贝雷梁支架计算书
- 格式:doc
- 大小:433.50 KB
- 文档页数:7
贝雷架计算书1、计算荷载①自重(33m桁架)其中1为2I8截面、2为3I8截面、3为I8截面、4为4[10截面、5为I16截面、6为I4截面;3包括斜撑、横撑、竖杆、斜杆。
桁架自重123.5t;43根分配梁(I16_3.75m)3.24t;2条钢轨(I14_31.5m)1.04t;(21m桁架)其中1为2I8截面、2为3I8截面、3为I8截面、4为4[10截面、5为I16截面、6为I4截面;3包括斜撑、横撑、竖杆、斜杆。
桁架自重52.3t;27根分配梁(I16_2.35m)1.28t;2条钢轨(I14_19.5m)0.6t;②风荷载(由于对贝雷架本身作用很小,故忽略,具体数值见桥墩计算)③箱梁荷载以125t/12m为荷载级度做纵向加载,33米贝雷架的每根钢轨上的均布荷载为54.5kN/m;21米贝雷架的每根钢轨上的均布荷载为56.1kN/m;④施工荷载0.3t/m,由于33m长的贝雷架还不到10t重,所以计算中假定自重荷载中包括了施工荷载,不做另计。
2、计算模型(以33米贝雷架为例、21米贝雷架类似)33米贝雷架立面图33米贝雷架平面图33米贝雷架侧面图3、计算结果①33米贝雷架反力:荷载组合类型荷载组合内容应力:桁架应力:可以看到,在端部及跨中应力较大,最大的端斜杆,跨中上下弦杆87.4Mpa,端柱应力为72Mpa。
梁应力:(分配梁及轨道)可见,轨道的应力大于分配梁的应力,轨道上最大应力81.2Mpa, 分配梁上最大应力63Mpa。
位移: 桁架位移:在承压钢梁和自重下,桁架竖向挠度2.713cm 。
贝雷梁非弹性挠度 ()()cm n f m 105.02-= n 为奇数;所以,cm f m 6120*05.0==;总位移为6+2.713=8.713cm cm L 5.560033600==>。
需设置预拱度来调整梁底标高。
在承压钢梁和自重下,升温21度时,桁架纵桥向位移+1.442cm。
贝雷梁支架计算书一、主要荷载分析根据本工程桥梁结构特点,取一天门第五联进行验算(此跨为本桥跨径最大15米,平均高度30米)箱梁尺寸:(宽×高)9.5×2.5米,贝雷片最大跨度15米。
新浇混凝土密度---取26KN/m3。
模板自重---取0.5KN/m2。
人、机、料及施工附加荷载---取4.0KN/m2。
二、单根立杆受力验算根据《建筑施工碗扣式钢管脚手架安全技术规范》有关模板支架立杆的强度及稳定性计算公式进行分析计算。
取箱梁实心段(中腹板)下单根立杆(受力最大情况)作验算标准。
具体参数如下:表1 立杆允许设计荷载表2 碗扣式脚手架主要构、配件种类、规格及用途①强度验算单根立杆实际承受的荷载为:N=1.2×(N G1+N G2)+0.9×1.4×ΣN QiN G1—脚手架结构自重标准值产生的轴向力N G2—脚手板及构配件自重标准值产生的轴向力ΣN Qi—施工荷载产生的轴向力总和于是,有:N G1=7.41+10.67×2+3.97×16+9.69+8.5=110.5kg=1.1KN(按搭设高度最高4.6m计算)N G2=(3.1×0.6×26)/3=16.1KN(单根立杆范围内砼自重,取腹板下3根立杆下均值)ΣN Qi=(0.5+4.0)×(0.6×0.6)=1.6KN(施工荷载)所以:N=1.2×(1.1+16.1)+0.9×1.4×1.6=22.7KN根据立杆的设计允许荷载,当横杆步距为120cm时,单根立杆可承受的最大允许竖直荷载为[N]=30kN(见表2)。
[]NN<(立杆强度满足要求)因立杆高度只有4米,立杆的稳定性在此不再作计算。
三、贝雷片受力验算根据纵断面布置情况,取最大跨径21m进行计算:(详见附图)①腹板砼重量:(空心段,按21m计算,取中腹板下3根立杆范围)a=1.85×21×26=1010.1KN②横隔板砼重量:(实心段,按3m计算)b=2.1×1.7×3×26=278.5KN③满堂碗扣支架自重:(支架高度取最高4.6m,横杆步距1.2m)单根立杆自重:C1=7.41+10.67×2+3.97×16+9.69+8.5=110.5kg 立杆数量:C2=(24/0.9)×3=80根 碗扣支架自重:c=C1×C2=110.5×80=8840kg=88.4KN④附加荷载:(静荷载取1.2系数;动荷载取1.4系数) d=1.2×0.5×2.1×24+1.4×4.0×2.1×24=312.5KN ⑤荷载集度:q=(a+b+c+d)/24=70.4KN/m把整跨视为均布荷载,可知由4根贝雷片平均分配,所以单根贝雷片荷载集度为:q/4=70.4/4=17.6KN/m 受力分析 最大弯矩为:m KN 2.970216.1781ql 81M 22max•=⨯⨯== []m KN 5.1687M M max •=< (弯矩满足要求) 最大剪力为:KN 8.184216.1721ql 21Q max =⨯⨯==[]KN 2.245Q Q max =<(剪力满足要求)挠度验算:(查表得钢材弹性模量E=2.1×105MPa )m 037.0cm577500m /KN 101.2384m 21m /KN 6.175EI 384ql 5f 42844x 4=⨯⨯⨯⨯⨯==mm 5.5240021000400l f ==<(挠度满足要求)四、I56a 主分配梁受力验算I56a 工字钢特性:(查表得)b=166mm 、h=560mm 、t=21mm 、d=12.5mm 、Ix=65576cm 4、Wx=2342cm 3、ix=22.01cm 、Iy=1365.8cm 4、Wy=164.6cm 3、iy=3.18cm 、A=135.38cm 2①贝雷片自重:(查表得单片重量:270kg/片)q 贝雷=270×8×14=30240kg=302KN (按24m 计,共8片,14排) ②箱梁自重:(以跨径24m 计算,21m 空心段,3m 实心段) q=(6.3×21+6.5×1.7×3)×26=4301.7KN (6.3为断面面积) ③满堂支架重量:单根立杆自重:(取最大3.6m 高)C1=7.41+10.67×2+3.97×16+9.69+8.5=110.5kg 立杆数量:C2=(24/0.9)×15=400根 碗扣支架自重:c=C1×C2=110.5×400=44200kg=442KN④附加荷载:(静荷载取1.2系数;动荷载取1.4系数) d=1.2×0.5×9.5×24+1.4×4.0×9.5×24=1413.6KNI56a 工字钢主分配梁受力模型可视为简支梁形式,把24m 箱梁视为一跨,由两端工字钢支点受力,那么单端受力情况为:q1=(q+q 贝雷+c+d)/2=3229.7KN⑤荷载集度:(工字钢12m 长,考虑两片工字钢合并平均受力) q2=q1/12/2=134.6KN/m受力分析,弯矩最大发生在4.0m 位置,详见钢管桩平面布置图。
合肥市铜陵路高架工程临时支架计算书计算:复核:总工程师:浙江兴土桥梁建设有限公司二OO二年三月目录1. 概述 (1)1.1上部结构 (2)1.2下部构造 (2)2. 计算依据 (2)3. 荷载参数 (2)3.1基本荷载 (2)4.荷载组合与验算准则 (3)4.1支架荷载组合 (3)5.结构计算 (3)5.1桥面系计算 (3)5.2主梁计算 (5)5.3栏杆计算 (9)5.4承重梁计算 (9)5.5桩基础计算 (10)1. 概述合肥市铜陵路桥老桥位于合肥市铜陵路南段,横跨南淝河,结构形式为独塔双索面无背索部分斜拉桥预应力混凝土梁组合体系,桥长136米,桥面宽38米,桥跨布置为30米+66米+30米,根据铜陵路高架工程总体要求,在铜陵路老桥两侧各建设一座辅道桥,单侧辅道桥面宽19.0米,新、老桥的桥面净距为0.5米。
主桥钢箱梁安装用钢支架施工,钢支架主要设计情况为,单侧拓宽桥支架设计长度约117米,宽度19米,支架上部采用连续贝雷梁与型钢组合,下部结构采用钢管桩基础。
本支架主跨分为9m、12m两种。
支架设计控制荷载为钢箱梁重量和钢箱梁内钢筋砼重量。
支架总体布置图如图1和图2所示图1 支架立面布置图图2 支架横断面布置图1.1上部结构1.1.1 跨径:支架跨径分为9m、12m梁种,均按连续梁设计。
1.1.2 桥宽:支架桥面净宽为19m。
1.1.3主梁:支架主梁贝雷梁组拼,横桥向布置18片,详见图2和图3所示。
贝雷梁钢材为16Mn,贝雷梁销轴钢材为30CrMnSi。
1.1.4支撑架:纵向主梁之间设置支撑架;1.1.5分配梁:桥面分配梁为I22a。
1.1.6 支架高程:+13.102m。
1.2下部构造1.2.1墩顶承重梁:均采用2I40a规格。
1.2.2桩基础:采用直径630*8mm和426*8mm规格钢管桩图3 基础布置图2. 计算依据1)《钢结构设计规范》(GB50017-2003);2)《混凝土结构设计规范》(GB50010-2002);3)《公路桥涵设计通用规范》(JTG D60-2004);4)《公路桥涵地基与基础设计规范》(JTG D63-2007);5)《装配式公路钢桥多用途使用手册》(黄绍金等编著)人民交通出版社。
铁路桥32m预应力混凝土箱梁贝雷梁支架检算书Xxx交通大学工程检测有限公司2017年4月项目名称:铁路桥32m预应力混凝土箱梁贝雷梁钢管支架检算计算:复核:审核:检测单位:xxx交通大学工程检测有限公司委托单位:2017年4月25日32m预应力混凝土箱梁贝雷梁钢管支架检算书目录1计算依据及计算方式........................................................................................................ - 1 -1.1计算依据 . (1)1.2计算方式 (1)2工程概况............................................................................................................................ - 