高中数学必修一等式与不等式知识点总结
- 格式:docx
- 大小:36.93 KB
- 文档页数:3
必修 第一册 第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.比较大小的基本事实:比较两实数大小的方法——求差比较法0a b a b >⇔->;0a b a b =⇔-=;0a b a b <⇔-<。
2.恒成立的不等式:一般地,∀R b a ∈,,有ab b a 222≥+,当且仅当b a =时等号成立。
说明:(1)指出定理适用范围:R b a ∈,;(2)强调取“=”的条件b a =。
3.等式的性质:性质1:若a =b ,则b =a ;性质2:若a=b,b=c,则a=c;性质3:若a=b ,则a±c=b±c;性质4:若a=b ,则ac=bc;性质5:若a=b ,c≠0,则cb c a = 4.不等式的性质:性质1:若a b >,则b a <;若b a <,则a b >.即a b >⇔b a <。
说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。
性质2:若a b >,b c >,则a c >。
不等式的传递性。
性质3:若a b >,则a c b c +>+。
性质4:如果b a >且0>c ,那么bc ac >;如果b a >且0<c ,那么bc ac <。
性质5:若,,a b c d a c b d >>+>+且则。
性质6:如果0>>b a 且0>>d c ,那么bd ac >。
性质7:如果0>>b a , 那么n n b a > )1(>∈n N n 且。
2.2 基本不等式1. 如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 说明:(1)这个定理适用的范围:,a b R +∈;(2)我们称b a b a ,2为+的算术平均数,称b a ab ,为的几何平均数。
高中数学不等式知识点总结不等式是数学中重要的概念之一,也是解决实际问题的重要工具。
在高中数学中,学习不等式的知识是非常必要的。
本文将对高中数学不等式的知识点进行总结。
一、不等式的基本概念不等式是数学中描述两个数或两个式子大小关系的一种表示方法。
常见的不等式包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号。
二、一元一次不等式一元一次不等式是指只有一个未知数、次数为1的不等式。
解一元一次不等式的方法和解一元一次方程类似,可以通过加减法、乘除法进行变形。
三、一元二次不等式一元二次不等式是指只有一个未知数、次数为2的不等式。
由于一元二次不等式的图像是一个抛物线,并且可以通过求函数的最值来解决不等式,所以解一元二次不等式的方法较为灵活。
四、绝对值不等式绝对值不等式是指包含绝对值的不等式。
解绝对值不等式时,需要对绝对值进行分类讨论,并利用绝对值的性质进行求解。
另外,当绝对值中含有未知数时,还需要根据未知数所在的范围进行讨论。
五、有理不等式有理不等式是指不等式中含有有理式(即有理数和代数式)的不等式。
对于有理不等式的解集求解,需要借助分式的性质和一元一次不等式的解法。
六、不等式的性质不等式有许多重要的性质,这些性质在求解不等式时起到非常重要的作用。
常见的不等式性质包括:1. 加减法性质:对不等式的两边同时加减一个数,不等号方向不变;2. 乘除法性质:对不等式的两边同时乘除一个正数,不等号方向不变;但对一个负数进行乘除操作时,需要改变不等号的方向;3. 倒数性质:如果两个数的倒数大小关系相反,那么这两个数的大小关系也相反;4. 平方性质:对非负实数的平方操作,不改变它们的大小关系;5. 倒数平方性质:对正实数的倒数平方操作,改变它们的大小关系;6. 同底指数性质:对于正实数的指数幂操作,不改变它们的大小关系。
七、不等式的应用不等式在实际生活中有广泛的应用,尤其在解决数学建模问题时起到关键作用。
高中不等式知识点总结一、基本概念不等式是数学中的一个重要概念,它描述了数值之间的大小关系。
在高中数学中,我们学习了许多不等式的性质和解法。
下面将从基本概念、性质和解法三个方面对高中不等式的知识点进行总结。
1.1 不等式的定义不等式是指两个数或两个代数式之间的大小关系,用符号“<”、“>”、“≤”、“≥”表示。
不等式中的符号有以下含义: - “<”表示小于,例如a < b表示a小于b; - “>”表示大于,例如a > b表示a大于b; - “≤”表示小于等于,例如a ≤ b表示a小于等于b; - “≥”表示大于等于,例如a ≥ b表示a大于等于b。
1.2 不等式的解集不等式的解集是使不等式成立的所有实数的集合。
根据不等式的类型和题目的要求,解集可以是有限集、无限集或空集。
二、基本性质不等式具有一些基本的性质,了解这些性质可以帮助我们更好地理解和运用不等式。
2.1 不等式的传递性对于任意实数a、b、c,如果a < b且b < c,则有a < c。
这个性质称为不等式的传递性。
利用不等式的传递性,我们可以简化不等式的推导过程。
2.2 不等式的加减性质对于任意实数a、b、c,如果a < b,则有a + c < b + c,a - c < b - c。
这个性质称为不等式的加减性质。
利用不等式的加减性质,我们可以对不等式进行加减运算,从而得到等价的不等式。
2.3 不等式的乘除性质对于任意实数a、b、c(c ≠ 0),如果a < b且c > 0,则有ac < bc;如果a < b且c < 0,则有ac > bc。
这个性质称为不等式的乘除性质。
利用不等式的乘除性质,我们可以对不等式进行乘除运算,从而得到等价的不等式。
2.4 不等式的倒置性质对于任意实数a、b,如果 a < b,则有-b < -a。
高一基本不等式知识点总结基本不等式是高中数学中的重要内容,它在解决最值问题、证明不等式以及优化问题中有着广泛的应用。
