苏教版八年级上数学第三章 勾股定理 单元检测卷(含答案)
- 格式:doc
- 大小:87.00 KB
- 文档页数:5
苏科版八年级上册第三章《勾股定理》单元专题培优训练卷一.选择题1.下列各组数中,不是勾股数的一组是()A.3,4,5B.4,5,6C.6,8,10D.5,12,132.三个正方形的面积如图所示,则S的值为()A.3B.12C.9D.43.在△ABC中,∠A、∠B、∠C的对边分别记为a、b、c.下列条件中;不能说明△ABC 是直角三角形的是()A.∠A=∠B=∠C B.a2=b2+c2C.∠A+∠B=∠C D.a:b:c=3:4:54.如图,∠C=90o,AB=12,BC=3,CD=4,若∠ABD=90°,则AD的长为()A.8B.10C.13D.155.如图,一棵大树在暴风雨中被台风刮倒,在离地面3米处折断,测得树顶端距离树根4米,已知大树垂直地面,则大树高约多少米?()A.5米B.8米C.9米D.256.若a、b、c是△ABC三条边的长,且满足a2﹣2ab+b2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形7.将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出在杯子外面长为hcm,则h的取值范围是()A.0≤h≤12B.12≤h≤13C.11≤h≤12D.12≤h≤24 8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①x2+y2=49;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是()A.①②B.②④C.①②③D.①③二.填空题9.在没有直角工具之前,聪明的古埃及人用如图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中5这条边所对的角便是直角.依据是.10.在△ABC中,若∠C=90°,∠A=46°,则∠B=°.11.在△ABC中,∠C=90°,若a=5,b=12,则c=.12.如图,是一个直角三角形以三边为边长向外作三个正方形,则字母A所代表的正方形的面积为.13.如图在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=12,BC=5,则CD =.14.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要m.15.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.设这个水池深x尺,则根据题意,可列方程为.16.“赵爽弦图”巧妙的利用面积关系证明了勾股定理.如图所示的“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,若AB=10,EF=2,则AH=.三.解答题17.某中学校园有一块四边形草坪ABCD(加图所示),测得∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m,求这块四边形草坪的面积.18.如图,在四边形ABCD中,已知∠B=90°,AB=3,BC=4,CD=12,AD=13,求证AC⊥CD.19.八(3)班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米;(2)根据手中剩余线的长度计算出风筝线BC的长为65米;(3)牵线放风筝的小明身高1.68米.求风筝的高度CE.20.三水九道谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,经过10秒后游船移动到点D的位置,此时BD=6m,问工作人员拉绳子的速度是多少?21.在甲村至乙村的公路旁有一块山地需要开发,现有一C处需要爆破,已知点C与公路上的停靠点A的距离为800米,与公路上另一停靠点B的距离为600米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径450米范围内不得进入,问在进行爆破时,公路AB段是否有危险需要暂时封锁?请通过计算进行说明.22.我们根据图形的移、拼、补可以简单直观地推理验证数学规律和公式,这种方法称之为“无字证明”,它比严谨的数学证明更为优雅与有条理.下面是用三块全等的直角三角形移、拼、补所形成的“无字证明”图形.(1)此图可以用来证明你学过的什么定理?请写出定理的内容;(2)已知直角三角形直角边长分别为a、b,斜边长为c,图1、图2的面积相等,请你根据此图证明(1)中的定理.参考答案一.选择题1.解:A、32+42=52,能构成直角三角形,是整数,故是勾股数,此选项错误;B、42+52≠62,不是勾股数,此选项正确;C、62+82=102,三边是整数,同时能构成直角三角形,故是勾股数,此选项错误;D、52+122=132,是正整数,故是勾股数,此选项错误.故选:B.2.解:如图,由题意可得:AB=4,AC=5,∵AC2=AB2+BC2,∴BC2=25﹣16=9,∴S=9,故选:C.3.解:A、∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,∴△ABC不为直角三角形,故此选项符合题意;B、∵a2=b2+c2,∴△ABC为直角三角形,故此选项不合题意;C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC为直角三角形,故此选项不合题意;D、∵a:b:c=3:4:5,设a=3x,b=4x,c=5x,∵(3x)2+(4x)2=(5x)2,∴能构成直角三角形,故此选项不合题意;故选:A.4.解:在Rt△BCD中,∠C=90o,由勾股定理得:BD=,在Rt△ABD中,∠ABD=90°,由勾股定理得:AD=,故选:C.5.解:设大树高约有x米,由勾股定理得:(x﹣3)2=32+42,解得:x=8,答:大树高约8米.故选:B.6.