三角形的内角和公开课演示教学
- 格式:ppt
- 大小:54.38 MB
- 文档页数:18
人教版小学数学四年级下册《三角形的内角和》优质课公开课课件、教案三角形的内角和教学设计思考和提出的问题⒈遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。
如何引导学生一步一步进行验证,发现三角形内角和是180°?⒉课堂教学中怎样做好引导,使学生在量、剪、拼一系列动手实践中更具目标指引,操作实践更具实效?⒊教学中如何设计有坡度的、具有个性化的练习?磨课要点⒈起点。
知识起点:学生掌握了三角形的分类,熟悉了直角的知识。
经过三年多的学习,我已经具备了初步的动手能力、主动探究能力和合作学习习惯。
已有生活认知:学生对三角形的内角和已经知道了结论,在“量、算”三角形内角和的活动中会不自觉地用结论调整自己的测量。
思维特点:四年级学生年龄还小,容易受图形或物体的外在形式的影响。
教学中,“大小不同的三角形,它们的内角和怎么会是一样的呢?”“三角形的形状变了,可是内角和怎么会不变呢?”等问题很多学生难以理解。
创设的“量、剪、拼”等活动,有助于学生去发现其中的奥妙,构建数学知识和经验。
⒉终点。
发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
⒊过程与方法。
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。
学生对三角尺上每个度数比较熟悉,就从这里入手。
先让学生算出每个三角尺三个内角和是180°,引发学生猜想:其它三角形的内角和也是180°吗?接着引导学生合作,通过量一量不同类型的三角形的三个内角的度数,算一算,得出三角形内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。
再利用课件演示进一步验证,由此获得三角形的内角和是180°。
这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了基础。
教学内容:课本第67页例6及做一做教学目标:1. 让学生亲自动手,通过“量、剪、拼”等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
《三角形的内角和》优质ppt课件CONTENTS•三角形基本概念与性质•三角形内角和定理推导•三角形内角和定理应用举例•拓展:多边形内角和计算方法探讨•练习题与课堂互动环节•课程小结与预习提示三角形基本概念与性质01三角形定义及分类三角形定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。
三角形分类按边可分为等边三角形、等腰三角形和不属于以上两种的其他三角形;按角可分为锐角三角形、直角三角形和钝角三角形。
三角形边长与角度关系三角形边长关系任意两边之和大于第三边,任意两边之差小于第三边。
三角形角度关系三角形内角和等于180°,外角和等于360°。
三边相等,三个内角均为60°。
等边三角形等腰三角形直角三角形锐角三角形和钝角三角形有两边相等,且两底角相等;顶角的平分线、底边上的中线和高互相重合(简称“三线合一”)。
有一个角为90°,斜边中线等于斜边一半;两锐角互余,且满足勾股定理。
除上述特殊三角形外,其余均为普通锐角三角形或钝角三角形,它们不具有特殊的性质。
特殊三角形性质介绍三角形内角和定理推导02直观感受法01通过测量不同类型的三角形的三个内角,并求和,观察结果是否接近或等于180度。
02利用三角形纸片的撕拼,将三个内角拼在一起,观察是否能拼成一个平角。
拼图验证法将三角形三个内角剪下,并尝试拼合,观察是否能拼成一个平角。
通过动画演示,将三角形三个内角旋转、平移拼接,直观展示三角形内角和为180度的过程。
过三角形一个顶点做对边的平行线,利用平行线的性质及平角的定义进行证明。
延长三角形的一条边,并作出与之相邻的外角,通过外角性质及平角的定义进行证明。
利用向量的加法运算及共线向量定理进行证明。
平行线性质证明外角性质证明向量法证明几何证明法三角形内角和定理应用举例03求角度问题已知三角形两个内角,求第三个内角的大小。
已知三角形一个内角及相邻两边,求另一个内角的大小。