小学数学奥数解题技巧(14)旋转变换
- 格式:doc
- 大小:30.00 KB
- 文档页数:3
小学数学常用解题技巧:解几何题技巧解几何题技巧1.等分图形【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。
例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。
已知左图(图4.11)中正方形面积为72平方厘米,求右图( 4.12)中正方形的面积。
由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角形有什么样的关系。
等分后的情况见图 4.13和图 4.14。
积是图4.12的正方形面积是【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整体上去观察,往往也能使问题获得解决。
例如图 4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。
问:乙、丙面积之和与甲相比,哪一个大些?大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。
如图 4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。
这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。
其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。
所以,乙、丙面积之和等于甲的面积。
2.平移变换【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。
例如,下面的两个图形(图 4.17和图4.18)的周长是否相等?单凭眼睛观察,似乎图 4.18的周长比图 4.17的要长一些。
但把有关线段平移以后,图 4.18就变成了图 4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。
于是,不难发现两图周长是相等的。
【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法,往往能化难为易,很快使问题求得解答。
培养小学生学习奥数的经典方法培养小学生学习奥数的经典常用方法许多家长都希望培养孩子学习奥数,一是增加升学的筹码,二是为了想要开发小孩子的数学的学习能力!欢迎阅读以下是小编精心整理的培养小学生学习奥数的经典常用方法,欢迎大家借鉴与参考,希望对大家有所帮助。
小学奥数培训的可行性方法(一)坚持系统科学的分阶段训练小学阶段是少年儿童智力,特别是逻辑思维发展非常重要的启蒙阶段。
根据小学不同阶段学生的特点和思维规律,系统科学设计教法,能最大限度开发少年儿童智力。
1、低年级培训应以兴趣培养为前提。
低年级的孩子以直观形象思维为主,兴趣容易转移,情绪波动大,对教师认同度高,喜欢口头表扬。
针对低年级学生的思维特点,奥数培训的题型选择应以动手操作的为主,设计的问题能联系实际的具体事例,培训中要学生明白通过探索可以尝试到成功,并能觉得奥数学习真有用。
例如:认识图形与物体,比较物体的大小、多少、长短,数物体,拼图形等让学生认识一些事物的特性或联系,培养一定的空间能力。
这些动手操作的学习内容,学生学习起来兴趣盎然,同时又发展了学生的思维能力、观察能力。
建议有条件的学校能够从—年级开始每周有一节奥数培训课进行思维训练。
如果没条件的学校可以让任课教师,每天数学课后安排一道思维训练题,也能很好地激发学生兴趣。
低年级孩子情感上易引导,喜好红花之类的奖励,教师可注意及时表扬和奖励,就能够吸引孩子,培养兴趣。
低年级的学生往往对思维训练有一种莫名的冲动与喜爱,教师一定要考虑题目的难易适度,让学生易接受。
教学方法上考虑使用现代多媒体技术进行对比讲解,能够让学生明白易懂,且兴趣大增。
另外值得注意的是低年级学生的概念认识不足,老师要适当地进行知识的反复呈现。
2、中年级培训应以习惯培养为基础。
小学中年级的学生开始出现抽象逻辑思维,情绪开始稳定,有一定的自控能力。
建议教师按年级不同进行分级训练,即同一内容可以选择不同难度循环安排教学。
教师可以选择速算和巧算、数字谜及趣味算式、和差倍数应用题、还原问题、逻辑推理等内容对学生进行系统训练。
小学数学奥数题目解析与解题技巧数学是小学阶段的重要学科之一,而奥数则是数学学习中的一种扩展和深化。
在小学数学奥数竞赛中,学生需要解决一系列难度较高的数学问题。
本文将对小学数学奥数题目进行解析,并分享一些解题技巧,帮助学生提高解题能力。
一、整数题目的解析与解题技巧整数题目是奥数竞赛中常见的题型之一。
在解决整数题目时,学生需要注意以下几点:1. 确定问题的条件:首先,要仔细阅读题目,并理解题目所给出的条件。
如遇到涉及正整数、负整数、零等概念的题目,要明确这些数的定义和范围。
2. 运用整数的性质:学生需要熟悉整数的四则运算规则、相反数、绝对值等基本概念,运用这些性质来解决问题。
如在比较大小时,可利用整数的绝对值进行比较。
3. 注意符号的运用:在整数题目中,符号的运用至关重要。
学生要注意加减运算时符号的运算规则,并灵活运用在解题过程中。
二、几何题目的解析与解题技巧几何题目也是小学数学奥数竞赛的常见题型。
解决几何题目时,学生可以采用以下策略:1. 理清图形的性质:对于几何图形的性质要有一定的了解,如直线、曲线、平行线、垂直线等。
通过理解这些基本概念和性质,可以更好地解决几何问题。
2. 利用图形变换:有时,通过对几何图形进行旋转、翻转、平移等变换,能够帮助学生发现一些隐藏的规律和特点,从而解决问题。
3. 利用剪纸法:剪纸法是一种辅助解题的方法,通过将题目所给图形用纸剪下来,并重新拼接,可以帮助学生更直观地观察和解决问题。
三、应用题目的解析与解题技巧应用题目是奥数竞赛中常见且较难的题型。
在解决应用题时,学生可以采用以下方法:1. 理清问题的思路:应用题通常需要学生将数学知识与实际情境相结合,理解问题的本质。
学生需要仔细分析题目所给条件,并把握问题的关键点。
2. 利用模型和图表:将问题抽象为数学模型或绘制图表,有助于学生更清晰地分析和解决问题。
学生可以运用一些常用的数学模型,如关系模型、比例模型等来解决问题。
3. 分步解决问题:对于较复杂的应用题,学生可以采用分步解题的方法,将问题分解为几个简单的步骤,并逐步解决,最后得到问题的解答。
第十四讲数规则图形前续知识点:二年级第一讲;XX模块第X讲后续知识点:X年级第X讲;XX模块第X讲只需换风格就行,与其它的风格相符.在数图形的时候,要认真仔细,必须要做到有次序、有条理,保证不重不漏,这样才能数得又快又准.【提示】找规律哦.数一数,下图共有几个点?并且列出算式.列算式:数一数,下图共有几个点?并且列出算式.例题1列算式:练习1【提示】从上到下,按行来数.数一数,下图共有几个点?并且列出算式.列算式:数一数,下图共有几个点?并且列出算式.例题2 列算式:练习2【提示】这是空心的哦,数的时候一共要注意正方形角的地方.数一数,下图共有几个点?并且列出算式.列算式:数一数,下图共有几个点?并且列出算式.例题3列算式:练习3【提示】在数图形时,要做到数和形结合,适当分类,找出规律,做到不重不漏.上题中的四种图形,都可以用同一种方法数,你知道是什么方法吗?仔细想想看,能发现什么规律呢?数一数,回答问题,并列出算式.例题4 共有几条线段? 列算式:共有几个角? 列算式:共有几个三角形? 列算式:共有几个长方形? 列算式:【提示】分层来数哦!请你帮小猪数一数,下图中共有几个三角形?例题6数一数,下图中共有几个三角形,并且列出算式?例题5列算式:练习4 数一数.下图中共有几条横着的线段?列算式:下图中共有几个三角形? 列算式:【提示】分层来数哦!课堂内外小知识——猫和蜘蛛是“几何专家”在寒冷的冬天,猫睡觉时总要把身体抱成一个球形,因为球形使身体的表面积最小.这样,身体露在冷空气中的表面积最小,因而散发的热量也最少.蜘蛛结的“八卦”网,既复杂又非常美丽,这种八角形的几何图案,即使人们用直尺和圆规也难画得如蜘蛛网那样匀称.作业1.数一数,下图共有几个点?并且列出算式.列算式:2.数一数,下图共有几个点?并且列出算式.列算式:3.小狗用棋子摆成一个三角形,请你数一数,小狗一共用了几个棋子?并且列出算式.列算式:4.观察下图,数一数.共有几条横着的线段?列算式:共有几个三角形?列算式:5.数一数,下图共有几个三角形?