解:∵a2﹣2ab+b2+|a2+b2﹣c2|=0,即(a﹣b)2+|a2+b2﹣c2|=0,∴(a﹣b)2=0,且|a2+b2﹣c2|=0,∴(a﹣b)2=0,且a2+b2=c2,∴a=b,且△ABC是直角三角形,∴△ABC是等腰直角三角形,故选:B.7.解:当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===13(cm),故h=24﹣13=11(cm).故h的取值范围是:11cm≤h≤12cm.故选:C.8.解:由题意知,由①﹣②得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴(x+y)2=94,∴x+y=.∴结论①②③正确,④错误.故选:C.二.填空题9.解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故答案为:如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形.10.解:∵∠C=90°,∠A=46°,∴∠B=90°﹣46°=44°,故答案为:44.11.解:在△ABC中,∠C=90°,a=5,b=12,∴,故答案为:13.12.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案是:64.13.解:Rt△ABC中,∠C=90°,由勾股定理得:AB=,由S△ABC=得:∴5×12=13×CD,∴CD=.故答案为:.14.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(米).故答案为:17.15.解:设水池里水的深度是x尺,由题意得,(x+1)2=x2+25,故答案为:(x+1)2=x2+25.16.解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,AH=DE=6,∴AH=8﹣2=6.故答案为:6.三.解答题17.解:连接AC,如图:∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,∴S四边形ABCD=S△ABC+S△ADC=•AB•BC+•AD•DC=×24×7+×20×15=234(m2).答:这块四边形草坪的面积是234m2.18.证明:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,即AC⊥CD.19.解:在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=652﹣252=3600,所以,CD=±60(负值舍去),所以,CE=CD+DE=60+1.68=61.68(米),答:风筝的高度CE为61.68米.20.解:由题意得:∠B=90°,∵BC=8m,BD=6m,∴CD===10m,∵AC=17m,∴绳子移动了AC﹣DC=17﹣10=7(m),用时10秒,∴工作人员拉绳子的速度是7÷10=0.7米/秒.21.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=800米,AC=600米,所以,根据勾股定理有AB==1000(米).因为S△ABC=AB•CD=BC•AC所以CD===480(米).由于400米<480米,故没有危险,因此AB段公路不需要暂时封锁.22.解:(1)勾股定理:直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2;(2)图1的面积为:S1=,图2的面积为S2=,∵图1、图2的面积相等,∴=,∴a2+b2=c2.。
第三章勾股定理数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,等边△ABC在平面直角坐标系中的位置如图所示,其中顶点,,则顶点C的坐标为()A. B. C. D.2、如图,在中,以点为圆心,任意长为半径作弧,交射线于点,交射线于点,再分别以、为圆心,的长为半径,两弧在的内部交于点,作射线,若,则两点之间距离为()A.10B.12C.13D.3、如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B 与点A重合,折痕为DE,则BE的长为( )A.4cmB.5cmC.6cmD.10cm4、如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A. B. C. D.5、如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13B.12C.11D.106、如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.7、绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4mB.5mC.6mD.8m8、如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()A.y= B.y=C.y=D.y=9、以下列线段a、b、c的长为边,能构成直角三角形的是()A.a=3,b=4,c=6B.a=1,b= ,c=C.a=5,b=6,c=8 D.a= ,b=2,c=10、若为△ABC的三边,且,则△ABC的形状不可能是().A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形11、如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A. B. C. D.12、三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形13、如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.414、将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cmB.6cmC.3 cmD.6 cm15、底面周长为12cm,高为8cm的圆柱体上有一只小蚂蚁要从A点爬到B点,则蚂蚁爬行的最短距离是()cm.A.10B.8C.5D.4二、填空题(共10题,共计30分)16、如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为________.17、如图,为直角三角形,其中,则的长为________。