1 -3支架布设............................................................................................................................ - 3 -4荷载计算............................................................................................................................ - 3 -4.1腹板部位荷载计算 (4)4.2底板部位荷载计算 (5)4.3翼缘板部位荷载计算 (6)5方木纵梁检算.................................................................................................................... - 7 -6 I10工字钢横向分配梁检算 ............................................................................................. - 8 -6.1 腹板处分配梁检算................................................................................................. - 8 -6.2 底板处分配梁检算................................................................................................. - 9 -7 贝雷梁检算..................................................................................................................... - 10 -7.1计算说明 .. (10)7.2材料力学特性 (10)7.3贝雷梁检算 (11)7.3.1腹板处贝雷梁检算 (11)7.3.2底板处贝雷梁检算 (12)7.3.3翼缘板处贝雷梁检算 (14)8 双拼I45A工字钢横梁检算 .......................................................................................... - 14 -9 Φ600×8钢管柱检算 ....................................................................................................... - 16 -10基础及地基承载力检算................................................................................................ - 17 -10.1基础承载力检算 (17)10.2地基承载力检算 (18)11建议 ................................................................................................................................ - 18 -1计算依据及计算方式1.1计算依据1、《建筑五金实用手册》;2、《路桥施工计算手册》;3、《钢管结构技术规程》(CECS 280-2010);4、《门式刚架轻型房屋钢结构技术规程》(CECS 102-2012版);5、《公路桥涵施工技术规范》(JTGT F50-2011);6、《钢管混凝土结构设计与施工规范》(CECS 28-2012);7、《建筑地基处理技术规范》(JGJ 79-2012);8、《混凝土结构设计规范》(GB50010-2010);9、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2015);10、《铁路桥涵混凝土结构设计规范》(TB 10092-2017);11、《铁路桥涵地基和基础设计规范》(TB 10093-2017) ;12、《铁路桥涵设计规范》(TB 10002-2017);13、《客运专线铁路桥涵工程施工技术指南》(TZ 213-2005);14、《钢结构设计规范》(GB50017-2003);15、《建筑施工碗扣式脚手架安全技术规范》(JGJ+166-2008);16、《建筑施工临时支撑结构技术规范》(JGJ300-2013);17、《钢筋锚固板应用技术规程》(JGJ256-2011);18、银西施桥参27-1-32m现浇简支梁施工设计图纸。
