拉伸模常有缺陷
- 格式:ppt
- 大小:92.00 KB
- 文档页数:42
⾦属⼯艺学简答题带答案⾦属⼯艺学复习题铸造部分1、什么是合⾦的铸造性能?它可以⽤哪些性能来衡量?铸造性能不好,会引起哪些缺陷?合⾦的流动性受到哪些因素影响?(1)流动性能和收缩性能(2)合⾦的流动性、浇注条件、铸型条件。
(3)缩孔、缩松、变形和裂纹(4)合⾦的种类,合⾦的成分,杂质与含⽓量2铸件的凝固⽅式有哪些?合⾦的收縮經历哪⼏个阶段?缩孔和缩松的产⽣原因是什么7防⽌缩孔和缩松的⽅法有哪些?逐层凝固糊状凝固中间凝固液态收缩凝固收缩固态收缩缩孔:缩孔产⽣的条件是⾦属在恒温或很⼩的温度范围内结晶,铸件壁以逐层凝固的⽅式进⾏凝固。
缩松:缩松形成的基本原因和缩孔形成的相同,但形成的条件却不同。
缩松形成的条件主要是在结晶温度范围宽、以糊状凝固⽅式凝固的合⾦或厚壁铸件中。
防⽌:控制铸件的凝固过程使之符合顺序凝固的原则,并在铸件最后凝固的部位设置合理的冒⼝,使缩孔移⾄冒⼝中,即可获得合格的铸件。
(1)按照顺序凝固的原则进⾏凝固(2)合理地确定内浇道位置及浇注⼯艺(3)合理地应⽤冒⼝、冷铁和补铁等⼯艺措施3、热应⼒和机械应⼒产⽣的原因是什么?采⽤哪些措施可以预防和消除铸造应⼒?热应⼒是由于铸件壁厚不均,各部分冷却速度不同,同⼀时期,各部分收缩不⼀致,⽽引起的;铸件在固态收缩时,因受铸型,型芯,焦冒⼝等外⼒的阻碍⽽产⽣的应⼒称为机械应⼒;措施:1合理的设计铸件的结构。
设计铸件时应尽量使铸件形状简单、对称、壁厚均匀。
2尽量选⽤线收缩率⼩、弹性模量⼩的合⾦。
3采⽤同时凝固的⼯艺。
所谓同时凝固市值采⽤⼀些⼯艺措施,使铸件各部分间温差尽量⼩,⼏乎同时进⾏凝固。
4设法改善铸型、型芯的退让性,合理设置浇冒⼝等,以减少机械应⼒。
5对铸件进⾏实效处理是消除铸造应⼒的有效措施4、什么是顺序凝固原则?什么是同时凝固原则?各有何应⽤?采⽤各种措施来使铸件结构上各部分按照远离冒⼝的部分先凝固,然后是靠近冒⼝部分,最后才是冒⼝本⾝凝固的次序进⾏凝固。
拉深模:一.深压延成形常见的缺陷1.壁厚不均:(成品的边厚和凸缘部分不对称)①冲子与凹模的同心度互相偏离,导致间隙不均匀:重新调校冲子与凹模②冲子与凹模的中心不垂直:安装导柱及导套③毛胚料与凹模的中心互偏离:改善毛胚料的定位④压边圈加在毛胚料上的力不均:调校压边圈的弹弓⑤凹模壁高度不一致:统一凹模壁高度2.顶底爆裂:(成品近凸缘的半径圆弧区和近壁底附近有爆裂现象)①材质太脆硬,晶粒过粗或中途退火不正:退回供应商或进行调质处理,改善压延特性②冲子与凹模的同心度偏离:重新调校冲子与凹模③冲子与凹模有倾斜,形成不均匀壁厚:重新调校模具或冲床④压边圈加在毛胚料上的压力太大:调整压边圈的压力⑤冲子与凹模的间隙不够:改善冲子与凹模的间隙⑥凹模模肩圆弧半径太小:加大模肩圆弧半径3.桶状皱摺:(成品近壁顶部产生群摺现象)①毛胚厚度不够:计算改善冲子与凹模的间隙毛胚料尺寸②毛胚料尺寸过小,其凸缘面积不足,发挥不到压边效果:重新设计毛胚料尺寸③成品高度小于图纸高度和开口部分有波浪形状皱摺,成因是冲子与凹模的间隙太大:改善冲子与凹模的间隙(缩小)④成品高度过高与图纸高度,成因是冲子与凹模的间隙偏小:改善冲子与凹模的间隙(加大)⑤压边力太大和凹模模肩圆弧半径太小:改善加大圆弧半径,调校压边力⑥压边力不足和凹模模肩圆弧半径太大:修细模肩的圆弧半径,调校压边力4.