第三章勾股定理数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、由线段a,b,c组成的三角形是直角三角形的是()A.a = 3, b = 4, c = 6B.a = 6, b = 9, c = 10C.a = 8,b = 15, c = 17D.a = 13, b = 14, c = 152、如图是一株美丽的勾股树,所有的四边形都是正方形,所有的三角形都是直角三角形.其中最大的直角三角形两直角边长分别为2,3,则正方形A,B,C,D的面积之和为()A.13B.26C.47D.943、如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π4、如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A. B. C.4 D.35、如图,在矩形ABCD中,DE⊥AC+于E,∠EDC:∠EDO=1:2,且AC=10,则DE的长度是A.3B.5C.D.6、如图,为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()nB.()n﹣1C.()nD.()n﹣17、直角三角形的两条边长分别是5和12,则斜边上的中线长是()A.6B.6.5C.6或6.5D.6或2.58、如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()A. cmB.4cmC. cmD. cm9、在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7B.5,12,13C.1,4,9D.5,11,1210、下列各数中,是勾股数的是()A.0.3,0.4,0.5B.6,8,10C. ,,D.10,15,1811、如图,已知△ABC 中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3 上,且 l1,l2 之间的距离为 1,l2,l3 之间的距离为 3,则 AC 的长是()A. B. C. D.512、如图,在△中,,将△绕点顺时针旋转,得到△,连接,若,,则线段的长为()A. B. C. D.13、如图,已知在中,是边上的高线,平分,交于点是上一动点,,则的最小值是()A.10B.7C.5D.414、如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD 上一动点,则线段EP+FP的长最短为()A.3B.4C.5D.615、若△ABC三边长口,b,c满足+l| b-a-1|+(c-5)2=0,则△ABC是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形二、填空题(共10题,共计30分)16、如图中,由一个直角三角形和两个正方形组成,如果大正方形的面积为41,AB=5,则小正方形的面积为________.17、在等腰直角中,,,如果以的中点为旋转中心,将这个三角形旋转180°,点落在点处,则的长度为________.18、如图,在锐角△ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD,AB上的动点,则BM+MN的最小值是________.19、如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2 M1,对角线A1 M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3 M2,对角线A1 M2和A3B3交于点M3;……,依次类推,这样作的第n个正方形对角线交点的坐标为M n________.20、如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是边AC的中点,点E,F在边AB上,当△DEF是等腰三角形,且底角的正切值是时,△DEF腰长的值是________.21、如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为________.22、若直角三角形的两直角边长分别为,,则斜边的长为________cm.23、如图,在中,,,,垂足为,点,分别是线段,上的动点,且,则线段的最小值为________.24、如图,在菱形ABCD中,∠BAD=45°,DE是AB边上的高,BE=2,则AB的长是________.25、如图,在△ABC中,AB=BC=4,S△ABC=4 ,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为________.三、解答题(共5题,共计25分)26、如图,在每个小正方形的边长为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上。