并且列出算式.列算式:第十四讲 数规则图形1. 例题1答案:25详解:通过观察发现,每一行是5个棋子,一共5行,那么可以列出如下算式:5525⨯=(个);5555525++++=(个);12345432125++++++++=(个).(方法不唯一)2. 例题2答案:45 详解:观察图形,从上到下看,都是1,2,3,4,5,6,7,8,9.所以共有12345678945++++++++=(个).计算时,可以用凑十法.(方法不唯一)3. 例题3答案:20详解:方法一:每条边上有6个棋子,那么4条边,所以就是4624⨯=个,但是这时候把角的地方算了2次,那么就应该是24420-=个.方法二:每条边上有6个棋子,因为角的地方比较特殊,所以先不看,那么每条边上只看4个棋子,4条边,所以就是4416⨯=(个),再加上开始没算的4个,16420+=(个). 方法三:用分组法,如下图所以:列算式为4520⨯=(个).4. 例题4答案:(1)15;(2)10;(3)10;(4)6 详解:(1)如下图所示:把每个点标上字母.我们知道,两点间的直线部分是一条线段;从A 点出发的线段有AB 、AC 、AD 、AE 、AF 共有5条线段;同理,从B 出发的线段有: BC 、BD 、BE 、BF 共有4条线段;从C 出发的线段有: CD 、CE 、CF 共有3条线段;从D 出发的线段有: DE 、DF 共有2条线段;从E 出发的线段有:EF 共有1条线段. 列算式:5432115++++=(条);(2)如下图所示:把每个点标上字母.(1)从AF 出发的长方形有:AFGB 、AFHC 、AFID 、AFJE 共有4个长方形;同理,从BG 出发的长方形有:BGHC 、BGID 、BGJE 共有3个长方形;从CH 出发的长方形有:CHID 、CHJE 共有2个长方形;从DI 出发的长方形有:DIJE 共有1个长方形.列算式:432110+++=(个).(3)如下图所示:把点和线标上字母.我们知道,从一个点起,用尺子向不同方向画两条射线,就得到一个角,角有一个顶点、两条边. 以OA 为边的角有:∠AOB 、∠AOC 、∠AOD 、∠AOE ,共4个角;以OB 为边的角有:∠BOC 、∠BOD 、∠BOE ,共3个角;以OC 为边的角有:∠COD 、∠COE ,共2个角;以OD 为边的角有:∠DOE ,共1个角.列算式:432110+++=(个).(4)如下图所示:把每个点标上字母.从OA 出发的三角形有:AOB 、AOC 、AOD 共有3个三角形;同理,从OB 出发的三角形有:BOC 、BOD 共有2个三角形;从OC 出发的三角形有:COD 共有1个三角形.总数列算式:3216++=(个).5. 例题5答案:12详解:如下图所示:把每个点标上字母.这是一个比较复杂的图形,可以把它分成上下两层,先数上层有:从OA 出发的三角形有:AOB 、AOC 、AOD 共有3个三角形;同理,从OB 出发的三角形有:BOC 、BOD 共有2个三角形;从OC 出发的三角形有:COD 共有1个三角形.上层总数为:3216++=(个).(4) OA B C D (3) O AB CD E A B C D E FG H I J (2)再数整体有:从OE 出发的三角形有:EOF 、EOG 、EOH 共有3个三角形;同理,从OF 出发的三角形有:FOG 、FOH 共有2个三角形;从OG 出发的三角形有:GOH 共有1个三角形.整体总数为:3216++=(个).所以共有6612+=(个)三角形.6. 例题6答案:15详解:如下图所示:把每个点标上字母.把它分成上层、下层和整体三部分,先数上层有:从OA 出发的三角形有:AOB 、AOC 、AOD 共有3个三角形;同理,从OB 出发的三角形有:BOC 、BOD 共有2个三角形;从OC 出发的三角形有:COD 共有1个三角形.上层总数为: 3216++=(个).再看下层:有ABE 、ACF 、ADG ,共有3个三角形.最后看整体:从OA 出发的三角形有:AOE 、AOF 、AOG 共有3个三角形;从OE 出发的三角形有:EOF 、EOG 共有2个三角形;从OF 出发的三角形有:FOG 共有1个三角形.整体总数为:3216++=(个). 所以共有66315++=(个)三角形.7. 练习1答案:16简答:仔细观察发现,将这个图形旋转后,这个图像就是一个正方形,每一行是4个,一共4行,那么列算式:4416⨯=(个)或123432116++++++=(个)。
五年级数学旋转问题
旋转问题在五年级数学中是一个重要的概念,涉及到图形的变换和空间思维。
以下是一些常见的旋转问题:
1. 基本概念:首先,学生需要理解什么是旋转。
旋转是图形围绕一个点(称为旋转中心)转动一定的角度。
2. 旋转的性质:学生应了解旋转的基本性质,如旋转不改变图形的形状和大小,只是改变了它的位置。
3. 旋转角度:问题可能涉及图形旋转特定的角度(如90度、180度等)或按照特定的规律(如每次逆时针旋转45度)进行旋转。
4. 旋转作图:要求学生根据指令或描述,画出图形旋转后的位置。
5. 旋转与对称:学生应了解旋转与对称的区别。
虽然两者都涉及到图形的变换,但对称是关于一条直线(或点)的变换,而旋转是围绕一个点进行的。
6. 应用问题:可能涉及现实生活中的问题,如齿轮的转动、钟表的指针运动等,这些都可以用旋转的概念来解释。
7. 解决策略:解决旋转问题时,通常需要使用几何知识和空间思维能力。
学生可以通过画图、想象或实际操作(如使用几何模型)来帮助理解。
例如,一个常见的旋转问题是关于时钟的。
时钟的时针或分针在某个时刻开始转动,然后问学生转动后的指针位置。
解决这个问题需要理解时钟的刻度和指针的转动规律。
为了更好地理解旋转问题,学生可以进行一些实践活动,如制作简单的几何模型、使用教具或软件进行模拟等,这样可以帮助他们更直观地理解这些概念。
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
(适于二年级程度)6、16、26、____、____、____、____。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
旋转变换解题的高效技巧与策略在解决数学或几何问题时,旋转变换是一种常用且有效的技巧。
通过旋转图形或坐标系,我们可以简化问题,找到更加高效的解决方案。
本文将介绍使用旋转变换解题的一些技巧与策略,并通过一些实例来加深理解。
首先,让我们来了解旋转变换的基本原理。
旋转变换是将图形或坐标系绕某个中心点旋转一定角度的操作。
它可以改变图形的朝向、位置和形状,使问题更易于理解和解决。
一、利用旋转变换简化图形问题当我们面对一个复杂的图形问题时,可以尝试通过旋转变换将其简化。
以下是一个实例:问题:一个正方形ABCD,边长为2,要证明两条对角线相等。
解决方案:我们可以通过旋转变换将问题简化。
将正方形绕其中心点O逆时针旋转90度,得到正方形A'B'C'D'。
由于旋转不改变长度和角度,故正方形A'B'C'D'的边长也为2,且AB'与AD'相交于点E。
接下来,我们可以通过证明三角形ABE与三角形ADE全等来得到结论。
因为旋转变换不改变形状,所以两个相等的角旋转后仍然相等。
因此,我们可以得出结论:正方形ABCD的两条对角线相等。
通过利用旋转变换简化问题,我们可以更清晰地理解并解决问题。
二、利用旋转变换求解几何问题旋转变换还可以用于解决一些几何问题。
以下是一个实例:问题:一个等边三角形ABC,要证明角度BAC的大小。
解决方案:我们可以通过旋转变换求解。
将等边三角形ABC绕顶点A逆时针旋转60度,得到等边三角形ABA'。
由于旋转不改变角度大小,我们可以得知角BAA'的大小为60度。
又因为等边三角形ABA'的三条边长度相等,所以角BAA'、角BAC和角CAC'也相等。
通过旋转变换,我们可以得出结论:角BAC的大小为60度。
三、旋转变换在坐标系中的应用除了图形问题和几何问题,旋转变换还可以在坐标系中得到应用。
以下是一个实例:问题:平面上有一条线段AB,坐标分别为A(2, 4)和B(6, 8),要求将线段绕原点顺时针旋转45度后的坐标。
小学奥数辅导35个专题汇总1.和差倍问题2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
小学数学奥数题解题技巧
小学数学奥数题解题技巧
小学数学奥数题的解题方法有很多,掌握这些有效的方法,我们在小学数学奥数考试中就能有更好的表现。
因此,我们在复习小学数学奥数时,对这些重要方法一定要认真进行了解。
一起来看看吧。
1、直观画图法:
解小学数学奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的.数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
2、倒推法:
从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。
3、枚举法:
奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。
我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。
4、正难则反:
有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。
5、巧妙转化:
在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
6、整体把握:
有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能
从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。
小学数学难题解法大全(可编辑)小学数学难题解法大全小学数学难题解法大全第一部分常用解题依据 (一)四则运算定律与性质 1(加法运算定律 2(乘法运算定律 3(四则运算性质 (二)公理、定理或性质 1(数的公理、定理或性质 2(整除性质或定理 3(比和比例的定理或性质 4(几何公理、定理或性质 5(其他定理或性质 (三)数学原理(四)法则、方法 1(有关数的法则或方法 2(运算法则或方法 3(比和比例的法则或方法 4(简单方程的解法 (五)数学公式 1(速算公式 2(解应用题的公式 3(几何公式 (六)数学规律 1(数的整除性规律 2.和差积商的变化规律 3.最值规律 4、等积规律 (七)图形旋转与几何体侧面展开 1.几何图形旋转 2.几何体侧面展开第二部分常用解题思路(一)直接思路 (二)间接思路 (三)逻辑思路 (四)特殊思路第三部分常用解题方法 (一)一般解题方法 (二)特殊解题方法第四部分常用解题技巧 (一)速算技巧 1.变换运算顺序2.改变运算种类3.用补充数速算4.应用公式速算5.连续数求和的速算6.根据和、差、积、商变化规律速算7.常用的巧算方法 (二)解概念题技巧 1.数的大小概念 2.判断题的解答 3.其他(三)解几何题技巧 1.等分图形 2.平移变换 3.旋转变换 4.对称变换 5.割补、拼接、截割 6(扩缩图形7(附录:等积变换 8(运用图形间的等量关系 9(利用间接条件 (四)解应用题技巧1(解一般题用得较多的技巧 2(解典型题用得较多的技巧第五部分典型难题讲析(一) 数的计算 1(四则计算 2??分数与繁分数化简 3(数的大小比较 4.估值计算5(循环小数 (二)数字谜与数字问题 1(数字串问题 2(算式谜 3(附录:数阵图 4(数的组成 5(小数和分数 6.数字和与最大最小问题 (三)应用题 1.一般应用题 2.典型应用题 3.复杂分数应用题 4.比和比例应用题 5.杂题 (四)整除的有关问题 1.整除及数字整除特征 2.余数问题 3.约数与倍数 4.附录:奇数偶数与奇偶性分析 5.附录:乘方的性质 6.整数的拆分 (五)简单几何问题 1.几何图形的计数 2.平面图形的计算 3.立体图形的计算 4.实践与实际操作 (六)附录:逻辑与组合初步 1.排列与组合 2.抽屉原理问题 3.容斥原理问题 4.最值问题 5.分析推理问题 (七)运筹与染色 1.运筹规划 2.最优方案与最佳策略 3.染色与覆盖第六部分模拟试卷 (一)三年级试卷第一套(难度较小) 第二套(难度适中) 第三套(难度稍大) (二)四年级试卷第一套(难度较小) 第二套(难度适中) 第三套(难度稍大) (三)五年级试卷第一套(难度较小) 第二套(难度适中) 第三套(难度稍大) (四)六年级试卷第一套(难度较小) 第二套(难度适中) 第三套(难度稍大) 答案与提示三年级第一套三年级第二套三年级第三套四年级第一套四年级第二套四年级第三套五年级第一套五年级第二套五年级第三套六年级第一套六年级第二套六年级第三套第七部分名词术语解释 (一)整数(非负整数) 【自然数】【自然数集合】【自然数列】【扩大自然数列】【自然数的单位】【自然数的基数理论】【自然数的序数理论】【零】【数数原则】【整数】【十进位制】【计数和记数】【数位和位数】【位置记数法】【二进位制】 (二)小数【小数】【小数部分的计数单位】【小数的数位】【小数的分类】【准确数和近似数】【近似数的绝对误差】【近似数的相对误差】【精确度】 (三)分数、百分数【分数】【分数单位】【真分数、假分数和带分数】【最简分数】【未约分数】【倒数】【繁分数】【连分数】【约分和通分】【百分数】【百分比、百分率和百分法】【百分比浓度】【千分率】【成数与折数】 (四)数的整除【整除】【约数、倍数】【奇数、偶数】【质数、合数】【爱氏筛法】【质因数、分解质因数】【公约数、最大公约数】【公倍数、最小公倍数】【互质数、两两互质数】 (五)量的计量【量】【计量】【计量单位】【名数】【不名数】【同名数、异名数】【高级单位、低级单位】【进率】【化法、聚法】【法定计量单位】【国际单位制】【中华人民共和国法定计量单位】【米制、市制】【长度、长度单位】【海里】【光年】【质量、重量、质量(重量)单位】【时间、时刻】【时区、北京时间】【时间单位】【公元】【闰年、平年】【24时记时法】【容积、容量、容量单位】【面积、面积单位】【地积】【体积、体积单位】【速度】【角度单位】【人次、吨公里】【人民币】【外国货币名称】 (六)比和比例【比】【比值】【比的前项、后项】【比的基本性质】【比的化简】【比例尺】【线段比例尺、分数比例尺】【正比、反比】【连比、复比】【比例】【比例基本性质】【正比例】【反比例】【比例分配】第一部分常用解题依据 (一)四则运算定律与性质 1(加法运算定律【加法交换律】两个数相加,交换加数的位置,它们的和不变。
⼩学数学思维运算⽅法,⼩学奥数解答题技巧(含解析与答案)⼩学奥数运算技巧讲解第⼀讲⼩数乘法的运算技巧探究⽬标:1、能熟练的根据乘法运算的规则、数字特征、运算定律、性质、公式等,进⾏简算和速算。
2、培养善于观察、灵活运⽤基础知识的能⼒,能正确、迅速、合理、灵活的解答有关运算问题。
3、养成整体观察、深⼊理解、有序思考、细⼼解题的良好习惯。
探究过程:例1计算:(1)438.9×5 (2)574.62 ×25解析:(1)由于5=10÷2,因此,可以先把438.9乘以10,再除以2,所得的商就是438.9与5的积。
即解:438.9×5=4389÷2=2194.5(2)由于25=100÷4,因此,可以先把574.62乘以100,再除以4,所得的商就是574.62乘25的积。
即解:574.62×25=57462÷4=14365.5或574.62×25=574.62÷4×100=14365.5例2计算(1)47.39÷0.5 (2)12.348÷0.25解析:(1)47.39÷0.5=473.9÷5= 473.9×2÷10=94.78(2)12.348÷0.25 或12.348÷0.25=1234.8÷25 =1234.8÷25=1234.8÷5÷5 =1234.8×4÷100=246.96÷5 =4939.2÷100=49.392 =49.392例3:计算1.25×0.25×0.05×64解析:根据题⽬中的数字特点,为了凑整,将64分解成2×4×8,然后根据乘法交换律和结合律进⾏简算。
解: 1.25×0.25×0.05×64=1.25×0.25×0.05×(2×4×8)=(1.28×8)×(0.25×4)×(0.05×2)=10×1×0.1=1例4:计算:9.728÷3.2÷2.5解析:全⾯观察题⽬,由运算定律性质改变运算顺序,使运算变得简便。
第14讲组合图形的面积掌握三角形的面积计算公式; 学会使用拆补法求解三角形面积; 通过题目中给定比例关系求解面积比。
计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
例1、已知图12-1中,三角形ABC 的面积为8平方厘米,AE =ED ,BD=23 BC ,求阴影部分的面积。
例2、在△ABC 中(图12-2),BD=DE=EC ,CF :AC=1:3。
若△ADH 的面积比△HEF 的面积多24平方厘米,求三角形ABC 的面积是多少平方厘米?典例分析知识梳理学习目标ABCFE D 12-1例3、两条对角线把梯形ABCD 分割成四个三角形,如图12-3所示,已知两个三角形的面积,求另两个三角形的面积各是多少?例4、四边形ABCD 的对角线BD 被E 、F 两点三等分,且四边形AECF 的面积为15平方厘米。