在高一阶段,我们主要学习了以下几种基本不等式:1. 算术平均数-几何平均数不等式(AM-GM不等式):对于任意非负实数a和b,有\(\frac{a+b}{2} \geq \sqrt{ab}\),当且仅当a=b时取等号。
这个不等式说明了两个非负数的算术平均数总是大于或等于它们的几何平均数。
2. 柯西-施瓦茨不等式(Cauchy-Schwarz Inequality):对于任意实数序列\(a_1, a_2, ..., a_n\)和\(b_1, b_2, ..., b_n\),有\((a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2)\geq (a_1b_1 + a_2b_2 + ... + a_nb_n)^2\)。
这个不等式在处理向量和序列问题时非常有用。
3. 三角不等式:对于任意实数a和b,有\(|a+b| \leq |a| + |b|\)。
这个不等式说明了两个数的和的绝对值不会超过它们绝对值的和。
4. 绝对值不等式:对于任意实数a和b,有\(|a| - |b| \leq |a-b| \leq |a| + |b|\)。
这个不等式描述了两个数的差的绝对值与它们绝对值之间的关系。
5. 伯努利不等式:对于任意实数x > -1和任意正整数n,有\((1+x)^n \geq 1+nx\)。
当x=0时等号成立。
这个不等式在处理指数增长问题时非常有用。
6. 均值不等式:对于任意正实数a和b,有\(\frac{a+b}{2} \geq\sqrt{ab}\),当且仅当a=b时取等号。
这个不等式是AM-GM不等式的特例,但它在处理两个变量的最值问题时更为直观。
掌握这些基本不等式,可以帮助我们更好地理解和解决数学问题。
在实际应用中,我们需要注意不等式成立的条件,以及如何灵活运用这些不等式来简化问题。
高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理单选题1、已知x>0,y>0,x+2y=1,则1x +1y的最小值为()A.3+2√2B.12C.8+4√3D.6答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x>0,y>0,x+2y=1,所以(1x +1y)(x+2y)=3+2yx+xy≥3+2√2,当且仅当2yx =xy,即x=√2−1,y=2−√22时,等号成立.故选:A.2、当0<x<2时,x(2−x)的最大值为()A.0B.1C.2D.4答案:B分析:利用基本不等式直接求解.∵0<x<2,∴2−x>0,又x+(2−x)=2∴x(2−x)≤[x+(2−x)]24=1,当且仅当x=2−x,即x=1时等号成立,所以x(2−x)的最大值为1故选:B3、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.4、若非零实数a,b满足a<b,则下列不等式成立的是()A.ab <1B.ba+ab>2C.1ab2<1a2bD.a2+a<b2+b答案:C分析:举出符合条件的特例即可判断选项A,B,D,对于C,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C5、对∀x∈R,不等式(a−2)x2+2(a−2)x−4<0恒成立,则a的取值范围是()A.−2<a≤2B.−2≤a≤2C.a<−2或a≥2D.a≤−2或a≥2答案:A分析:对a讨论,结合二次函数的图象与性质,解不等式即可得到a的取值范围.不等式(a−2)x2+2(a−2)x−4<0对一切x∈R恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意;当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2].故选:A.6、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( )A .14B .12C .1D .2答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立.故选:C.7、设a >b >c >0,则2a 2+1ab +1a(a−b)−10ac +25c 2取得最小值时,a 的值为( )A .√2B .2C .4D .2√5答案:A解析:转化条件为原式=1ab +ab +1a(a−b)+a(a −b)+(a −5c)2,结合基本不等式即可得解.2a 2+1ab +1a (a −b )−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)−ab −a(a −b)+2a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+(a −5c)2 ≥2√1ab ⋅ab +2√1a(a−b)⋅a(a −b)+0=4,当且仅当{ab =1a(a −b)=1a =5c ,即a =√2,b =√22,c =√25时,等号成立.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.多选题9、对于任意实数a,b,c,d,则下列命题正确的是()A.若ac2>bc2,则a>b B.若a>b,c>d,则a+c>b+dC.若a>b,c>d,则ac>bd D.若a>b,则1a >1b答案:AB分析:可由性质定理判断A、B对,可代入特例判断选项C、D错.解:若ac2>bc2,两边同乘以1c2则a>b,A对,由不等式同向可加性,若a>b,c>d,则a+c>b+d,B对,当令a=2,b=1,c=﹣1,d=﹣2,则ac=bd,C错,令a=﹣1,b=﹣2,则1a <1b,D错.10、关于x的一元二次不等式x2−2x−a≤0的解集中有且仅有5个整数,则实数a的值可以是()A.2B.4C.6D.8答案:BC解析:求出不等式的解,分析其中只有5个整数解,得a的不等式,解之,然后判断各选项可得.