抓痕:(成品外壁有线性直纹现象)①愿材料表面已有伤痕:更换材料②原材料表面附有尘埃杂物污垢:更换材料或使用软布及清洁剂除去表面污垢③因润滑剂不洁:选择清洁或经过滤之润滑剂④模具受损,尤以凹模模口圆弧半径范围:应估计模具的寿命,要设定某生产数量后,模具应要重新抛光5.状压痕(成品在壁身面上有多个环状形压痕)①冲子与凹模不同心:重新调校冲子与凹模②帽子形的半成品不能稳定安放在下模上,造成倾斜:可考虑冲子在下,凹模在上,令帽子形的半成品套在冲子上③退火程序不正确使机械性能不均匀:退回供应商或进行调质处理,改善压延特性④在薄化压延中因壁厚不均匀:毛胚料和模具的润滑不平均⑤薄化系数太小(程度大):调节冲子直径(缩小)⑥冲子前端的圆弧半径和凹模模肩圆弧半径偏小:圆弧半径不可小于材料许可的最小圆弧半径值6.橙皮纹:(成品外壁有如橙皮状纹的不良现象)①原材料的性质偏向韧性:更换材料②原材料的晶粒偏大或表面被腐蚀:更换材料或进行调质处理③压延深度偏高:可加道次令压延深度渐次增加7. 烧边(成品外壁局部有明显的直线状纹)①冲子与凹模的间隙不够:改善冲子与凹模的间隙②凹模模肩圆弧半径太小:改善加大圆弧半径,加凸米8. 耳缘(成品上端有明显的高低不平和厚薄不均现状)①毛胚料安放不对中:加适当管位②冲子与凹模的同心度偏离:重新调校冲子与凹模③原材料和模具的润滑剂不平均:改善润滑方法如送料系统上令片料通过油毡,以求获得均匀的润滑剂④材料的晶粒方向性,常见于非原型产品:可预留材料供最后修正二.润滑油与模具和片材的影响深压延加工成形时,材料与工具接触面之摩擦现象是一种复杂问题,润滑的最大目的是减低片材压料板与凹模面之间的摩擦力,有助散去加工热量,增加模具寿命,而增加压延界限比则是主要目标。
一、拉伸冷冲模材料选择若被加工的选择材料是钢铁材料,无论采用何种模具钢或铸铁,在没有任何采用合适的表面处理情况下,一般都很难解决工件的拉伤问题。
从模具凸、凹模材料入手解决工件的拉伤问题,可以采用硬质合金,一般情况下,由这种材料制作的凸、凹模抗拉伤性能很高,存在的问题是材料成本高,不易加工,对于较大型的模具,由于烧制大型硬质合金块较困难,即使烧制成功,加工过程也有可能出现开裂,成材率低,有些几乎难以成形。
此外硬质合金性脆,搬运、安装使用过程中都要极其小心,稍有不慎就有可能出现崩块或开裂而报废。
另外由于硬质合金的组织结构是由硬质的碳化钨颗粒和软的粘结相钻所组成,硬质碳化钨颗粒的耐磨抗咬合性能很高,而钴相由于硬度很低,耐磨性较差,使用过程中钴相会优先磨损,使凸、凹模表面形成凹凸不平,如此生产出来的工件表面也会出现拉痕,此时需对模具凸、凹模表面进行研磨抛光后方可进行再生产。
对于奥氏体不锈钢工件,由于其面心立方结构也容易与钴相形成咬合而使工件的表面出现拉伤。
采用合适的铜基合金也可解决工件的拉伤问题,但铜基合金一般硬度较低,易出现磨损超差,在大批量生产的情况下,这种材料的性价比较低。
对于较大型的模具,如汽车覆盖件的成形模具,大量采用了合金铸铁,铸铁只能减轻工件的拉伤,无法消除拉伤问题,要彻底解决拉伤问题需辅以渗氮,镀硬铬等表面处理。