求四边形ABCD 的面积(如图12-4所示)。
例5、如图12-5所示,BO =2DO ,阴影部分的面积是4平方厘米。
那么,梯形ABCD 的面积是多少平方厘米?例6、如图18-17所示,长方形ADEF 的面积是16,三角形ADB 的面积是3,三角形ACF 的面积是4,求三角形ABC 的面积。
BCDAO 12-312612-4ABCDEFBADCOE12-512-6例7、如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分。
△AOB 的面积是2平方千米,△COD 的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是多少平方千米?➢ 课堂狙击1、如图所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。
第14讲 圆类面积计算熟练掌握圆类面积计算的八种方法:相加法、相减法、重新组合法、割补法、平移法、旋转法、对称添补法、重叠法; 能运用上述方法快速解题。
圆的面积:2r π,扇形的面积:2360r απ⨯。
无特殊说明,圆周率都取π=3.14。
考点1:相加法将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例1、下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。
考点2:相减法将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
例1、下图中,若求阴影部分的面积,只需先求出正方形的面积再减去里面圆的面积即可。
教学目标典例分析知识梳理考点3:重新组合法将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形的面积即可。
例1、欲求下图中阴影部分的面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时就可以采用相减法求出其面积了。
考点4:割补法将原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决。
例1、如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分的面积恰是正方形面积的一半。
考点5:平移法将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。
例1、下图中,欲求阴影部分的面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
考点6:旋转法将图形中某一部分切割下来之后,使之沿某一点或者某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则图形,便于求出面积。
例1、欲求下图(1)中阴影部分的面积,可以将左半图形绕B点逆时针方向旋转180度,使A 与C重合,从而构成如下图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积。
1、对照法如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。
根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
例2:判断题:能被2除尽的数一定是偶数。
这里要对照“除尽”和“偶数”这两个数学概念。
只有这两个概念全理解了,才能做出正确判断。
2、公式法运用定律、公式、规则、法则来解决问题的方法。
它体现的是由一般到特殊的演绎思维。
公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。
但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
例3:计算59×37+12×59+5959×37+12×59+59=59×(37+12+1)…………运用乘法分配律=59×50…………运用加法计算法则=(60-1)×50…………运用数的组成规则=60×50-1×50…………运用乘法分配律=3000-50…………运用乘法计算法则=2950…………运用减法计算法则3、比较法通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
《图形的旋转》解题技巧一、快速计算【例1】如图1所示,AB 是长为4cm 的线段,且CD ⊥AB 于点O ,求出图中阴影部分的面积.【分析】观察图形的特点可知,本题可借助旋转的性质来求解.【解】将阴影3、4分别绕点O 旋转180°和90°至图中1、2所示的位置,这样将这些分散的阴影部分集中在一起构成一个半径为2cm 的圆的41,由此可得阴影部分的面积为πcm 2. 【小结】旋转不改变图形的形状与大小,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键.二、帮助说理【例2】如图2所示,E 是正方形ABCD 的边BC 上任意一点,F 是DC 延长线上一点,且∠BAE =∠F AE ,试猜想线段BE 、DF 、AF 之间的数量关系,并说明理由.【分析】线段BE 、DF 、AF 位置分散,因此应设法通过旋转使这三条线段相对集中其一起,再比较其大小.【解】因四边形ABCD 是正方形,故有AD =AB ,将△ABE 逆时针旋转90°到△ADG 处,此时由旋转的性质有BE =DG ,∠G =∠AEB ,又因∠BAE =∠GAD =∠F AE ,∠DAF =∠AHB ,由三角形外角定理可知,∠AEB =∠AHB +∠F AE =∠DAF +∠DAG =∠F AG ,则有∠F AG =∠G ,则△F AG 是等腰三角形,AF =FG ,于是有FG =FD +DG ,则BE 、DF 、AF 之间的数量关系是AF =DF +BE .【小结】利用旋转变换来将某些条件集中到一起,能使问题化繁为简,化难为易,快速求解.三、巧妙设计【例3】在一个3m 4m 的矩形地块上,欲开辟出一部分作花坛,要使花坛的面积为矩形面积的一半,且使整个图案绕它的中心旋转180°后能与自身重合,请给出你的设计方案.【分析】对于这样一个问题,可以设计出多种图案.考虑到旋转后能重合,我们很容易设计出以下的几种方案(阴影部分做花坛),【解】如图3所示.【小结】旋转变换是设计优美图案法宝之一,也是几何图形变化的“华尔兹”.。
小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨一、等积模型①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCBA图⑴ 图⑵三、蝶形定理任意四边形中的比例关系(“蝶形定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++b a S 2S 1DC BA S 4S 3S 2S 1O DCBA蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF ABACBCAG===;②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、共边定理(燕尾模型和风筝模型)在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径. 典型例题【例 1】如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积A BCD O ba S 3S 2S 1S 4O FED C BA为 .【解析】 连接DE ,DF ,则长方形EFGH 的面积是三角形DEF 面积的二倍.三角形DEF 的面积等于正方形的面积减去三个三角形的面积,66 1.562262 4.54216.5DEF S =⨯-⨯÷-⨯÷-⨯÷=△,所以长方形EFGH 面积为33.【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?【解析】 本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半. 