经典控制理论和现代控制理论的区别和联系
- 格式:docx
- 大小:13.75 KB
- 文档页数:2
关于现代控制理论的发展及介绍现代控制原理是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
[1]现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。
按照发展的过程,我们通常把自动控制理论区分为经典控制理论和现代控制理论两个部分。
经典控制理论经典控制理论的研究对象是单输入单输出的自动控制系统,特别是线性定常系统。
控制理论各历史阶段发展的特点经典控制理论在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基...经典控制理论(20世纪40-50年代)在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基础上,形成了较为完整的自动控制系统设计的频率法理论。
1948年又提出了根轨迹法。
至此,自动控制理论发展的第一阶段基本完成。
这种建立在频率法和根轨迹法基础上的理论,通常被称为经典控制理论。
经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。
将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。
通常是采用反馈控制,构成所谓闭环控制系统。
经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。
当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。
1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;出描述方式,这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。
实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。
即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。
虽然这种设计方法具有实用等很多优点,但是,在推理上却是不能令人满意的,效果也不是最佳的,人们自然提出这样一个问题,即对一个特定的应用课题,能否找到最佳的设计。
现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
[1] 现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
神经网络控制神经网络是由所谓神经元的简单单元按并行结构经过可调的连接权构成的网络。
神经网络的种类很多,控制中常用的有多层前向BP网络,RBF网络,Hopfield网络以及自适应共振理论模型(ART)等。
[4]神经网络控制就是利用神经网络这种工具从机理上对人脑进行简单结构模拟的新型控制和辨识方法。
神经网络在控制系统中可充当对象的模型,还可充当控制器。
常见的神经网络控制结构有:⑴参数估计自适应控制系统;⑵内模控制系统;⑶预测控制系统;⑷模型参考自适应系统;⑸变结构控制系统。
神经网络控制的主要特点是:可以描述任意非线性系统;用于非线性系统的辨识和估计;对于复杂不确定性问题具有自适应能力;快速优化计算能力;具有分布式储存能力,可实现在线、离线学习。
有人提出以Hopfield网络实现一种多分辨率体视协同算法,该算法以逐级融合的方式自动完成由粗到细,直至全分辨率的匹配和建立。
又有人提出一种网络自组织控制器,采用变斜率的最速梯度下降学习算法,应用在非线性跟踪控制中。
今后需进一步探讨的问题是提高网络的学习速度,提出新的网络结构,创造出更适用于控制的专用神经网络。
古典控制理论(自动控制原理)第一部分控制理论的总线:建立数学模型、分析响应、提出性能指标、判断稳定性。
在此基础上进行设计和校正。
古典在两个领域内研究稳定性和性能分析和提出性能指标(研究对象是连续和离散系统,其中对离散系统研究不多):对应的总线:时域:由数学模型传函乘输入再反变换--传函时域响应曲线—超调量等---劳斯、根轨迹频域:传函GH(jw)---幅相曲线、波特图---稳定裕量等---乃奎斯特判据。
现控:根据实际需要、分析求解系统,提出了性能指标:能控性和能观性。
控制理论其实有两个大方面的内容:系统分析和系统综合。
系统分析就是在建立和解数学模型的基础上,分析响应,提出性能指标,进行稳定性、快速性(超调量、调节时间等)、ess 误差分析,以及这些性能指标的模型参数表达式、模型参数和其它影响系统性能的系统特征如零极点的变动的影响(这是系统综合的基础)、古典控制中有时域法、频域法、根轨迹法等,这些方法都有对应不同角度的系统分析。