3.3勾股定理的简单应用—2023-2024学年苏科版数学八年级上册堂堂练1.《九章算术》中有一问题,译文如下:现有一竖立着的木柱,木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有4尺,若牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设木柱长度为x尺,根据题意,可列方程为( )A. B.C. D.2.如图,高速公路上有两点A,B相距25 km,C,D为两个乡镇,已知km,km,于点A,于点B,现需要在AB上建一个高速收费站E,使得C,D两个乡镇到E站的距离相等,则BE的长为( )A.10 kmB.15 kmC.20 kmD.25 km3.现在人们锻炼身体的意识日渐增强,但是一些人保护环境的意识却很淡薄,如图是兴庆公园的一角,有人为了抄近道而避开横平竖直的路的拐角,而走“捷径AC”,于是在草坪内走出了一条不该有的“路AC”,已知米,米,他们踩坏了______米的草坪,只为少走________米路( )A.20,50B.50,20C.20,30D.30,204.图是一个底面为等边三角形的三棱柱,为了漂亮,小丽在三棱柱的侧面上,从顶点A到顶点镶上一圈金属丝,已知此三棱柱的高为5cm,底面边长为4cm,则这圈金属丝的长度至少为( )A.8 cmB.13 cmC.12 cmD.15 cm5.如图,第9号台风“利奇马”过后,某市体育中心附近一棵大树在高于地面3米处折断,大树顶部落在距离大树底部4米处的地面上,那么树高是( )A.5 mB.8 mC.9 mD.12 m6.如图,某自动感应门的正上方A处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(米),感应门自动打开,则___________米.7.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2m,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为___________(滑轮上方的部分忽略不计).8.如图是某“飞越丛林”俱乐部最近打造的一款项目的示意图,BC段和垂直于地面的AB 段均由不锈钢管材打造,两段总长度为26m,矩形CDEF为一木质平台的主视图.经过测量得,,请求出立柱AB段的长度.答案以及解析1.答案:D解析:设绳索长为x尺,可列方程为,故选D.2.答案:A解析:解:设,则,由勾股定理得:在中,,在中,,由题意可知:,,解得:,km.故选A.3.答案:B解析:在中,米,米,,米,(米),他们踩坏了50米的草坪,只为少走20米路.故选B.4.答案:B解析:将三棱柱的侧面沿展开,如图所示,由勾股定理得,所以cm.故选B.5.答案:B解析:根据勾股定理可知:折断的树高,所以折断的树高m,则这棵大树折断前的树高m.故选B.6.答案:1.5解析:如图所示,过点D作于点E,米,米,米,则(米).在中,由勾股定理得,(米).7.答案:11m解析:如图,设旗杆高度为x m,可得m,m.根据勾股定理得,解得.所以旗杆的高度为11m.8.答案:立柱AB段的长度为9米解析:延长FC交AB于点G,则,,,设,则,在中,,,解得,,AB的长度为9m.。
课时练3.3勾股定理的简单应用一、单选题1.如图,一棵高为16m的大树被台风刮断.若树在地面6m处折断,则树顶端落在离树底部()处.A.5m B.7m C.7.5m D.8m2.如图,一根垂直于地面的旗杆在离地面5m的B处撕裂折断,旗杆顶部落在离旗杆底部12m的A处,则旗杆折断部分AB的高度是()A.5m B.12m C.13m D.18m3.如图所示,梯子AB斜靠在墙面上,AO⊥BO,AO=BO=2米,当梯子的顶点A沿AO方向向下滑动以a(0<a<2)米时,梯足B沿OB方向滑动b(0<b<2)米,则a 与b的大小关系是()A.a=b B.a<b C.a>b D.不确定4.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m5.《九章算术》勾股章有一“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问:水深,葭长各几何.”意思是:如示意图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度和芦苇的长度分别是多少?备注:1丈=10尺.设芦苇长x 尺,则可列方程为()A .22210(1)x x +=+B .222(1)5x x -+=C .2225(1)x x +=-D .2221(1)x x +=-6.小明同学先向北行进4千米,然后向东进4千米,再向北行进2千米,最后又向东行进一定距离,此时小明离出发点的距离是10千米,小明最后向东行进了()A .3千米B .4千米C .5千米D .6千米7.如图是一圆柱玻璃杯,从内部测得底面半径为6cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A .6cmB .5cmC .9cm Dcm8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为()A .60海里B .45海里C .20海里D .9.如图,长方体的底面边长为1cm 和3cm ,高为6cm.如果用一根细线从点A 开始经过4个侧面缠绕一圈到达B ,那么所用细线最短需要()A .12cmB .11cmC .10cmD .9cm10.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由“弦图”变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别记为S 1,S 2,S 3,若S 1+S 2+S 3=18,则正方形EFGH 的面积为()A .92B .5C .6D .9二、填空题11.长是4米的梯子搭在墙上,与地面成45°角,作业时调整为60°角,则梯子的顶端沿墙面升高了______米12.如图,90AOB Ð=°,9OA m =,3OB m =,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球,如果小球滚动的速度与机器人行走的速度相等,则机器人行走的路程BC 为__________.13.一艘轮船在小岛A的北偏东60°方向距小岛60海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为_____海里/小时.14.如图,有一个三级台阶,它的每一级的长,宽和高分别是16,3,1,点A和点B 是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶表面爬到B点的最短路程是____.15.