证明:连接AG .(我们通过ABG △把这两个长方形和正方形联系在一起).∵在正方形ABCD 中,G 12AB S AB AB =⨯⨯△边上的高, ∴12ABG ABCDS S=△(三角形面积等于与它等底等高的平行四边形面积的一半)同理,12ABG EFGB S S =△.∴正方形ABCD 与长方形EFGB 面积相等. 长方形的宽8810 6.4=⨯÷=(厘米).【例 2】长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?E_H_G_ F_E_D_C_B_ A _A_B_C_D_E_ F_G_H_ A _ B_ G_ C _ E _ F_ D_ A _ B_ G_ C_ E_ F_ D【解析】 解法一:寻找可利用的条件,连接BH 、HC ,如下图:E可得:12EHB AHB S S ∆∆=、12FHB CHB S S ∆∆=、12DHG DHCS S ∆∆=,而36ABCD AHB CHB CHD S S S S ∆∆∆=++=即11()361822EHB BHF DHG AHB CHB CHDS S S S S S ∆∆∆∆∆∆++=++=⨯=; 而EHB BHF DHG EBFS S S S S ∆∆∆∆++=+阴影,11111()()36 4.522228EBF S BE BF AB BC ∆=⨯⨯=⨯⨯⨯⨯=⨯=.所以阴影部分的面积是:1818 4.513.5EBF S S ∆=-=-=阴影解法二:特殊点法.找H 的特殊点,把H 点与D 点重合,那么图形就可变成右图:GE (H )这样阴影部分的面积就是DEF ∆的面积,根据鸟头定理,则有:11111113636363613.52222222ABCD AED BEF CFD S S S S S ∆∆∆=---=-⨯⨯-⨯⨯⨯-⨯⨯=阴影.【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.【解析】 (法1)特殊点法.由于P 是正方形内部任意一点,可采用特殊点法,假设P 点与A 点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的14和16,所以阴影部分的面积为2116()1546⨯+=平方厘米.(法2)连接PA 、PC .由于PAD ∆与PBC ∆的面积之和等于正方形ABCD 面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD 面积的14,同理可知左、右两个阴影三角形的面积之和等于正方形ABCD 面积的16,所以阴影部分的面积为2116()1546⨯+=平方厘米.【例 3】如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 .B【解析】 利用图形中的包含关系可以先求出三角形AOE 、DOG 和四边形EFGO 的面积之和,以及三角形AOE 和DOG 的面积之和,进而求出四边形EFGO 的面积.由于长方形ABCD 的面积为158120⨯=,所以三角形BOC 的面积为1120304⨯=,所以三角形AOE 和DOG 的面积之和为312070204⨯-=;又三角形AOE 、DOG 和四边形EFGO 的面积之和为111203024⎛⎫⨯-= ⎪⎝⎭,所以四边形EFGO 的面积为302010-=. 另解:从整体上来看,四边形EFGO 的面积=三角形AFC 面积+三角形BFD 面积-白色部分的面积,而三角形AFC 面积+三角形BFD 面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即1207050-=,所以四边形的面积为605010-=.【巩固】如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED =,则阴影部分的面积为 .ABB【解析】 如图,连接OE .根据蝶形定理,1:::1:12COE CDE CAE CDE ON ND S S S S ∆∆∆∆===,所以12OEN OED S S ∆∆=;1:::1:42BOE BAE BDE BAE OM MA S S S S ∆∆∆∆===,所以15OEM OEA S S ∆∆=.又11334OEDABCD S S ∆=⨯=矩形,26OEA OED S S ∆∆==,所以阴影部分面积为:1136 2.725⨯+⨯=.【例 4】已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B【解析】 因为D 、E 、F 分别为三边的中点,所以DE 、DF 、EF 是三角形ABC 的中位线,也就与对应的边平行,根据面积比例模型,三角形ABN 和三角形AMC 的面积都等于三角形ABC 的一半,即为200.根据图形的容斥关系,有ABC ABN AMC AMHN S S S S S ∆∆∆-=+-丙,即400 200200AMHN S S -=+-丙,所以AMHN S S =丙. 又ADF AMHN S S S S S ∆+=++乙甲阴影,所以1143400434ADF S S S S S ∆=++-=-⨯=乙甲丙阴影.【例 5】如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BAABC DE FG【解析】 连接AF ,BD .根据题意可知,571527CF =++=;715628DG =++=;所以,1527BE CBF F S S ∆∆=,1227BE CBF C S S ∆∆=,2128AEG ADG S S ∆∆=,728AED ADG S S ∆∆=, 于是:2115652827ADG CBFS S ∆∆+=;712382827ADG CBF S S ∆∆+=; 可得40ADG S ∆=.故三角形ADG 的面积是40.【例 6】如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBAEDCBA【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(75)ADE ABC S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE的面积等于1,那么三角形ABC 的面积是多少?EDCBAABCD E【解析】 连接BE .∵3EC AE =∴3ABC ABE S S = 又∵5AB AD =∴515ADE ABE ABC S S S =÷=÷,∴1515ABC ADE S S ==.【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAABCDE甲乙【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDE S S = 又∵4BD DC ==,∴2ABC ABD S S =,∴6ABC BDE S S =,5S S =乙甲.【例 7】如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =, :3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBAEDCB A【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△, 所以[]:(32):5(32)6:25ADE ABC S S =⨯⨯+=△△,设6ADE S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EFHGAB CD EF【解析】 连接AC 、BD .根据共角定理∵在ABC △和BFE △中,ABC ∠与FBE ∠互补,∴111133ABCFBES AB BC S BE BF ⋅⨯===⋅⨯△△. 又1ABC S =△,所以3FBE S =△.同理可得8GCF S =△,15DHG S =△,8AEH S =△.所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△. 所以213618ABCDEFGHS S ==.【例 9】如图所示的四边形的面积等于多少?DCB13131212【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积. 