最后在系统分析的基础上提出系统稳定的判据。
这一切都是来源于数学函数上的分析。
系统综合其实就是校正和设计。
就是根据期望的性能指标,调整模型的参数,手段是加入可以调节(影响、使变化)模型参数的部分,就是所谓的控制器,(通过调节控制器的参数可以影响系统的模型参数取值),常用的控制器是PID控制器、超前-滞后校正、前馈控制、串级控制、状态反馈等,这些控制器通过引入其它参数使模型参数表示发生变化,是系统的性能指标变好(性能指标之间往往是相互制约的)。
数学工具的使用,包括用拉普拉斯域代替时域分析性能(设计者要十分清楚两个域内的动作对应关系)、用线性代数进行状态空间表达式的相关计算,是为了方便分析,这就体现了数学作为基础学科的重要作用,就像下地干活要有工具一样。
第二部分控制理论的内容就是由物理特性等方法建立实际系统的数学模型(微分方程、传函等),给了典型输入信号,求出输出的相应,从而分析系统的时域性能、频域性能,测定各项指标,判定稳定性,提出改进方案,进而设计系统。
自动控制理论是一门研究如何设计稳定、鲁棒和高性能控制系统的学科。
自动控制理论的发展可以分为以下几个阶段:
1. 经典控制理论阶段:20世纪前半叶,经典控制理论主要集中在线性系统的研究上,包括PID控制器、根轨迹法、频域分析等方法。
这些方法主要适用于线性、稳定、可预测的系统。
2. 现代控制理论阶段:20世纪60年代后期至70年代初期,现代控制理论开始崭露头角,状态空间方法、最优控制理论、鲁棒控制理论等相继涌现,为非线性、时变系统的分析与设计提供了新的思路。
3. 数字控制理论阶段:随着计算机技术的发展,数字控制理论应运而生。
数字信号处理技术的应用使得控制系统设计更加灵活,同时也促进了实时控制的发展。
4. 智能控制理论阶段:近年来,随着人工智能和机器学习的快速发展,智能控制理论逐渐引起关注。
模糊控制、神经网络控制、遗传算法等方法被引入到控制领域,为复杂系统的建模与控制提供了新的思路。
5. 网络化控制理论阶段:随着物联网和云计算技术的快速发展,网络化控制理论成为一个新的研究热点。
研究者们开始探索在网络环境
下的控制系统设计与实现,涉及到网络延迟、数据丢失、安全性等问题。
总的来说,自动控制理论的发展经历了经典理论、现代理论、数字化、智能化和网络化等多个阶段,不断地推动着控制理论与技术的进步,为各种工程和科学应用提供了强大支持。
经典控制理论和现代控制理论在呼吸机中的应用1.呼吸机的基木结构主要由气路和电子控制两大部分组成。
气路部分主要是一个气体传送系统,包括气体供应(气体储存、压力支持)、气体传输、压力流量监测和校正等功能模块。
压缩空气、氧气按设置所需的比例混合后,通过管道及相关伺服阀门以设置的气压、流速送到病人端。
流量传感器将测量到的实际值馈送到电子控制部分与面板设置值比较,利用两者间的误差通过控制伺服阀门来调节吸入和呼出气体。
电子控制部分的主要功能是控制呼吸机以一定的频率、潮气量进行通气,同时监测相应传感器的反馈数据超过限定范围时报警提示。
2.呼吸机控制理论呼吸机控制理论源于自动控制科学。
自动控制理论自创立以来经过了三代的发展:第1代为20世纪初开始形成,并于50年代趋于成熟的经典反馈控制理论;第2代为20世纪50、60年代在线性代数的数学基础上发展起来的现代控制理论;第3代为20世纪60年代中期即已萌芽,在发展中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成智能控制理论。
经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论;而实际上呼吸机系统中的控制对象和过程大多具有非线性、时变性、不稳定性、多层次、多因素、变结构等特点,难以建立精确的数学模型。
因此,医学工程专家和学者希望能从需待解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对医疗设备复杂系统的控制,这就是基于知识的、不依赖于精确数学模型的智能控制。
呼吸机控制的发展经历了由开环到闭环,由单变量控制、单变量反馈到多变量控制、多变量反馈的演化。
现在的呼吸机多为闭环多变量控制、多变量反馈型。
检测反馈参数主要有吸入O2值、平均呼出CO2值、潮气末CO2值、动脉CO2值、动脉O2值及动脉pH值等。
控制量多为吸入压力、潮气量、呼吸频率、吸呼比(I:E)、流速及空氧混合比等。
经典控制理论经典控制理论,以单变量控制,随动/调节为主要内容,以微分方程和传递函数为数学模型,所用的方法主要以频率响应法为主。
数学工具:微分方程,复变函数(一)、经典控制理论阶段闭环的自动控制装置的应用,可以追溯到1788年瓦特(J.Watt)发明的飞锤调速器的研究。
然而最终形成完整的自动控制理论体系,是在20世纪40年代末。
最先使用反馈控制装置的是希腊人在公元前300年到1年中使用的浮子调节器。
凯特斯比斯(Kitesibbios)在油灯中使用了浮子调节器以保持油面高度稳定。