贝雷支架 计算书(1稿)编制: 复核: 审核:321贝雷支架计算书1、支架概述该支架为组合支架:采用321贝雷作为承重纵梁,纵梁顶布置满堂支架,满堂支架支撑钢管为φ48×3.5mm 钢管。
箱梁底模和侧模采用钢模板,横向方木为8×8cm ,纵向方木为10×10cm 。
支架的总体布置见附图。
2、栈桥验算墩柱内的贝雷纵梁在上部满堂支架搭设前先做栈桥使用,通行汽车进行材料运输。
2.1、汽车荷载设计汽车荷载为80吨,单车道,其布置如下图1。
80KN180KN270KN270KN80吨车图1 80吨汽车荷载布置图2.2、321贝雷计算参数 321贝雷计算参数如下表1。
表1 加强型321贝雷力学性能表惯性矩(cm4) 抗弯截面参数(cm3) 容许弯矩(KN ·m) 容许剪力(KN) I W [M 0] [Q 0] 577434.47699.11687.5245.22.3、桥面板计算2.3.1、组合式桥面板结构桥面结构为12mm 钢板+Ⅰ12工字钢,工字钢间距为20cm 。
2.3.2、面板计算 (1)、面板截面参数取1mm 宽度计算,截面参数如下: 12133412311112121111214412121246b mmA b h mm I b h mm W b h mm ===⨯===⨯⨯=== (2)轮载取满载轮压计算。
2702211250.20.6Pp KPa ab ===⨯ (3)受力计算按3等跨连续梁计算,计算跨径200mm 。
122max max 44max50.0011125 1.125/ 1.125/0.10.1 1.12520045004500187.5215240.6770.677 1.1252002000.40.5100100 2.110144400q b p KN m N mmM ql N mmM MPa f MPa W ql mm mm EI σδ==⨯====⨯⨯=⋅====⨯⨯====⨯⨯⨯(4)结论面板的强度和刚度满足规范要求。
中跨贝雷梁及碗扣架计算一、荷载计算1、荷载计算概述连续梁结构形式为40+60+40m现浇连续梁。
现浇支架结构拟采用钢管做墩、上布设贝雷梁,贝雷梁上布设碗扣钢管支架。
该桥中跨在支架布置时贝雷梁单跨跨度最大,因此,该桥支架计算以中跨为对象。
贝雷梁所承受荷载为梁体重量和碗扣钢管支架重量两部分。
考虑到梁体沿桥纵向横截面变化、支架钢管间距变化等原因,为方便计算,现沿桥梁中跨纵向将荷载分为A~H区(1/2跨),横向将荷载分为1~5区,如图1、2、3所示。
12345图1 荷载纵向分区示意图(单位:cm) 图2 荷载横向分区示意图(单位:cm)图3 荷载横、纵向分区编号示意图(单位:cm)2、现以B1区为例,对其进行荷载计算:(1)梁体自重为简化计算,在该区内忽略梁体沿纵桥向横截面变化,梁体横截面按照该段内最大C-C 截面进行计算,这样计算的结果比实际结构的重量要大,肯定是偏于安全的C-C截面1区域面积:S= 0.68 m2;此区域梁体纵向长度为5.0m,横向长度为1.95m;混凝土容重26kN/m3。
故B1区域总荷载为:F梁=0.68×5.00×26kN=88.4kN此区域内沿梁纵向支架立杆共分为8排,故将B1区域荷载纵向分为8排,每排荷载:Fˊ =88.4/8=11.05kN。
因加载时为线荷载,转化为线荷载为:q1=11.05kN/1.95=5.67kN/m(2)支架重量B1区域内,取支架立杆高度均为5.00米,立杆根数:n=3×8=24根则B1区域内立杆总重量:S钢管= 489.055mm2F立杆=78.5kN/m3×489.055mm2×10-6×5m×24=4.61 kNB1区域内,3层支架横杆总长度为:(1.95×8+3×5)×3=91.8m则B1区域内横杆总重量:F横杆=78.5kN/m3×489.055mm2×10-6×91.8m=3.52kN故B1区域支架总荷载为:F支架= F立杆+F横杆=4.61 +3.52=8.13 kN同上,将B1区域荷载纵向分为8排,每排荷载:Fˊ =8.13/8=1.02kN因加载时为线荷载,转化为线荷载为:q2=1.02kN/1.95=0.52kN/m(3)荷载组合:考虑模板、施工机具和人员重量,因此梁体自重荷载分项系数取1.3,碗扣支架自重荷载分项系数取1.4,故在B1区域内,荷载纵向分为8排,每排荷载q=1.3×5.67+1.4×0.52=8.10kN/m。
122.5m跨越处门洞计算书1.1荷载取值静荷载:模板及支架自重1.5kN/m2钢筋混凝土结构自重(钢筋混凝土比重26KN/m3)碗口式脚手架自重3.6 kN/m2贝雷梁自重3.8 kN/m2动荷载:施工荷载2.5 kN/m2振捣荷载2.0 kN/m21.1.1强度荷载计算拟采用双排双层加强型贝类梁,腹板下间距拟采用60cm,标准箱室断面间距采用100cm。