因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠, 所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF为538+=,所以它的面积为218164⨯=.根据面积比例模型,OBC ∆的面积为516108⨯=.【例 11】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.【解析】 如图,连接DE ,以A 点为中心,将ADE ∆顺时针旋转90︒到ABF ∆的位置.那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==, 所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ). 又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ). 那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ), 所以1 2.52OBE BDE S S ∆∆==(2cm ).【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FEABDCGFEABDC【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△ 方法二:连接DE ,由题目条件可得到1133ABD ABCS S ==△△, 11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADES BF FE S ==△△, 111111122323212DEFDEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△, 而211323CDE ABCS S =⨯⨯=△△.所以则四边形DFEC 的面积等于512. 【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A 【解析】 设1DEFS =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 14】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABCDOH GA BCD O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形.看到题目中给出条件:1:3ABD BCD S S =,这可以向模型一蝶形定理靠拢,于是得出一种解法.又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比.再应用结论:三角形高相同,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生体会到蝶形定理的优势,从而主观上愿意掌握并使用蝶形定理解决问题.解法一:∵::1:3ABD BDC AO OC S S ∆∆==,∴236OC =⨯=,∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵13ABDBCD S S ∆∆=,∴13AH CG =,∴13AOD DOC S S ∆∆=, ∴13AO CO =,∴236OC =⨯=,∴:6:32:1OC OD ==.【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =?B【解析】 ⑴根据蝶形定理,123BGCS⨯=⨯,那么6BGCS=;⑵根据蝶形定理,()():12:361:3AG GC =++=.【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE△的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGF EDCBA【解析】 ⑴根据题意可知,BCD △的面积为244616+++=,那么BCO △和CDO ∆的面积都是1628÷=,所以OCF △的面积为844-=; ⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862-=, 根据蝶形定理,::2:41:2COE COF EG FG S S ∆∆===,所以::1:2GCE GCF S S EG FG ∆∆==,那么11221233GCE CEF S S ∆∆==⨯=+.【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCDEF GABCD EF G【解析】 连接AE ,FE .因为:2:3BE EC =,:1:2DF FC =,所以3111()53210DEFABCD ABCD S S S =⨯⨯=长方形长方形. 因为12AED ABCD SS =长方形,11::5:1210AG GF ==,所以510AGD GDF S S ==平方厘米,所以12AFD S =平方厘米.因为16AFDABCD S S =长方形,所以长方形ABCD 的面积是72平方厘米.【例 17】 如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.CBA【解析】 因为M 是AD 边上的中点,所以:1:2AM BC =,根据梯形蝶形定理可以知道22:::1:12:12:21:2:2:4AMG ABG MCG BCG S S S S =⨯⨯=△△△△()(),设1AGM S =△份,则123MCD S =+=△ 份,所以正方形的面积为1224312++++=份,224S =+=阴影份,所以:1:3S S =阴影正方形,所以1S =阴影平方厘米.【巩固】在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.A BCDEF【解析】 连接DE ,根据题意可知:1:2BE AD =,根据蝶形定理得2129S =+=梯形()(平方厘米),3ECD S =△(平方厘米),那么12ABCDS=(平方厘米).【例 18】 已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE 的面积为6平方厘米.则阴影部分的面积是 平方厘米.BB【解析】 连接AC .由于ABCD 是平行四边形,:3:2BC CE =,所以:2:3CE AD =,根据梯形蝶形定理,22:::2:23:23:34:6:6:9COE AOC DOE AOD S S S S =⨯⨯=,所以6AOC S =(平方厘米),9AOD S =(平方厘米),又6915ABC ACD S S ==+=(平方厘米),阴影部分面积为61521+=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.BB【分析】 连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么OCD OAE S S ∆∆=.根据蝶形定理,4936OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故236OCD S ∆=, 所以6OCD S ∆=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.BB【解析】 连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么OCD OAE S S ∆∆=.根据蝶形定理,2816OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故216OCD S ∆=,所以4OCD S ∆=(平方厘米).另解:在平行四边形ABED 中,()111681222ADE ABEDS S∆==⨯+=(平方厘米), 所以1284AOE ADE AOD S S S ∆∆∆=-=-=(平方厘米),根据蝶形定理,阴影部分的面积为8244⨯÷=(平方厘米).【例 19】 如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A BCDEF?852O A BC DEF【解析】 连接DE 、CF .