19世纪60年代期间是控制系统高速发展的时期,1868年麦克斯韦尔(J.C.Maxwell)基于微分方程描述从理论上给出了它的稳定性条件。
1877年劳斯(E.J.Routh),1895年霍尔维茨(A.Hurwitz)分别独立给出了高阶线性系统的稳定性判据;另一方面,1892年,李雅普诺夫(A.M.Lyapunov)给出了非线性系统的稳定性判据。
在同一时期,维什哥热斯基(I.A.Vyshnegreskii)也用一种正规的数学理论描述了这种理论。
1922年米罗斯基(N.Minorsky)给出了位置控制系统的分析,并对PID三作用控制给出了控制规律公式。
1942年,齐格勒(J.G.Zigler)和尼科尔斯(N.B.Nichols)又给出了PID控制器的最优参数整定法。
上述方法基本上是时域方法。
1932年柰奎斯特(Nyquist)提出了负反馈系统的频率域稳定性判据,这种方法只需利用频率响应的实验数据。
1940年,波德(H.Bode)进一步研究通信系统频域方法,提出了频域响应的对数坐标图描述方法。
1943年,霍尔(A.C.Hall)利用传递函(复数域模型)和方框图,把通信工程的频域响应方法和机械工程的时域方法统一起来,人们称此方法为复域方法。
频域分析法主要用于描述反馈放大器的带宽和其他频域指标。
第二次世界大战结束时,经典控制技术和理论基本建立。
1.经典控制理论和现代控制理论的区别和联系
区别:
(1)研究对象方面:经典控制系统一般局限于单输入单输出,线性定常系统。
严格的说,理想的线性系统在实际中并不存在。
实际的物理系统,由于组成系统的非线性元件的存在,可以说都是非线性系统。
但是,在系统非线性不严重的情况时,某些条件下可以近似成线性。
所以,实际中很多的系统都能用经典控制系统来研究。
所以,经典控制理论在系统的分析研究中发挥着巨大的作用。
现代控制理论相对于经典控制理论,应用的范围更广。
现代控制理论不仅适用于单输入单输出系统,还可以研究多输入多输出系统;不仅可以分析线性系统,还可以分析非线性系统;不仅可以分析定常系统,还可以分析时变系统。
(2)数学建模方面:微分方程(适用于连续系统)和差分方程(适用于离散系统)是描述和分析控制系统的基本方法。
然而,求解高阶和复杂的微分和差分方程较为繁琐,甚至难以求出具体的系统表达式。
所以,通过其它的数学模型来描述系统。
经典控制理论是频域的方法,主要以根轨迹法和频域分析法为主要的分析、设计工具。
因此,经典控制理论是以传递函数(零初始状态下,输出与输入Laplace变换之比)为数学模型。
传递函数适用于单输入单输出线性定常系统,能方便的处理这一类系统频率法或瞬态响应的分析和设计。
然而对于多信号、非线性和时变系统,传递函数这种数学模型就无能为力了。
传递函数只能反应系统的外部特性,即输入与输出的关系,而不能反应系统内部的动态变化特性。
现代控制理论则主要状态空间为描述系统的模型。
状态空间模型是用一阶微分方程组来描述系统的方法,能够反应出系统内部的独立变量的变化关系,是对系统的一种完全描述。
状态空间描述法不仅可以描述单输入单输出线性定常系统,还可以描述多输入多输出的非线性时变系统。
另外状态空间分析法还可以用计算机分析系统。
(3)应用领域方面:由于经典控制理论发展的比较早,相对而言理论比较成熟,并且生产生活中很多过程都可近似看为线性定常系统,所以经典控制理论应用的比较广泛。
现代控制理论是在经典控制理论基础上发展而来的,对于研究复杂系统较为方便。
并且现代控制理论可以借助计算机分析和设计系统,所以有其独特的优越性。
联系:(1)虽然现代控制理论的适用范围更多,但并不能定性的说现代控制理论更优于经典控制理论。
我们要根据具体研究对象,选择合适的理论进行分析,这样才能是分析的更简便,工作量较小
(2)两种控制理论在工业生产、环境保护、航空航天等领域发挥着巨大的作用。
(3)两种理论有其各自的特点,所以在对系统进行分析与设计时,要根据系统的特征选取和是的理论。
(4)所以熟识两种理论,具体的问题具体分析,选取合适的理论研究不同的系统。
随着社会的发展,两种理论对科技的进步发挥着巨大的推动作用。
在实践中,两种理论也会得到发展和完善,并且促进新的理论的形成,智能控制理论就是个很好的例子。
2.经典控制理论和现代控制理论所涉及的内容
经典控制理论:主要研究系统的动态性能,在时间和频域内来研究系统的“稳定性、准确性、快速性”。
所谓稳定性是指系统在干扰信号的作用下,偏离原来的平衡位置,当干扰取消之后,随着时间的推移,系统恢复到原来平衡状态的能力。
准确性是指在过度过程结束后输出量与给定的输入量的偏差。
所谓快速性是指当系统的输入量和给定的输入量之间产生的偏差时,消除这种偏差的快慢程度。
现代控制理论:线性系统理论、最优控制、随机系统理论和最优估计、系统辨识、自适应控制、非线性系统理论、鲁棒性分析和鲁棒控制、分布参数控制、离散事件控制、智能控制。