腹板段:1.2×(26×1.8+1.5+3.6+3.8)+1.4×(2.5+2)=73.14KN/m2标准段:标准段仅含顶板、底板,厚度分别为20cm,22cm,考虑到箱室内斜角高度均为15cm,因此保守计算,取值净混凝土高度:0.22+0.2+0.15*2=0.72m1.2×(26×0.72+1.5+3.6+3.8)+1.4×(2.5+2)=39.5KN/m2翼缘板段:混凝土翼缘板厚度保守计算取值47cm。
1.2×(26×0.47+1.5+3.6+3.8)+1.4×(2.5+2)=31.65KN/m21.1.2刚度验算荷载取标准值。
腹板段:26×1.8+1.5+3.6+3.8=55.7 KN/m2箱室段:26×0.72+1.5+3.6+3.8=27.62KN/m2翼缘板段:26×0.47+1.5+3.6+3.8=21.12KN/m21.1.3计算模型以一跨简支梁作为计算模型。
1.2跨度22.5m门洞验算(1)贝雷梁性能,双排单层加强型查表:截面模量W=30641.7cm3惯性矩I=4596255.2cm4弹性模量E=203×103MPa 允许弯矩[M]=6750KN·m允许弯应力[σ]=240 MPa 允许剪力[V]=490.5 KN (2)强度验算A.腹板段(间距0.5m布置)Mmax=ql2/8=0.125×73.14×0.5×22.52=2314.20KN·m<[M]f max = Mmax/W=2314.20÷(30641.7×10-6)=75524.5KN/m2=75.53MPa<[σ]则强度满足要求。
水上现浇箱梁贝雷梁支架计算书水上施工,需采用钢管桩搭设贝雷梁作为支架基础,再在贝雷梁上搭设钢管支架的方案。
以27m跨径为例,其中贝雷梁按三跨连续梁,每跨9m,横向设置18组双排单层贝雷梁,在腹板下设置2组双排单层贝雷梁,每个桥跨之间的贝雷梁下设置4排钢管(直径60cm),每排钢管13根,钢管长度19.5m,入土长度19m。
(一)计算荷载1、箱梁恒载计算:C50砼荷载:1943.2m3/4*24KN/m3=11659.20KN钢筋及钢绞线荷载:712.10KN+141.13KN=853.23KN恒载:P1=11659.20+853.23=12512.43KN2、支架模板荷载:(1)底模自重荷载:(底模重量按8.0KN/m3)P1'=0.015m*17m*28m*8.0KN/m3=57.12KN(2)侧模自重荷载:P2'=0.015m*1.7m*28m*2*8.0KN/m3=11.42KN(3)翼缘板底模自重荷载:P3'=0.015m*3.75m*28m*2*8.0KN/m3=25.20KN(4)模自重荷载:P4'=0.015m*38m*28m*8.0KN/m3=127.68KN(5)模板底小肋自重荷载:(小肋横桥向布置,间距0.2m,尺寸0.1m*0.1m)P5'=(17m+1.7m*2+3.75m*2)*28m*0.1m*0.1m*8.0 KN/m3/0.2m=312.48KN (6)模板底大肋自重荷载:(大肋纵桥向布置,间距0.6m,尺寸0.1m*0.15m)P6'=(17m+1.7*2m+3.75m*2)*28m*0.1m*0.15m*8.0 KN/m3/0.6m=156.24KN (7)支架自重荷载:立杆横桥向0.6m布置,纵桥向0.9m布置,支架平均高度4m,水平杆按1.2m布置立杆自重荷载:25.5*28*4/0.6/0.9=203.09KN横杆自重荷载:25.5*28*4/0.6+25.5*28*4/0.9=304.64KN支架自重荷载:P7'=203.09+304.64=507.73KN支架及模板荷载:P2=P1'+P2'+P3'+P4'+P5'+P6'+P7'=1197.87KN3、人和机具在模板上移动荷载(取2.5KN/m2):P3=25.5*28*2.5=1785KN4、振捣混凝土产生的荷载(取2.0KN/m2):P4=25.5*28*2=1428KN5、倾倒混凝土时产生的荷载(取2.0KN/m2)P5=25.5*28*2=1428KN6、28a工字钢自重荷载:P6=34*26.5*43.47=391.66KN平均荷载:Q6=0.534KN/m27、贝雷梁自重荷载P7=9*36*2.7=874.8KN8、36a工字钢自重荷载:P8=25.5*8*59.9=122.2KN9、20mm厚钢板自重荷载(与钢管桩焊接,0.8m*0.8m):P9=52*0.8*0.8*0.02*78KN=51.92KN10、钢管桩自重荷载:(4排,每排13根Φ600mm钢管桩)钢管桩由钢板卷制而成,钢板选用10mm厚度。
重庆市机场专用快速路北段工程第I标段(跑马坪立交至石坝子立交含段)贝雷梁支架受力计算书编制:复核:批准:单位总工批准:重庆市涪陵路桥工程有限公司机场专用快速路工程北段Ⅰ标项目部二○一一年六月贝雷梁支架设计计算取第一联第二左幅跨计算。