但如此制作的模具往往寿命较短,在使用一段时间后,如出现拉伤,又需修模并重新进行表面处理。
在模具材料方面,也有采用陶瓷制作模具凸、凹模并成功解决工件拉伤问题的报道。
由于其性脆,成本高,不可能大批量推广应用。
对于生产批量很小而形状简单的大型拉伸类模具,也有采用橡胶等高分子类材料制作模具凸、凹模的报道,此类模具不会拉伤工件表面,但实际应用很少。
拉伸模具常见的拉伤和磨损以及断裂是目前常见的问题,选材方面也是一直困扰的原因,大型的拉伸模具除了要求钢材的材质有保证外,尺寸的极限也不得不特殊定制或者锻打,由此也对材质的保证产生非常大的风险,由世界上最大的特殊钢铁公司瑞典SSAB钢铁集团开发的Toolox新型工模具钢,是一种具有高韧性、高耐磨性、基本没有内应力的一种预硬的新型工具钢.而且具有非常高的纯净度,晶粒度非常细小,S、P含量极少,析出的碳化物含量少,而且非常均匀.关键在于几乎不变形的特殊性解决了尺寸稳定性问题和极高的抛光效果也大大减少生产过程的粘着磨损,再则达2米的宽度也解决了模具选材的尺寸限制;二、解决拉伸模拉伤问题的一些方法解决模具及工件成形过程中的拉伤问题应依照减小粘着磨损的基本原则,通过改变接触副的性质作为出发点。
重庆五金冲压件加工厂,拉伸模出现裂痕如何延长寿命?-常见问题-[诚瑞丰]拉伸模是常见的五金冲压模具之一,重庆五金冲压件加工厂的员工熟悉各种模具加工工艺,在大批量的生产工作中,拉伸模有时会出现异常问题,例如表面出现裂痕,影响其使用寿命,导致生产周期拖延,所以及时发现并解决问题非常重要。
一、五金冲压件加工厂经过研究发现,拉伸模出现裂痕主要由以下几种因素:(1)模座弧的半径。
在拉伸工序中,钢板在模座前端的圆弧半径弯曲变形,如果半径过小,截面的抗压强度不足,就会引起危险。
板块减少,容易出现严重的软化和拉伸裂纹。
(2)钢板的物理性能。
原料的屈服比越小,伸长率越大,对拉伸模具的拉伸越有利。
(3)拉伸指数m。
值m越小,每次拉伸模具的变形程度越大。
尽管可以减少拉伸模具的拉伸次数,但是这将导致拉伸模具的厚度变软,且容易破裂。
(4)卷边强度的润滑。
磨边环的磨边力不能太大,否则在拉伸过程中原料不能进入上下左右模具之间的缝隙,产品更容易开裂;在整个拉伸过程中,在接缝处采用润滑措施可以减少拉拔模具开裂的问题。
(5)型腔的圆弧半径。
连接空腔的圆弧的半径值太小。
在整个拉伸过程中,钢板在电弧处的弯曲和笔直的变形将引起变形摩擦阻力,从而导致彼此之间的大摩擦。
随着振幅增加,总拉伸力会相对扩大,并且拉伸钢板变得太软,从而导致拉伸裂纹。
二、五金冲压件加工厂延长拉伸模寿命的方法1、冲裁时产生的五金冲压件毛边所致,需研修冲切刃口,并注意检查冲裁间隙是否合理。
折弯时冲压件失稳所致,主要针对U形及V形折弯,对冲压件进行折弯前的导位、折弯过程中的导位,以及折弯过程中压住材料防止冲压件在折弯时产生滑移是解决问题的重点。
2、材料所受拉应力增大,冲压件产生翻料、扭曲的趋向加大。
产生翻料时,冲孔尺寸会趋小。
对材料的强压,使材料产生变形,会导致冲孔尺寸趋大。
而减轻强压时,冲孔尺寸会趋小。
3、如端部修出斜面或弧形,因为冲裁力缓解,冲件易发生翻料、污蔑,因而,冲孔尺寸会趋大。
冲压件拉伸开裂的原因