易知Δ=4+4a≥0,即a≥−1,解原不等式可得1−√1+a≤x≤1+√1+a,而解集中只有5个整数,则2≤√1+a<3,解得3≤a<8,只有BC满足.故选:BC.11、已知实数a,b,c满足c<b<a,且ac<0,则下列不等式一定成立的是()A.ab>ac B.c(b−a)>0C.ac(a−c)<0D.cb2<ab2答案:ABC分析:根据c<b<a,且ac<0,得到a>0,c<0,然后利用不等式的基本性质,逐项判断.因为实数a,b,c满足c<b<a,且ac<0,所以a>0,c<0,由b>c,a>0,得ab>ac,故A正确;由b<a,c<0,得c(b−a)>0,故B正确;由a>c,ac<0,得ac(a−c)<0,故C正确;由a>c,b2≥0,得cb2≤ab2,当b=0时,等号成立,故D错误;故选:ABC填空题12、若不等式x2−2>mx对满足|m|≤1的一切实数m都成立,则x的取值范围是___________答案:x<−2或x>2分析:令f(m)=mx−x2+2,依题意可得−1≤m≤1时f(m)<0恒成立,则{f(1)<0f(−1)<0,即可得到关于x 的一元二次不等式组,解得即可;解:因为x2−2>mx,所以mx−x2+2<0令f(m)=mx−x2+2,即f(m)<0在|m|≤1恒成立,即−1≤m≤1时f(m)<0恒成立,所以{f(1)<0f(−1)<0,即{x−x 2+2<0−x−x2+2<0,解x−x2+2<0得x>2或x<−1;解−x−x2+2<0得x>1或x<−2,所以原不等式组的解集为x∈(−∞,−2)∪(2,+∞)所以答案是:(−∞,−2)∪(2,+∞)13、已知−1<x+y<4,2<x−y<4,则3x+2y的取值范围是_____.答案:(−32,12)解析:利用换元法,结合不等式的性质进行求解即可.设x+y=m,x−y=n,因此得:x=m+n2,y=m−n2,−1<m<4,2<n<4,3x+2y=3⋅m+n2+2⋅m−n2=5m2+n2,因为−1<m<4,2<n<4,所以−52<5m2<10,1<n2<2,因此−32<5m2+n2<12,所以−32<3x+2y<12.所以答案是:(−32,12)14、关于x的不等式x2−4x+4a≥a2在[1,6]内有解,则a的取值范围为________.答案:[−2,6]分析:根据不等式有解可得当x∈[1,6]时,a2−4a≤(x2−4x)max,结合二次函数的最值可求得结果. ∵x2−4x+4a≥a2在[1,6]内有解,∴a2−4a≤(x2−4x)max,其中x∈[1,6];设y=x2−4x(1≤x≤6),则当x=6时,y max=36−24=12,∴a2−4a≤12,解得:−2≤a≤6,∴a的取值范围为[−2,6].所以答案是:[−2,6].解答题15、若0<a<b,则下列不等式哪些是成立的?若成立,给予证明;若不成立,请举出反例.(1)a+1b <b+1a;(2)a2+1a2≥a+1a;(3)a2b +b2a>a+b.答案:(1)正确,证明见解析;(2)正确,证明见解析;(3)正确,证明见解析. 解析:(1)作差分解因式,即可得出答案;(2)作差分解因式,即可得出答案;(3)用基本不等式,即可得出答案.(1)正确a+1b −b−1a=(a−b)(1+1ab)<0(2)正确a2+1a2−(a+1a)=(a+1a)2−(a+1a)−2=(a+1a−2)(a+1a+1)≥0(3)正确a2b +b>2a,b2a+a>2b∴a2b+b2a+a+b>2a+2b∴a2b+b2a>a+b小提示:本题考查证明不等式,一般采用作差法、作商法、基本不等式,属于容易题.。
最新高中数学不等式知识点归纳汇总不等式是数学中非常重要的一个概念,它在数学问题的解决中起到了重要的作用。
下面对高中数学中的不等式知识点进行归纳汇总:1.不等式的基本性质:不等式中的“<”表示小于,不等式中的“>”表示大于。
两个不等式可以通过交换号“<”和“>”的顺序来得到另一个不等式。
对于相等的数,可以用等号“=”表示。
不等式中可以同时出现相等的情况。
2.不等式的运算性质:不等式具有类似于等式的加减乘除法的性质。
对于不等式两边同时加一个常数、减一个常数、乘以一个正数或除以一个正数,都不改变不等式的大小关系。
但是当乘以或除以一个负数时,需要注意将不等号方向翻转。
3.不等式的解集表示:通常以“解”或者“S”来表示不等式的解集。
解集是指满足不等式的所有实数。
解集可以用数轴上的区间表示,也可以用集合表示。
4.一元一次不等式:一元一次不等式是指不等式中只有一个未知数的一次式。
求解一元一次不等式的方法与解一元一次方程的方法类似,首先将不等式变形为x在一侧且常数在另一侧的形式,然后通过分情况讨论的方法求解不等式。
5.绝对值不等式:绝对值不等式是指不等式中含有绝对值的不等式。
求解绝对值不等式的常用方法是分情况讨论,根据绝对值的定义进行讨论。
6.二次不等式:二次不等式是指不等式中含有二次式的不等式。
求解二次不等式的方法包括图像法、因式分解法、配方法等。
解二次不等式时需要先将不等式变形为标准形式,然后根据二次曲线图像的几何性质进行分析。
7.有理不等式:有理不等式是指不等式中含有有理式的不等式。
求解有理不等式的方法类似于求解二次不等式,需要先将不等式变形为标准形式,然后通过分情况讨论的方法求解不等式。
8.综合性不等式:综合性不等式是指由两个或多个不等式组合而成的不等式。
综合性不等式的解集是由各个不等式解集的交集或并集构成的。
求解综合性不等式的方法是根据不等式之间的关系,找到解集的范围。
9.不等式的应用:不等式在数学的各个分支中有着广泛的应用。
