b)缸中的油压(用N/m 2表示)。 a) b) 题图 压力相同 Mpa d F p 4.642 ==π 单杆活塞油缸,D=90mm ,d=60mm ,进入油缸的流量q=×10-3m 3/s ,进油压力p 1=50×105Pa ,背压力p 2=3×105Pa ,试计算图示各种情况下油缸运动速度的大小和方向,牵引力大小和方向以及活塞杆受力情况(受拉或受压)。 题图 无杆腔2321103585.64m D A -?== π 有杆腔() 23222105325.34m d D A -?=-=π 1、N A p 5.1766221= N A p 6.190712=

N A p A p F 9.157541221=-= s m A q v /119.0/2== 牵引力向左,活塞杆受拉,运动向左 2、N A p 5.3179211= N A p 75.105922= N A p A p F 75.307322211=-= s m A q v /066.0/1== 牵引力向右,活塞杆受压,运动向右 3、N A p A p F 141302111=-= s m A A q v /149.0)/(21=-= 牵引力向右,活塞杆受压,运动向右 三个液压缸串联,活塞直径均为100mm ,活塞杆直径为65mm ,由10MPa ,×10-3m 3/s 的油泵供油,如果液压缸上负载F 相同,求F 和三个活塞的运动速度,如果方向阀切换,活塞反向运动时,求各活塞的运动速度。 题图 无杆腔22100785.04m D A == π 有杆腔() 222200453.04m d D A =-= π 577.0/12=A A 正向运动: 油缸1 211A p F pA +=

液压习题第五章

1、在先导式溢流阀中,先导阀的作用是(),主阀的作用是()。 2、当油液压力达到预定值时便发出电信号的液-电信号转换元件是()。 3、溢流阀在液压系统中起调压溢流作用,当溢流阀进口压力低于调整压力时,阀口是()的,溢流量为(),当溢流阀进口压力等于调整压力时,溢流阀阀口是(),溢流阀开始()。(关闭、0、开启、溢流) 4、液压控制阀按其用途可分为()、()和()三大类,分别调节、控制液压系统中液流的()、()和()。 5、滑阀式换向阀的外圆柱面常开若干个环形槽,其作用是()和()。 二、判断题 1、当溢流阀的远控口通油箱时,液压系统卸荷。 2、先导式溢流阀主阀弹簧刚度比先导阀弹簧刚度小。 3、背压阀的作用是使液压缸的回油腔具有一定的压力,保证运动部件工作平稳。 4、直控顺序阀利用外部控制油的压力控制阀芯的移动。 5、顺序阀可用作溢流阀用。 6、外控式顺序阀阀芯的启闭是利用进油口压力来控制的。 三、选择题 1、顺序阀是()控制阀。 A、流量 B、压力 C、方向 2、中位机能是()型的换向阀在中位时可实现系统卸荷。 A、M B、P C、O D、Y 3、减压阀控制的是()处的压力。 A、进油口 B、出油口 C、A 和B都不是 4、在液压系统中,()可作背压阀。 A、溢流阀 B、减压阀 C、液控顺序阀 5、在液压系统图中,与三位阀连接的油路一般应画在换向阀符号的()位置上。 A、左格 B、右格 C、中格 6、为使减压回路可靠地工作,其最高调整压力应()系统压力。 A、大于 B、小于 C、等于 7、系统中采用了内控外泄顺序阀,顺序阀的调定压力为PX(阀口全开时损失不计),其出口负载压力为PL。当PL>PX时,顺序阀进、出口压力P1和P2之间的关系为()。 A、P1=PX,P2=PL(P1≠P2) B、P1=P2=PL C、P1上升至系统溢流阀调定压力P1=Py,P2=PL D、P1=P2=PX 8、顺序阀在系统中作背压阀时,应选用()型。 A、内控内泄式 B、内控外泄式 C、外控内泄式 D、外控外泄式 9、常用的电磁换向阀用于控制油液的()。 A、流量 B、压力 C、方向 10、有两个调整压力分别为5MPa和10MPa的溢流阀并联在液压泵的出口,泵的出口压力为() A、5MPa B、10 Mpa C、15 MPa D、20 MPa 11、减压阀工作时保持()。 A、进口压力不变 B、出口压力不变 C、进出口压力都不变

液压缸结构图急

课程目录 3 . 2 液压缸的结构 ? 3.2 液压缸的结构 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、 前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。

3 . 2 . 1 缸体组件 3 . 2 . 1 . 1 缸筒 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。下面对液压缸的结 构具体分析。 3.2.1 缸体组件 ? 缸体组件与活塞组件形成的 密封容腔承受油压作用,因此, 缸体组件要有足够的强度,较高 的表面精度可靠的密封性。 3.2.1.1 缸筒与端盖的连接 形式 常见的缸体组件连接形式如图3.10所示。

与端盖的连接形式 3 . 2 . 1 . 2 缸筒、端盖(1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用 的一种连接形式。 (2)半环式连接(见图b), 分为外半环连接和内半环连 接两种连接形式,半环连接 工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖 的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外 形尺寸小、重量轻的场合。 ?

液压油缸型号大全及选型流程参考

液压缸选型流程: 程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例) ※条件一 已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)输出力的作用方式为推力F1的工况: 初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D; 初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比1.46~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。 (2)输出力的作用方式为拉力F2的工况: 假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。 (3)输出力的作用方式为推力F1和拉力F2的工况: 参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ※条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。

相关主题
文本预览
相关文档 最新文档