冲压件拉伸开裂的原因可以有多个,以下是几种可能的原因:1. 材料选择不当:如果使用的材料强度不足或者塑性较差,会导致在拉伸过程中材料超过其耐受能力而发生开裂。
2. 设计缺陷:设计上的问题也可能导致拉伸开裂。
例如,在零件的几何形状、锐角或导向边缘等方面存在过渡区域不合理的情况,都可能导致应力集中,从而引起开裂。
3. 模具磨损或失效:如果使用的模具磨损严重,表面粗糙度增加,或者模具的材质或硬度不适合冲压材料,都可能导致拉伸时的局部变形和应力集中,从而引起开裂。
4. 冲压过程参数不合适:包括材料的预处理不当、冲压速度过快或过慢、冲压力度不均匀等方面的因素,都可能导致拉伸过程中的异常应力分布,进而引发开裂。
5. 表面缺陷或污染:如果冲压件表面存在裂纹、凹陷、瑕疵或有杂质等问题,这些缺陷可能在拉伸过程中成为应力集中点,导致开裂。
为了避免冲压件拉伸开裂,需要注意材料的选择与预处理、合理的设计与模具制造,以及适当的冲压过程参数控制。
此外,定期检查和维护模具,保持其表面质量和尺寸精度,也是减少开裂的重要措施。
拉伸缺陷这种缺陷一般出现在方筒角部附近的侧壁,通常,出现在凹模圆角半径(rcd)附近。
在模具设计阶段,一般难以预料。
即倒W字形,在其上方出现与拉深方向呈45°的交叉网格。
交叉网格象用划线针划过一样,当寻找壁破裂产生原因时,如不注意,往往不会看漏。
它是一种原因比较清楚而又少见的疵病。
方筒拉深,直边部和角部变形不均匀。
随着拉深的进行,板厚只在角部增加。
从而,研磨了的压边圈,压边力集中于角部,同时,也促进了加工硬化。
为此,弯曲和变直中所需要的力就增大,拉深载荷集中于角部,这种拉深的行程载荷曲线载荷峰值出现两次。
第一峰值与拉深破裂相对应,第二峰值与壁破裂相对应。
就平均载荷而言,第一峰值最高。
就角部来说,在加工后期由于拉深载荷明显地向角部集中,在第二峰值就往往出现壁破裂。
与碳素钢板(软钢板)相比较,18—8系列不锈钢由于加工硬化严重,容易发生壁破裂。
即使拉深象圆筒那样的均匀的产品,往往也会发生谄屏选?原因及消除方法(1)制品形状。
① 拉深深度过深。
由于该缺陷是在深拉深时产生的,如将拉深深度降低即可解决。
但是必须按图纸尺寸要求进行拉深时,用其他方法解决的例子也很多。
② rd、rc过小。
由于该缺陷是在方筒角部半径(rc)过小时发生的,所以就应增大rc。
凹模圆角半径(rd)小而进行深拉深时,也有产生壁破裂的危险。
如果产生破裂,就要好好研磨(rd),将其加大(2)冲压条件。
① 压边力过大。
只要不起皱,就可降低压边力。
如果起皱是引起破裂的原因,则降低压边力必须慎重。
如果在整个凸缘上发生薄薄的折皱,又还在破裂地方发亮,那就可能是由于缓冲销高度没有加工好,模具精度差,压力机精度低,压边圈的平行度不好及发生撞击等局部原因。
必须采取相应措施。
是否存在上述因素,可以通过撞击痕迹来加以判断,如果撞击痕迹正常,形状就整齐,如果不整齐,则表明某处一定有问题。
② 润滑不良。
加工油的选择非常重要。
区别润滑油是否合适的方法,是当将制品从模具内取出来时,如果制品温度高到不能用手触摸的程度,就必须重新考虑润滑油的选择和润滑方法。
冲压工艺常见缺陷及处理方法
冲压工艺是一种常用于金属材料成形的制造工艺,但在实际应用中可能会出现一些缺陷。
以下是冲压工艺常见的缺陷及处理方法:
1.拉伸裂纹:
•缺陷表现:板材在冲压过程中发生拉伸,可能导致裂纹。
•处理方法:选择合适的金属材料、调整工艺参数、加强润滑、优化模具设计,以减轻拉伸应力。
2.皱褶:
•缺陷表现:板材在冲压过程中出现皱褶,影响外观和尺寸精度。
•处理方法:优化模具结构,增加板材的局部支撑,提高冲床的稳定性,确保合适的润滑和温度。
3.卷曲:
•缺陷表现:板材在冲压后出现弯曲或卷曲。
•处理方法:优化模具设计,确保均匀的材料流动,调整冲床参数以减小内应力,选择适当的材料。
4.压痕和凹陷:
•缺陷表现:板材表面出现压痕或凹陷。
•处理方法:调整模具设计,增加衬套,提高板材表面硬度,优化冲床的行程和速度。
5.裂纹:
•缺陷表现:板材或零件表面出现裂纹。
•处理方法:选择合适的金属材料,调整冲床参数,提高板材的温度,增加润滑。
6.不足填充:
•缺陷表现:冲压过程中,模具无法完全填充。
•处理方法:优化模具设计,调整冲床参数,确保材料的均匀流动,可能需要使用辅助工具如气垫。
7.歪斜:
•缺陷表现:冲压后的零件形状不符合设计,发生歪斜。
•处理方法:调整冲床和模具的对中,确保模具的刚性,适当控制冲床的速度和行程。
对于具体的缺陷,处理方法需要综合考虑材料特性、模具设计、工艺参数等因素。
通常在生产实践中,会通过反复试验和调整,逐步优化冲压工艺,降低缺陷的发生率。
FRP拉挤成型工艺主要工序原理及常见缺陷原因分析一、FRP拉挤成型工艺主要工序:1.模具设计:根据产品的形状和尺寸要求,设计制作出适应性强、生产效率高的模具。
2.预处理:对纤维增强材料进行预处理,包括材料切割、纱线拥塞、烘干等工序,以确保纤维增强材料的均匀性和干燥度。
3.材料加料:将预处理好的纤维增强材料按一定比例加入到塑料熔体中。
4.塑料熔融:将塑料颗粒加热至熔点,形成熔融状态的塑料。
5.塑料挤出:通过挤出机将熔融的塑料挤出到拉伸模具中。
挤出机会提供给制品一个较为恒定的挤出压力和温度。
6.拉伸:在拉伸模具的作用下,使得塑料熔融材料在拉伸方向上得到挤压和拉伸,形成带有纤维增强的塑料产品。
7.冷却:在拉伸过程中,通过对模具进行冷却处理,使得塑料产品快速固化,保证产品形状的稳定性。
8.修整:对成型的产品进行修整,包括切割、打磨、抛光等工序,将产品的尺寸和表面质量达到要求。
二、FRP拉挤成型工艺原理:在工艺中,首先进行模具设计,根据产品形状和尺寸,设计制作出适应性强的模具。
然后对纤维增强材料进行预处理,确保纤维增强材料的均匀性和干燥度。
接着,将预处理好的纤维增强材料按一定比例加入到塑料熔体中,并将塑料颗粒加热至熔点,形成熔融状态的塑料。
熔融的塑料经过挤出机挤出到拉伸模具中,受到模具的拉力和挤压力,使得其在拉伸方向上得到拉伸和挤压,形成纤维增强的塑料产品。
在挤出过程中,通过对模具进行冷却处理,使得熔融的塑料迅速固化,保证产品形状的稳定性。
最后,对成型的产品进行修整,将产品的尺寸和表面质量达到要求。
三、FRP拉挤成型常见缺陷原因分析:1.出模不良:拉挤过程中,如果模具设计不合理,模具表面不平整或不光滑,会导致产品出模不良,表面不光滑或有明显的瑕疵。
2.纤维分布不均匀:预处理过程中,纤维增强材料没有被均匀覆盖或混合,或者纤维增强材料的长度不一致,会导致成型产品中纤维分布不均匀,影响产品的强度和均匀性。