四边形EDCF 为梯形,所以EOD FOC S S ∆=,又根据蝶形定理,EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅,所以2816EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅=⨯=,所以4EOD S ∆=(平方厘米),4812ECD S ∆=+=(平方厘米).那么长方形ABCD 的面积为12224⨯=平方厘米,四边形OFBC 的面积为245289---=(平方厘米).【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?BB【解析】 由于DEFG 是正方形,所以DA 与BC 平行,那么四边形ADBC 是梯形.在梯形ADBC 中,BDK ∆和ACK ∆的面积是相等的.而:1:3AK KB =,所以ACK ∆的面积是ABC ∆面积的11134=+,那么BDK ∆的面积也是ABC ∆面积的14.由于ABC ∆是等腰直角三角形,如果过A 作BC 的垂线,M 为垂足,那么M 是BC 的中点,而且AM DE =,可见ABM ∆和ACM ∆的面积都等于正方形DEFG 面积的一半,所以ABC ∆的面积与正方形DEFG 的面积相等,为48. 那么BDK ∆的面积为148124⨯=.【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m n,那么,()m n +的值等于 .E【解析】 左、右两个图中的阴影部分都是不规则图形,不方便直接求面积,观察发现两个图中的空白部分面积都比较好求,所以可以先求出空白部分的面积,再求阴影部分的面积.如下图所示,在左图中连接EG .设AG 与DE 的交点为M .左图中AEGD 为长方形,可知AMD ∆的面积为长方形AEGD 面积的14,所以三角形AMD 的面积为21111248⨯⨯=.又左图中四个空白三角形的面积是相等的,所以左图中阴影部分的面积为111482-⨯=.BEE如上图所示,在右图中连接AC 、EF .设AF 、EC 的交点为N . 可知EF ∥AC 且2AC EF =.那么三角形BEF 的面积为三角形ABC 面积的14,所以三角形BEF 的面积为21111248⨯⨯=,梯形AEFC 的面积为113288-=.在梯形AEFC 中,由于:1:2EF AC =,根据梯形蝶形定理,其四部分的面积比为:221:12:12:21:2:2:4⨯⨯=,所以三角形EFN 的面积为3118122424⨯=+++,那么四边形BENF 的面积为1118246+=.而右图中四个空白四边形的面积是相等的,所以右图中阴影部分的面积为111463-⨯=.那么左图中阴影部分面积与右图中阴影部分面积之比为11:3:223=,即32m n =, 那么325m n +=+=.【例 22】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADE DEGF FGCB S S S =△四边形四边形 .EGF A D CB【解析】 设1ADE S =△份,根据面积比等于相似比的平方,所以22::1:4ADE AFG S S AD AF ==△△,22::1:9ADE ABC S S AD AB ==△△, 因此4AFG S =△份,9ABC S =△份,进而有3DEGF S =四边形份,5FGCB S =四边形份,所以::1:3:5ADE DEGF FGCB S S S =△四边形四边形【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【解析】 由金字塔模型得:::2:5AD AB AE AC DE BC ===,所以42510AC =÷⨯=【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形 . 【解析】 设1ADE S =△份,22::1:4ADE AFG S S AD AF ==△△,因此Q E GNMF P AD CB4AFG S =△份,进而有3DEGF S =四边形份,同理有5FGNM S =四边形份,7MNQP S =四边形份,9PQCB S =四边形份.所以有::::1:3:5:7:9ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形【例 23】 如图,已知正方形ABCD 的边长为4,F 是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF 与BE 相交于点G ,求ABG S △GFAEDBM GFAEDCBGFAEDCB【解析】 方法一:连接AE ,延长AF ,DC 两条线交于点M ,构造出两个沙漏,所以有::1:1AB CM BF FC ==,因此4CM =,根据题意有3CE =,再根据另一个沙漏有::4:7GB GE AB EM ==,所以4432(442)471111ABG ABE S S ==⨯⨯÷=+△△. 方法二:连接,AE EF,分别求4224ABF S =⨯÷=△,4441232247AEFS =⨯-⨯÷-⨯÷-=△,根据蝶形定理::4:7ABF AEF S S BG GE ==△△,所以4432(442)471111ABG ABE S S ==⨯⨯÷=+△△.【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点,BF 交EC 于M ,求BMG ∆的面积.MHGF E D CBAA【解析】 解法一:由题意可得,E 、F是AB、AD的中点,得//EF BD,而::1:2FD BC FH HC ==,::1:2EB CD BG GD ==所以::2:3CH CF GH EF ==,并得G 、H 是BD 的三等分点,所以BG GH =,所以::2:3BG EF BM MF ==,所以25BM BF =,11112224BFDABD ABCDS S S ∆∆==⨯=;又因为13BG BD =,所以1212113535430BMG BFD S S ∆∆=⨯⨯=⨯⨯=. 解法二:延长CE 交DA 于I ,如右图,可得,::1:1AI BC AE EB ==,从而可以确定M 的点的位置, ::2:3BM MF BC IF ==,25BM BF =,13BG BD =(鸟头定理),可得2121115353430BMG BDF ABCDS S S ∆∆=⨯=⨯⨯=【例 25】 如图,ABCD 为正方形,1cm AM NB DE FC ====且2cm MN =,请问四边形PQRS 的面积为多少?CACA 【解析】 (法1)由//AB CD ,有MP PC MNDC=,所以2PC PM =,又MQ MB QC EC =,所以12MQ QC MC ==,所以111236PQ MC MC MC =-=,所以SPQR S 占AMCF S 的16,所以121(112)63SPQR S =⨯⨯++=2(cm ).(法2)如图,连结AE ,则14482ABE S ∆=⨯⨯=(2cm ),而RB ER AB EF =,所以2RB AB EF EF ==,22168333ABR ABE S S ∆∆==⨯=(2cm ). 而1134322MBQ ANS S S ∆∆==⨯⨯⨯=(2cm ),因为MN MP DC PC=,所以13MP MC =,则11424233MNP S ∆=⨯⨯⨯=(2cm ),阴影部分面积等于164233333ABR ANS MBQ MNP S S S S ∆∆∆∆--+=--+=(2cm ).【例 26】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 27】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBAI H G FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=; 那么2248551995AGE AGC S S ∆∆==⨯=; 同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =, 所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△ 得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGCABCS S =△△, 同理连接AI 、CH 得619ABHABCS S =△△,619BIC ABC S S =△△,所以1966611919GHI ABC S S ---==△△三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACIS S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DBECFA===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△,所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△ 同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPMS =△121BDM S =△,所以1239273570PQMN S =--=四边形,13953357042MNEDS =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K J IHABC D EF GKJI HABCD EFG【解析】 连接CK 、CI 、CJ.