箱梁顶面宽22m,底宽13.5m,梁高2.2m,单箱三室,中腹板宽0.6m,边斜腹板宽0.6m,顶板厚0.28m,底板厚0.22m,悬臂3.5,厚0.55~0.2m。
一、结构图1二、.材料参数及特性①钢筋砼跨中正截面A=14.722m2 容重Q1= 26 kN/m3 超载系数 1.05②木材Q2=7.50 kN/m3[σ]=11 MPa [τ]=1.3 MPa10×10木方q1=0.075kN/m A=1.0×104㎜2=1.667×105㎜ 3Ⅰx=8.33×106 ㎜ 4 WX12×12木方q2=0.108kN/m A=1.44×104㎜2=2.88×105㎜Ⅰx=1.728×107 ㎜ 4 WX③贝檑梁q3=1 kN /m A=5.1×103㎜2 [σ]=220 MPa=3.5785×106㎜ 3Ⅰx=2.50497×109 ㎜ 4 WX④设上、下加强弦杆贝檑梁q4=1.4 kN /m A=1.02×104㎜2 [σ]=220 MPaⅠ,x=2.50497×109 + 4×1274×8002 =5.766×109= Ⅰ,x/750=7.6885×106㎜ 3WX⑤Ⅰ50a q5=0.9361kN/m A=1.1925×104㎜2[σ]=215 MPa [τ]=125 MPa=1.859×106㎜3Ⅰx=46472×108㎜ 4 WX⑥[10a q6=0.1 kN /m A=1.274×103㎜2 [σ]=215 MPaⅠx=1.983×106 ㎜ 4 W=3.97×104㎜ 3X⑦竹胶板18mm q7=0.135 kN/m2 A=1.8×104㎜2/m [σ]=11 MPa=5.4×104㎜3/mⅠx=4.86×105㎜4/m WX=4494㎜3,,υ=⑧脚手架钢管Φ48×3,A=424㎜2,,I=107859㎜ 4 ,WX步距1.2m,三、箱梁荷载钢筋砼容重26 kN/m31.箱梁正截面:A=14.72㎡,qc1=38.27t/m=382.7kN/m×1.05=402kN/m2.跨中横梁0.3m, A=31.765㎡,qc2=86.72(沿桥长分布)3.支点横梁2.0m, A=32.52㎡, qc3=88.78t/m(沿桥长分布)4.端横梁1.5m, A=32.52㎡, qc4=88.78t/m(沿桥长分布)5.腹板qc5=0.6×2.0×26×1.05=32.76 kN/m26.顶板qc6=0.28×1.0×1.0×26×1.05=7.644 kN/m27.底板qc7=0.22×1.0×1.0×26×1.05=6.00 kN/m28.悬臀板qc6=(0.2+0.55)÷2×3.5×2.6×1.05=35.8 kN/m四、施工荷载1.人群及小型机具荷载g1=1.00 kN/m22.砼振捣冲击g2=2.00 kN/m23.模板体系g3=1.00 kN/m2五、安全系数K2=1.3六、支架受力计算1、正截面设三个支墩,分别设立于距墩中心2.0m处和跨中,梁长38.4m,计算跨度17.2m 箱梁正截面:A=14.72㎡,qc1=14.72×2.6×1.05=40.2t/m=402 kN/m=402N/㎜,K=1.3计算式:按两等跨连续梁计算,查表得:跨内最大弯矩Mmax=0.07qL2 ,中间支点最大负弯矩Mmax=0.125qL2,支点反力QA=0.375qL,支点反力QB=0.625qL,跨中挠度f=0.521×qL4/100EI荷载组合∑q=箱梁砼qc1+顶、底板模板体系g3+人群荷载g1+砼振捣冲击g2=402kN/m +(1+1+2)×22=490 kN/m取∑q=490×1.3=637 kN/m①.支点最大负弯矩Mmax=0.125q1L2=0.125×637×172002=2.355626×1010 N·㎜需用贝雷梁n=M/[σ]W=2.355626×1010/(3.5785×106×220)=30片,②.跨内最大弯矩Mmax=0.07qL2=0.07×637×172002=1.31915056×1010 N·㎜需用贝雷梁n=M/[σ]W=1.31915056×1010/(3.5785×106×220)=17片,2.腹板下计算qc5=32.76KN/m,取∑q=(32.76+4×0.6)×1.3=45.708 KN/m支点最大负弯矩Mmax=0.125q1L2=0.125×45.708×172002=1.69×109 N·㎜跨内最大弯矩Mmax=0.07qL2=0.07×45.708×172002=9.466×108 N·㎜需用贝雷梁n=M/[σ]W=1.846×109 /(3.5785×106×220)=2.2片,3.悬臀板qc6=35.8 kN/m取∑q=(35.8+4×3.5)×1.3=64.74 kN/㎜支点最大负弯矩Mmax=0.125q1L2=0.125×64.74×172002=2.39408×109 N·㎜跨内最大弯矩Mmax=0.07qL2=0.07×64.74×172002=1.34069×109 N·㎜需用贝雷梁n=M/[σ]W=2.39408×109 /(3.5785×106×220)=3.片,七、贝雷梁支架验算:根据上述计算,结合箱梁结构情况,决定采用加强弦杆贝雷梁18片,腹板下2片一组,腹板2片一组,悬臂各2片一组,共9组。