3.收缩变形:在冷却过程中,如果冷却不均匀或者冷却速度过快,会导致产品收缩变形,出现尺寸不稳定的问题。
拉伸模具改进方案
背景
在金属加工过程中,拉伸模具是一个非常常用的工具。
它具有拉
伸金属、形成金属成品的功能。
然而,随着工艺水平的不断提高,传
统的拉伸模具已经不能很好地满足现代工业对成品质量和生产效率的
需求了。
因此,本文将提出一些拉伸模具改进的方案,以满足现代工
业的需求。
难点
目前拉伸模具常见的问题有以下几个方面:
1.模具不能自适应材料变异和拥挤强度。
2.拉伸模具常在生产过程中出现断裂、变形等问题。
3.金属成品的精度和表面光洁度不够高。
解决方案
方案一:采用液压模具
通过增加液压系统,可以让模具的操作更加平稳和精确。
同时,
液体可以适应金属材料变异和拥挤强度,从而保护模具不会出现断裂、变形等问题。
方案二:采用先进的材料
采用先进的材料可以有效地解决模具易断裂、变形等问题,并提高金属成品的精度和表面光洁度。
目前,钨钢、陶瓷等材料在拉伸模具制造中已经得到广泛应用。
方案三:设计模具结构
合理的模具结构可以减小金属的变形和缺陷,并且可以提高金属的成型效果和表面质量。
因此,在设计模具时应该考虑模具的几何结构、支撑方式,以及成型工艺等方面。
结论
为了解决传统拉伸模具存在的问题,应该采用改进的方案。
通过引入液压模具、采用先进的材料、设计合理的模具结构等方式,可以有效地解决模具易断裂、变形等问题,并提高金属成品的精度和表面光洁度。
在实践中,应该根据生产需要,灵活选择不同的改进方案,以满足现代工业的需求。
压铸件常见缺陷及解决办法
一、压铸件缺陷
1、压铸凹痕:压铸凹痕是指在压铸后件表面出现的凹痕或沟等处的缺陷。
2、拉伤表面:这种缺陷是指当件拉伸出模后,件毛刺或表面斑点等特
征缺陷。
3、起火晶:起火晶是指压铸件中凝固过程中熔料里存在的大量小气泡
缺陷。
4、压型:这种缺陷是指模具中几个竖向型腔偏移位置,影响压铸件内
部夹紧、定位等缺陷。
二、解决办法
1、压铸凹痕:首先要检查有没有流淌痕或模具内应有的空气渗入,来
找出原因,同时要及时修整和修复模具。
2、拉伤表面:要检查压铸模具表面的震动是否合理,如果表面粗糙可
以适当采用打磨,以降低拉伤表面。
3、起火晶:保证熔料温度合适,及时移动和改变拳头垫针,使熔料流
动均匀;改进圠充,减少浪涌现象;改变压力以降低小气泡形成的机会;合理的检查温度之间的差异。
4、压型:检查模具的型腔,确保它们定位准确,消除产品的分离现象;合理更换冷却介质等以降低成型环境的温度差异。
卷材拉伸强度不合格的原因
卷材拉伸强度不合格可能有多种原因。
首先,原材料的质量可
能是一个关键因素。
如果原材料本身存在缺陷或者不符合规格要求,那么制成的卷材的拉伸强度可能会受到影响。
其次,生产过程中的
操作不当也可能导致拉伸强度不合格。
例如,如果在轧制、拉伸或
其他加工过程中出现温度、压力、速度等参数控制不当,都有可能
影响到卷材的拉伸强度。
另外,设备的故障或磨损也可能是原因之一。
设备运行不稳定或者存在磨损会影响到卷材的质量。
此外,人
为因素也是一个可能的原因,操作人员的技术水平、操作规程的执
行情况等都有可能对卷材的拉伸强度产生影响。