目录不等关系与不等式 (2)考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)考点1:不等关系与不等式知识点一基本事实两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点二重要不等式∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.题型1:用不等式(组)表示不等关系例1《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票(以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票.……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h(米),物品外部长、宽、高尺寸之和为P(厘米),请用不等式表示下表中的不等关系.解由题意可获取以下主要信息:(1)身高用h(米)表示,物体长、宽、高尺寸之和为P(厘米);(2)题中要求用不等式表示不等关系.解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34,又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 答案 C解析 对于A ,x 应满足x ≤2 000,故A 错误;对于B ,x ,y 应满足x <y ,故B 错误;C 正确;对于D ,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100答案 C解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关答案 A解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .随x 值变化而变化答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .(a +4)(b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 答案 C解析 由题意知a >4b ,根据面积公式可以得到(a +4)(b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 答案 |x -500|≤1解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________.答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1),所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A ,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y , 得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130. ∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =N D .无法确定答案 B解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12答案 A解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式(组)将题中的不等关系表示为________.答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *)解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.(填“>”“<”“=”) 答案 >解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1) =a 1(b 1-b 2)+a 2(b 2-b 1) =(b 1-b 2)(a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即(b 1-b 2)(a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 (1)如果a =b ,那么b =a . (2)如果a =b ,b =c ,那么a =c . (3)如果a =b ,那么a ±c =b ±c . (4)如果a =b ,那么ac =bc . (5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 (1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.答案 ①③解析 对于①,若ab >0,则1ab>0, 又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-(-10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a (b +m )<b (a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.(2)已知a >b >0,c <d <0.求证:3a d<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-ad>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确. 