根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==, 所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==. 类似分析可得215AGI S ∆=. 又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=. 那么,111742184CGKJS =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABES S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 29】 右图,ABC △中,G 是AC 的中点,D 、E 、F是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BC D EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBMS S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANGAFCS S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米)【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA的三等分点,求阴影部分面积.GC BACB【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABMACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△ 所以15ABP ABCS S =△△,所以1111152121105ABP ADN BEPABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC△面积的11105,所以11113133610570S =-⨯-⨯=阴影【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△, ::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△,同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形课后练习: 练习1. 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【解析】 :():()(11):(23)1:6BDE ABC S S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEFS =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米练习2. 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB AAB CDEFGH【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2CGF CDB S S =△△同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形5AHE CGF HDG BEF EFGH ABCD ABCD S S S S S S S =++++=△△△△四边形四边形四边形所以66513.2ABCD S =÷=四边形平方米练习3. 正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是 平方厘米.H GFEDCBAM H GFEDCBA【解析】 欲求四边形BGHF 的面积须求出EBG ∆和CHF ∆的面积.由题意可得到:::1:2EG GC EB CD ==,所以可得:13EBG BCE S S ∆∆=将AB 、DF 延长交于M 点,可得::::1:1BM DC MF FD BF FC ===,而1::():3:22EH HC EM CD AB AB CD ==+=,得25CH CE =,而12CF BC =,所以121255CHF BCE BCE S S S ∆∆∆=⨯=11112030224BCES AB BC ∆=⨯⨯=⨯=117730141515EBC EBC EBC EBC BGHF S S S S S ∆∆∆∆=--==⨯=四边形. EF ,确定H 的位置(也就是:FH HD ),练习4. 如图,已知4cmAB AE ==,BC DC=,90BAE BCD ∠=∠=︒,10cmAC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .DCEBABCA'C'EDA【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系: ''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=.所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S SS S ∆∆∆∆∆∆++=++==⨯⨯=.练习5. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDED【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).。
14、旋转变换
【旋转成定角】例如下面的题目:
“在图4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆都只有一个接触点。
问:“大正方形的面积比小正方形的面积大多少?”
按一般方法,先求大、小正方形的面积,再求它们的差,显然是有难度的。
若将小正方形围绕圆心旋转45°,使原图变成图4.24,容易发现,小正方形的面积为大正方形面积的一半。
所以,大正方形面积比小正方形的面积大
(8×2)×(8×2)÷2
=16×16÷2
=128(平方厘米)
又如,如图4.25,求正方形内阴影部分的面积。
(单位:厘米)
表面上看,题目也是很难解答的。
但只要将两个卵叶片形的阴影部分绕正方形的中心,分别按顺时针和逆时针方向旋转90°,就得到了一个由阴影部分组成的半圆(如图4.26),于是,阴影部分的面积就很容易解答出来了。
(解答略)
【开扇式旋转】有些图形相互交错,增加了解答的难度。
若像打开折扇一样,绕着某个定点作“开扇式”旋转,往往会使人顿开茅塞,使问题很快获得解决。
例如,求图4.27的阴影部分的面积(单位:厘米)。
若采用正方形面积减空白部分面积的求法,
计算量是很大的。
由于它是由两个形状相同的扇形交叉重叠而成的,我们不妨把右下部的扇形打开,顺时针方向旋转90°,得到图4.28;再继续旋转,得到图4.29。
在图4.29中,阴影部分面积便是半圆面积减三角形面积的差。
所以,阴影部分面积是
42×3.14÷2-(4+4)×4×2
=25.12-16
=9.12(平方厘米)
又如,求图4.30阴影部分的面积(单位:厘米)。
将这个图从中间剪开,以o为旋转中心,将右半部分按顺时针方向转到左半部下方,便变成了图4.31。
于是,阴影部分的面积便是半圆面积减去两直角边均为2厘米的一个空白等腰直角三角形面积的差。
即
(4÷2)2×3.14÷2-2×2÷2
=6.28-2
=4.28(平方厘米)。