另外,环境因素也
不能被忽视,例如生产场所的湿度、温度等因素都有可能对卷材的
质量产生影响。
综上所述,卷材拉伸强度不合格可能是由原材料质量、生产过程操作、设备状态、人为因素以及环境因素等多种因素
共同作用导致的。
因此,为了解决这个问题,需要对原材料的质量
进行严格把控,优化生产工艺流程,确保设备运行状态良好,加强
对操作人员的培训和管理,以及控制生产环境的影响等方面进行全
面的分析和改进。
拉伸工艺是一种常见的金属加工方法,通过对金属材料施加拉伸力,使其发生塑性变形,从而改变其形状和尺寸。
然而,在实际的拉伸工艺中,常常会出现一些缺陷,影响产品的质量和性能。
本文将就拉伸工艺常见的两种缺陷及克服措施进行深入探讨,以帮助读者更好地理解拉伸工艺的重要性和挑战。
一、拉伸工艺常见的两种缺陷1. 表面裂纹拉伸工艺中,金属材料容易出现表面裂纹,这主要是由于拉伸过程中材料受到过大的应力而产生的。
表面裂纹不仅影响产品的外观美观,还会降低产品的强度和韧性,严重影响产品的使用寿命和安全性。
2. 变形不均匀另一个常见的缺陷是拉伸材料的变形不均匀,即在拉伸过程中,材料的各个部分受到的拉伸程度不一致,导致最终产品出现尺寸不一致、变形不良的情况。
这不仅会增加生产成本,还会降低产品的精度和稳定性。
二、克服以上缺陷的措施1. 控制拉伸温度和速度为了减少金属材料的表面裂纹,可以通过控制拉伸过程中的温度和速度来减小内部应力分布,使得材料的变形更加均匀。
可以降低拉伸速度或增加拉伸温度,以减少内应力的积聚,从而降低表面裂纹的发生。
2. 使用适当的模具和模具设计为了克服材料变形不均匀的问题,可以通过精心设计和选择合适的模具来保证拉伸过程中材料受力均匀。
可以采用预拉伸等先进的模具技术,预先调整材料的内部结构,使得拉伸后的材料变形更加均匀。
三、个人观点和总结拉伸工艺作为一种常见的金属加工方法,对产品的质量和性能有着重要的影响。
面对拉伸工艺中常见的表面裂纹和变形不均匀等缺陷,我们可以通过控制拉伸温度和速度,使用适当的模具和模具设计等措施来克服。
我认为在实际生产中,需要更加注重工艺参数的控制和质量监控,以确保拉伸产品的质量和稳定性。
拉伸工艺的优化和改进对于提高产品质量和降低生产成本具有重要意义。
通过对拉伸工艺常见缺陷的深入了解和克服措施的研究,可以为金属加工行业的发展和进步提供有力支持。
以上就是本文对于拉伸工艺常见两种缺陷及克服措施的全面评估和讨论,希望能够对读者有所帮助。
冲压常见缺陷及原因冲压常见缺陷及原因:冲压是一种通过机械设备对金属板材进行成形加工的方法。
然而,在冲压过程中,由于各种原因,可能出现一些缺陷。
下面将介绍冲压常见的缺陷及其可能的原因。
1. 折皱:在冲压过程中,金属板材边缘或弯曲处可能发生折皱。
这种缺陷通常由于材料强度不足、模具设计不合理或冲床设备运行不正常等原因引起。
解决折皱的方法包括增加材料强度、优化模具结构、调整冲床运行参数等。
2. 拉伸过度:当冲床施加过大的力量或金属板材材料太薄,就可能导致拉伸过度。
拉伸过度的结果是金属板材上出现细小的褶皱、突起或划痕。
这种缺陷的解决方法包括减小冲床的力量、增加金属板材的厚度等。
3. 翘曲:某些形状较大或边界不规则的零件,在冲压过程中容易出现翘曲。