如图,在一次测绘活动中,在港口A的位置观测停放于B、C两处的小船,测得船B在港口A北偏东75°方向12海里处,船C在港口A南偏东15°方向9海里处,则船B 与船C之间的距离为__________海里.三、解答题16.如图,某人为了测量小山顶上的塔顶离地面的高度CD,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,求CD的高度(结果保留根号)17.如图,星期天小明去钓鱼,鱼钩A在离水面的BD的1.3米处,在距离鱼线1.2米处D点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?18.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C 为一海港,且点C与直线AB上两点A,B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有小时.参考答案1.D2.C3.C4.A5.B6.B7.B8.D9.C10.C11.12.5m13.(10+14.2015.1516.(90m+17.6.518.(1)海港C受台风影响.理由:如图,过点C作CD⊥AB于D,∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC•BC=CD•AB∴CD=240(km)∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受到台风影响.(2)当EC=250km,FC=250km时,正好影响C港口,∵ED70(km)∴EF=140km∵台风的速度为20km/h,∴140÷20=7(小时)即台风影响该海港持续的时间为7小时.故答案为:7.。
苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光( )A.3mB.4mC.5mD.7m2、三角形一边长为,另两边长是方程的两实根,则这是一个().A.直角三角形B.锐角三角形C.钝角三角形D.任意三角形3、如图①, 已知正方体的棱长为4, E, F, G分别是AB, AA, AD的中点,1截面EFG将这个正方体切去一个角后得到一个新的几何体, 如图②, 则图②中阴影部分(截面)的面积为()A. B. C.2 D.34、如图所示,在矩形中,,,矩形内部有一动点满足,则点到,两点的距离之和的最小值为().A. B. C. D.5、如图是由5个大小相等的正方形组成的图形,则tan∠BAC的值为()A.1B.C.D.6、如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C 的半径为()A.2.3B.2.4C.2.5D.2.67、如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为,在容器内壁离容器底部的点处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿的点处,若蚂蚁吃到蜂蜜需爬行的最短路径为,则该圆柱底面周长为()A. B. C. D.8、如图,分别以数轴的单位长度1和2为直角边长作Rt△OBC,然后以点B为圆心,线段BC的长为半径画弧,交数轴于点A,那么点A所表示的数为A. B.1+ C. +2 D.3.29、如图,在Rt△ABC中,∠C=90°,AC=BC,AB=8,点D为AB的中点,若直角MDN绕点D旋转,分别交AC于点E,交BC于点F,则下列说法正确的有()①AE=CF;②EC+CF=4 ;③DE=DF;④若△ECF的面积为一个定值,则EF的长也是一个定值.A.①②B.①③C.①②③D.①②③④10、如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,OP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标为()A. B. C. D.11、以a、b、c为边,不能组成直角三角形的是()A.a=6,b=8,c=10B.a=1,b=,c=2C.a=24,b=7,c =25D.a=,b=,c=12、如图所示:数轴上点A所表示的数为a,则a的值是()A. +1B. ﹣1C.﹣+1D.﹣﹣113、如图,在中,AB=AC=8,∠BAC=60°,E是高AD上的一个动点,F是边AB的中点,则的最小值是()A.4B.4C.8D.814、如图所示,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上任意一点,则PK+QK的最小值为( )A.1B.C.2D. +115、如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系内,以点为圆心,5为半径作圆,则该圆与轴分别交于点,则三角形的面积为________.17、如图把一张3×4的方格纸放在平面直角坐标系内,每个方格的边长为1个单位,△ABC的顶点都在方格的格点位置,即点A的坐标是(1,0).若点D 也在格点位置(与点A不重合),且使△DBC与△ABC相似,则符合条件的点D 的坐标是________.18、如图,为的边上的中线,沿将折叠,点的对应点为,已知,则点与点之间的距离是________19、△ABC中,AC=15,AB=13,BC=14,则BC边上的高AD=________.20、如图,中,,将折叠,使点与的中点重合,折痕为则线段的长为________.21、如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是________.22、如图,为坐标原点,是等腰直角三角形,,点的坐标是,将该三角形沿轴向右平移得,此时,点的坐标为,则线段在平移过程中扫过部分的图形面积为________.23、若直角三角形两条直角边的边长分别为15cm和12cm,那么此直角三角形斜边上的中线是________ cm.24、已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为________.25、如图,圆O的弦AB垂直平分半径OC,若圆O的半径为4,则弦AB的长等于________.