故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8(a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定答案 C解析 P 2=2a +13+2(a +6)(a +7), Q 2=2a +13+2(a +5)(a +8),因为(a +6)(a +7)-(a +5)(a +8)=a 2+13a +42-(a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b ,则a >0,b <0B .若a >b ,b ≠0,则ab >1C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d 答案 A解析 对于A ,∵1a >1b ,∴b -a ab >0,又a >b ,∴b -a <0,∴ab <0, ∴a >0,b <0,故A 正确;对于B ,当a >0,b <0时,有ab<1,故B 错;对于C ,当a =10,b =2时,有10+1>2+3,但1<3, 故C 错;对于D ,当a =-1,b =-2时,有(-1)×(-1)>(-2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和ab 的取值范围.解 ∵15<b <36,∴-36<-b <-15, ∴12-36<a -b <60-15,即-24<a -b <45. 又136<1b <115,∴1236<a b <6015,即13<a b <4. 故-24<a -b <45,13<a b <4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________. 答案 -32<2a -b <52解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12(a +b )-32(-a +b ),结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |答案 A解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .(a -b )c 2≥0答案 D解析 ∵a >b ,∴a -b >0,∴(a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数答案 A解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 答案 C解析 利用性质可得A ,B ,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 答案 D解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 答案 a >0>b解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.答案 ②③解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<(-3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.答案 z >y >x解析 ∵a >b >c >0,y 2-x 2=b 2+(c +a )2-a 2-(b +c )2=2ac -2bc=2c (a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.(1)若a <b ,c <0,则c a <c b; (2)a c 3<b c 3,则a >b ; (3)若a >b ,且k ∈N *,则a k >b k ;(4)若a >b ,b >c ,则a -b >b -c .解 (1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. (2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.(3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.(4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52(a +b )<152,-2<-12(a -b )<-1, 所以-92<52(a +b )-12(a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b答案 D 解析 对于A ,若c <0,其不成立;对于B ,若a ,b 均小于0或a <0,其不成立;对于C ,若a >0,b <0,其不成立;对于D ,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 答案 C解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C ,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a ,b ,c ,d ,已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )A .d >b >a >cB .b >c >d >aC .d >b >c >aD .c >a >d >b答案 A解析 ∵a +b =c +d ,a +d >b +c ,∴a +d +(a +b )>b +c +(c +d ),即a >c .∴b <d .又a+c<b,∴a<b.综上可得,d>b>a>c.。
高中基本不等式知识点归纳总结一、基本概念:不等式是数学中的一种关系,表示两个数之间的大小关系。
高中基本不等式主要包括一元一次不等式、一元二次不等式和简单的多元不等式。