西山漾大桥贝雷梁支架计算书1.设计依据设计图纸及相关设计文件《贝雷梁设计参数》《钢结构设计规范》《公路桥涵设计规范》《装配式公路钢桥多用途使用手册》《路桥施工计算手册》《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130—2011)2.支架布置图在承台外侧设置钢管桩φ609×14mm,每侧承台2根,布置形式如下:钢管桩与承台上方设置400*200*21*13的双拼H型钢连成整体。
下横梁上方设置贝雷梁,贝雷梁采用33排单层321标准型贝雷片,贝雷片横向布置间距为450mm。
贝雷梁上设置上横梁,采用20#槽钢@600mm。
于上横梁上设置满堂支架.支架采用钢管式支架,箱梁两端实心部分采用100×100方木支撑,立杆为450×450mm;并在立杆底部设二个倒拔塞便于拆模。
箱梁腹板下立杆采用600(横向)×300mm (纵向)布置。
横杆步距为1。
2m,(其它空心部位立杆采用600(横向)×600mm(纵向)布置)。
内模板支架立杆为750(横向)×750mm(纵向)布置.横杆步距为≤1。
5m。
箱梁的模板采用方木与夹板组合;两端实心及腹板部位下设100*100mm方木间距为250mm.翼板及其它空心部位设50*100mm方木间距为250mm。
内模板采用50*100mm方木间距为250mm。
夹板均采用1220*2440*15mm的竹夹板.具体布置见下图:3.材料设计参数3.1.竹胶板:规格1220×2440×15mm根据《竹编胶合板国家标准》(GB/T13123—2003),现场采用15mm厚光面竹胶板为ρ。
Ⅱ类一等品,静弯曲强度≥50MPa,弹性模量E≥5×103MPa;密度取310m=/KN3.2.木材100×100mm的方木为针叶材,A—2类,方木的力学性能指标按”公路桥涵钢结构及木结构设计规范"中的A-2类木材并按湿材乘0。
简支箱梁贝雷支架现浇施工方案计算书
一、工程概况
为加快现浇简支箱梁施工进度,确保施工工期,施工单位决定增加2套贝雷支架和1套箱梁模板,进行现浇简支箱梁的施工。
计划采用贝雷支架进行箱梁现浇的桥梁孔跨位置见下表:
表1计划采用贝雷支架的桥梁孔跨
序号桥梁名称制梁位置孔跨数备注
2孔24m梁,
1 东边山大桥全桥
梁高3.05m
2孔32m梁
1孔24m梁,
2 陈福湾1#大桥全桥
梁高3.05m
9孔32m梁
3孔24m梁,
合计
11孔32m梁
贝雷支架现浇梁施工就是用贝雷片组装成箱梁施工的支撑平台,在贝雷架上进行箱梁模板安装、模板预压、钢筋安装、砼浇注、预应力初张拉等施工项目。
它与移动模架的区别在于,支撑系统与模板系统是分离的,且没有液压和走行系统。
贝雷支架经受力检算后,必须能满足制梁过程的各种荷载及形变。
二、贝雷支架施工方案介绍
针对最不利的墩高19.5m,跨度32m的梁,设计两种方案。
这里对这两种方案进行检算。
方案1的贝雷支架布置图见图1、图2。
图232m 现浇梁现浇支架横向布置(方案1)
方案2的贝雷支架布置图见图3、图4。
图3方案2中的贝雷梁纵桥向布置
图4方案2中的贝雷梁横桥向布置
三、贝雷支架施工计算内容
1、贝雷梁强度、位移计算
2、立柱强度、稳定计算
3、立柱基础即承台抗剪切破坏检算
4、横梁计算
四、贝雷支架施工计算
(一)荷载分析
1、箱梁自重
32m梁体混凝土用量为334.5m3,容重按2.6t/m3计,则梁体重量为870t。
2、箱梁内外模板重量
根据现浇箱梁定型模板图按150t考虑,呈均布荷载形式布置在底板上面。
3、人、机、料及施工附加荷载
人、机、料及其他施工附加荷载取4.5kN/m2。
(二)方案1的贝雷梁及立柱承载能力计算
1、腹板正下方贝雷梁计算
将混凝土的重量考虑1.1倍的增大系数,人、机、料及其他施工附加荷载按箱梁底宽5m考虑,则每延米的荷载集度为:
所以参与计算的作用于支架上的荷载实际为:
为安全计,假定半个箱梁的重量及施工机具、模板重量均由腹板正下方的6片贝雷梁承受。
共6片,分2组,每组承受
折算到两排,则为60.3kN/m,贝雷梁每延米自重(双层双排)5.8kN/m,贝雷
梁的计算跨度为27m,则跨中的最大弯矩为:
剪力为:
最大弹性挠度:
非弹性挠度估计为:
总挠度:49.8mm+17.2mm=67mm。
kN⋅,剪力490.5kN;
双片双层贝雷梁普通型的承载能力:弯矩3265.4m
kN⋅,剪力490.5kN;
双片双层贝雷梁加强型型的承载能力:弯矩6750.0m
容许挠度:
可见,加强型贝雷梁弯矩和弹性挠度均满足要求,但剪力超出要求,所以在支撑处必须用双竖杆,而且竖杆杆件不得变形最好予以加强,此时,再考虑到双层的斜杆数量比单层多一倍,剪力抵抗能力应当提高一倍,即
5.