翘曲是由于应力不平衡引起的,可能是因为金属板材的材料性能不均匀,或设计的模具结构不合理。
为解决翘曲问题,可以通过加大金属板材的厚度、改善模具结构、进行模具预热等方法来进行控制。
4. 压痕:冲压过程中,模具和金属板材的接触面积增大,可能导致压痕。
压痕通常由模具与金属板材的几何形状不匹配、模具表面磨损或冲压速度过快等原因引起。
要避免压痕,需要修整模具、减小冲压速度、增大横向刚度等。
5. 断裂:在冲压过程中,金属板材可能发生断裂现象。
断裂通常是由于金属板材的材料强度不足、冲床应用过大的力量、尖锐的角度等原因引起的。
预防和避免断裂的方法包括增加材料的强度、降低冲压力量、尽量避免尖锐的角度等。
6. 塑性不足:冲压过程中,金属板材可能无法达到所需的形状,表现出塑性不足的现象。
塑性不足通常由于材料的冷硬化、材料性能不良、冲压参数设置不正确等原因引起。
为解决塑性不足问题,可以通过提高材料的变形能力、改变冲压参数、使用适当的模具润滑剂等方法进行改进。
7. 表面缺陷:冲压过程中,金属板材的表面可能出现一些缺陷,如裂纹、凹痕、气泡等。
表面缺陷通常由于材料和模具表面的接触不良、模具的不加工精确度或冲床操作不当等原因导致。
t <1.5mm R 3=2 t R 4=8 t k=(2~3) t拉伸凹模圓角R 面形狀圖 A-壓料寬度;a-傾斜滑動面角度;H-拉伸工作直徑高度;R 1~R 4-拉伸接觸面.1. 拉伸間隙:囿于拉伸工藝的變形原理.拉伸的壁厚不完全等于料厚.經多次拉伸后的製件則更為明顯.拉伸的底部轉角處和接近轉角處的壁及底部厚度略有減薄,製件側壁由底到口逐漸增厚.所以一般的拉伸件側壁應允許有一定的工藝斜度.若製件要求較高時,在拉伸的最后工位要加以校正,通常用較小的拉伸間隙進行微變薄拉伸.為使拉伸工作正常進行,拉伸的凹模和凸模之間應有大于材料厚度的間隙,這間隙必須適當,太小會增大拉伸阻力,易使製件底部轉角處拉裂,間隙太大則製件壁口及凸緣處易起皺.在連續拉伸模中,正確設定各次的拉伸間隙具有多方面的現實意義.下表所列的拉伸間隙數值,是在生產中使用的拉伸間隙經驗數據.拉伸間隙的確定和對拉伸凹模及凸模的要求2. 對拉伸凹模及凸模的要求:在連續拉伸中,拉伸凹模﹑凸模的圓角大小及形狀,對能否充分利用材料的塑性,進行正常的拉伸十分重要.拉伸凹模的圓角半徑和形狀可按下圖的規范選取.凹模精加工時,拋光的紋路方向按材料拉入凹模的方向進行.下圖所示形式用于:圖(a)形式: 0.3< t <1.0mm R 1=(0.5~3) t拉伸間隙(單面間隙)t <0.3mm R 1=(3~5) t圖(b)形式: 0.5< t <3.0mm R 1=2 t a=45°~ 60°t <0.5mm R 2=3 t a=45°~ 60°圖(c)形式: 1.5< t <3.0mm R 3=t R 4=5 t k=(2~3) t(a)(b)(c)拉伸凸模的圓角半徑尺寸,首次可按相應凹模的圓角半徑尺寸選取,逐次減小.前幾次的減小量可大些,末次拉伸的圓角半徑尺寸等于製件要求的圓角尺寸,其變化規律可參看下圖.圖中所示為考慮材料在拉伸過程中的硬化,凸模圓角的中心位置逐步內移,R1及R2的移動尺寸等于R2/4,R2及R3的移動尺寸R3/4,R3及R4的移動尺寸等于R4/4.拉伸凸模圓角變化圖。