二、一元一次不等式:一元一次不等式是指只有一个未知数,并且未知数的最高次数为1的不等式。
解一元一次不等式的关键是确定未知数的取值范围。
常用的解法有图像法、代入法和分段讨论法。
三、一元二次不等式:一元二次不等式是指只有一个未知数,并且未知数的最高次数为2的不等式。
解一元二次不等式的关键是找到不等式的根,并确定根的取值范围。
常用的解法有图像法、配方法和开口方向法。
四、基本性质:1. 对称性:如果a>b,则-b>-a。
2. 传递性:如果a>b,并且b>c,则a>c。
3. 加减性:如果a>b,则a+c>b+c,a-c>b-c。
4. 倍数性:如果a>b,并且c>0,则ac>bc;如果a>b,并且c<0,则ac<bc。
五、常用不等式:1. 平均值不等式:对于任意非负实数a和b,有(a+b)/2 >= √(ab)。
2. 柯西-施瓦茨不等式:对于任意实数a1、a2、...、an和b1、b2、...、bn,有|(a1b1+a2b2+...+anbn)| <= √(a1^2+a2^2+...+an^2)√(b1^2+b2^2+...+bn^2)。
3. 三角不等式:对于任意实数a和b,有|a+b| <= |a|+|b|。
六、应用:1. 解实际问题:不等式在解决实际问题中起着重要作用,例如在优化问题、最值问题和约束问题中常常会用到不等式。
2. 推导其他不等式:基本不等式可以推导出其他不等式,例如根据平均值不等式可以推导出均值不等式和加权均值不等式。
七、注意事项:1. 在解不等式时,需要注意不等号的方向,切勿将不等号颠倒。
2. 在使用不等式进行推导时,需要保持不等式的严格性,即不等号不能变为等号,否则可能导致错误的结论。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。
高一基本不等式的知识点在数学学科中,不等式是我们经常遇到的一类问题,也是解决实际问题和推理证明的常用工具。
在高中数学的学习中,如何正确处理和应用不等式是非常重要的。
本文将介绍一些高一阶段常见的基本不等式的知识点,希望能够对同学们的学习有所帮助。
一、正数不等式的基本性质正数不等式是我们在学习不等式时最常见的一种形式。
正数不等式的基本性质有以下几点:1. 加减同项,不等号方向不变。
例如,若a>b,则a+c>b+c,a-c>b-c。
2. 乘除同正数,不等号方向不变。
例如,若a>b,且c>0,则ac>bc,a/c>b/c。
3. 乘除同负数,不等号方向改变。
例如,若a>b,且c<0,则ac<bc,a/c< b/c。
二、平方不等式的知识点平方不等式是高一阶段经常遇到的一个重要内容。
对于大多数正实数和负实数,我们可以使用平方不等式进行简化和推导。
以下是一些常见的平方不等式知识点:1. 平方不等式基本性质:对于任意实数a和b,若a>b,那么a^2>b^2。
这是由于当a和b都为正数或负数时,平方操作不改变不等关系;而当a为正数,b为负数时,平方操作会改变不等关系。
2. 平方不等式求解方法:对于形如x^2-c>0的平方不等式,我们可以通过因式分解法或配方法将其转化为(x-a)(x-b)>0的形式,然后根据零点的位置关系进行讨论求解。
三、绝对值不等式的知识点绝对值不等式也是高一数学中重要的内容之一。
绝对值不等式的处理方法与普通的不等式稍有不同,需要注意以下几个方面:1. 绝对值不等式基本性质:对于任意实数a和b,若|a|>|b|,那么a^2>b^2。
这是因为绝对值的定义决定了当a和b的符号不同时,|a|>|b|必然意味着a^2>b^2。
2. 绝对值不等式求解方法:对于形如|ax+b|>c或|ax+b|<c的绝对值不等式,我们可以根据绝对值的定义将其转化为不等式组形式进行求解。
高中数学必修一等式与不等式知识点总结
一、基本概念
1. 等式:左右两边相等的代数式
2. 不等式:左右两边不相等的代数式
3. 方程:带有未知数的等式
4. 不等式组:包含两个或更多个不等式的集合
5. 绝对值:一个数与0的距离,表示为|a|
二、等式的性质
1. 可以对等式两边同时加或减相同的量
2. 可以对等式两边同时乘或除相同的非零量
3. 可以交换等式两边的位置
4. 可以用等式左边的代数式替换等式右边的代数式,反之亦然
三、不等式的性质
1. 可以对不等式两边同时加或减相同的量
2. 可以对不等式两边同时乘或除相同的正数
3. 可以交换不等式两边的位置,但是要改变不等式符号的方向
4. 可以用不等式左边的代数式替换不等式右边的代数式,反之亦然,但是需要保证代数式符号的一致性
四、一元一次方程
1. 基本形式为ax+b=0
2. 解一元一次方程的步骤:
1. 移项,将常数项移到一边
2. 约项,将同类项合并
3. 系数化为1,将未知数系数变为1
4. 检验解
五、一元二次方程
1. 基本形式为ax²+bx+c=0
2. 解一元二次方程的步骤:
1. 求出判别式△=b²-4ac的值
2. 当△>0时,方程有两个不相等的实根;当△=0时,方程有一个二重根;当△<0时,方程无实根,有两个共轭复数根
3. 代入求解,根据公式x1,2=(-b±√△)/2a求出根
4. 检验解
六、一元一次不等式
1. 基本形式为ax+b>0或ax+b<0
2. 解一元一次不等式的步骤:
1. 移项,将常数项移到一边
2. 约项,将同类项合并
3. 乘以一个正数或负数,使得未知数系数的符号与不等式的符号一致
4. 检验解
七、一元二次不等式
1. 基本形式为ax²+bx+c>0或ax²+bx+c<0
2. 解一元二次不等式的步骤:
1. 求出解集,将不等式化为(ax-d)·(ax-e)>0或(ax-d)·(ax-e)<0的形式,再根据函数图像、零点、辅助函数等方法求解
2. 将求出的解集与区间合并,得到不等式的解集
以上是高中数学必修一等式与不等式知识点的总结,通过掌握这些知识点,可以有效地解决数学中的方程与不等式问题。