490>
=
⨯。
981
2
kN4.
kN
892
为了谨慎起见,建立总体模型计算杆件的受力情况。
采用的软件为ANSYS11.0。
计算时建立了一片贝雷梁的模型,相应受载为33.05kN/m(含自重),ANSYS模型如图3所示。
图3单片贝雷梁的ANSYS模型
图4贝雷梁的变形
经计算,贝雷梁的最大变形(包含非弹性变形)为73.5mm,杆件的最大轴力发生在支点处的非标准杆件的竖杆上,达到212kN,斜杆的最大内力发生在支点内侧下层贝雷梁斜杆上,最大轴力为150.8kN。
竖杆的理论容许承载力为210kN,斜杆的理论容许承载力为171.5kN,所以抗剪没有问题。
但是考虑到支点处竖杆的内力较大,应该予以加强。
2、底板正下方贝雷梁计算
kN/,从上面的计算可知,只用两从荷载上看,此处混凝土的重量荷载集度为58.4m
片加强型贝雷梁即可(双层),但考虑到横向连接,可以适当增加到3片。
3、翼缘板下方贝雷梁设置
若按图2所示的箱梁外侧模浇筑混凝土,翼缘板下方贝雷梁只承受外侧模重及翼缘板混凝土重,假定外侧模重与底板混凝土重相当,而翼缘板混凝土重与顶板混凝土重相当,则此处的贝雷梁受力与底板下方混凝土受力一致,采用3片双层加强型贝雷梁足够。
4、支垫横梁承载能力计算
杆件截面为2工45b。
kN/外(两片),其余基本一致,均经上面计算,除腹板正下方贝雷梁受力为65.8m
kN/(两片)。
计算得到支反力如下:
为50m
腹板正下方贝雷梁支反力:383.5kN/片;
底板正下方贝雷梁支反力:279.9kN/片;
翼缘板正下方贝雷梁支反力:279.9kN/片。
用ANSYS建立支垫横梁的模型。
图5支垫横梁的模型
图6支垫横梁变形
图7支垫横梁正应力(最大应力112MPa)
计算结果显示:从应力角度看是安全的,但是支垫横梁两侧的悬臂位移稍大,达到6mm。
得到的支反力即为钢管柱的受力,最大为中间4根立柱,大小为1196kN。
5、立柱承载能力计算
立柱的最大高度为15.5m,外径600mm,壁厚10mm,承受的最大轴向压力约为1200kN。
立柱必须在顺桥向至少在柱顶与桥墩可靠连接,此时的计算长度可取为15.5m。
立柱截面面积:18535.4mm2,则立柱的轴向应力为64.7MPa。
材料为q235,容许的轴向应力为140MPa。
立柱抗弯惯矩8.048×108mm4,回转半径208.4mm。
长细比为74.3,查得稳定系数0.818,则考虑稳定时的折算应力为79.1MPa,安全。
但考虑到立柱较高,壁厚较薄,建议在顺桥向增加与桥墩的连接。
(三)方案2的贝雷梁承载能力计算
1、腹板正下方贝雷梁计算
将混凝土的重量考虑1.1倍的增大系数,人、机、料及其他施工附加荷载按箱梁底宽5m考虑,则每延米的荷载集度为:
所以参与计算的作用于支架上的荷载实际为:
为安全计,假定半个箱梁的重量及施工机具、模板重量均由腹板正下方的6片贝雷梁承受。
共6片,分2组,每组承受
折算到两排,则为60.3kN/m,贝雷梁每延米自重(双层双排)5.8kN/m,贝雷梁的计算跨度为13.5m+13.5m,为了简化计算,偏于安全地采用单跨跨长为13.5m 的简支梁模型计算,则跨中的最大弯矩为:
剪力为:
最大弹性挠度(单层不加强):
非弹性挠度估计为:
总挠度:28.5mm+7.1mm=35.6mm。
kN ,剪力490.5kN;
双排单层贝雷梁普通型的承载能力:弯矩1576.4m
容许挠度:
可见,加强型贝雷梁弯矩、剪力和弹性挠度均满足要求。
2、横梁及立柱计算
横梁计算同方案1。
因为立柱形式未变,荷载减小,所以安全。
五、结论与建议
(一)结论
采用方案1和方案2均可,若采用方案1必须按本计算书图2的形式在横桥向排列各片贝雷梁,同时支点处采用双竖杆且予以加强。
(二)建议
1、沙箱必须做抗压试验,落架高度最小不得低于15cm;
2、沙箱与立柱、与横梁必须可靠连接;
3、仔细检查贝雷梁的杆件变形情况,特别注意在支点附件的贝雷梁斜杆和竖杆要保持没有变形,且由于此处的双竖杆受力较大,建议予以加强;跨中处的上下弦杆保证没有变形。
4、计算采用双层加强型贝雷梁,所以施工时注意必须用加强型贝雷梁,双层梁之间必须连接可靠,横向的连接必须可靠。
5、在顺桥向增加立柱与桥墩的连接,以防止立柱顺桥向的失稳。
6、结构需进行分级堆载预压,记录弹性变形值与非弹性变形值,以便设置预拱度。
分级加载应与浇筑混凝土的顺序与位置尽量相同。