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A 2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,若CE=2,DF=1,∠EBF=60°,求平行四边形ABCD的面积.28、如图,在矩形ABCD中,AB=16cm,BC=6cm,点P从A点出发沿AB以5cm/s的速度向点B移动,一直到达点B为止;同时,点Q从C点出发沿CD以3cm/s的速度向点D移动,经过多长时间P、Q两点之间的距离为10cm?29、如图,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF= AD,请你判断△EFC的形状并说明理由.30、在四边形ABCD中,∠B=∠C=90°,AB=3,BC=4,CD=1.以AD为腰作等腰△ADE,使∠ADE=90°,过点E作EF⊥DC交直线CD于点F.请画出图形,并直接写出AF的长.参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、D5、A6、B7、D8、B10、C11、D12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。
苏科新版八年级上册数学《第3章勾股定理》单元学习评价卷一.选择题1.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4B.5C.6D.102.一个三角形三个内角之比为1:2:1,其相对应三边之比为()A.1:2:1B.1::1C.1:4:1D.12:1:23.已知四个三角形分别满足下列条件:①一个内角等于另外两个内角之和;②三个内角之比为3:4:5;③三边长分别为7,24,25;④三边之比为5:12:13.其中能判定是直角三角形的有()A.1个B.2个C.3个D.4个4.下列各组数是勾股数的是()A.3,4,5B.1.5,2,2.5C.32,42,52D.,,5.两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8cm,另一只朝东面挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.100cm B.50cm C.140cm D.80cm6.在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°7.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若ab=8,大正方形的边长为5,则小正方形的边长为()A.1B.2C.3D.48.如图,△ABC中∠ACB=90°,且CD∥AB.∠B=60°,则∠1等于()A.30°B.40°C.50°D.60°9.下列几组数中,能作为直角三角形三边长度的是()A.a=2,b=3.c=4B.a=5,b=6,c=8C.a=5,b=12,c=13D.a=7,b=15,c=1210.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.50°二.填空题11.如图所示的图案是我国汉代数学家赵爽在注解《周髀算经》中“赵爽弦图”经修饰后的图形,四边形ABCD与四边形EFGH均为正方形,点H是DE的中点,阴影部分的面积为24,则AD的长为.12.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.13.如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯米.14.如图,每个小正方形的边长为1,则∠ABC的度数为°.15.在Rt△ABC中,∠C=90°,∠A=65°,则∠B=.16.在Rt△ABC中,∠C=90°,∠A=70°,则∠B=.17.在直角三角形中,一个锐角是另一个锐角的4倍,则较小锐角的度数为度.18.把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A,另外三角板的锐角顶点B,C,D在同一直线上,若AB=,则BD=.19.已知直角三角形的直角边长为a、b,斜边长为c,将满足a2+b2=c2的一组正整数称为“勾股数组”,记为(a,b,c),其中a≤b<c.事实上,早在公元前十一世纪,中国古代数学家商高就发现了“勾三、股四、弦五”,我们将其简记为(3,4,5).类似的勾股数组还有很多….例如:(5,12,13),(7,24,25),(9,40,41),(11,60,61),(13,84,85),….如果a=2n+1(n为正整数),那么b+c=.(用含n的代数式表示)20.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为cm2.三.解答题21.如图,∠ACB=90°,CD⊥AB,垂足为D.求证:∠ACD=∠B.22.已知:如图,在Rt△ABC中,∠BAC=90°,D是BC延长线上一点,AD=AB,求证:∠BAD=2∠ACB.23.在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.24.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.①当t为何值时,△AMN是等边三角形;②当t为何值时,△AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.25.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.26.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,请证明你的结论.27.定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.参考答案与试题解析一.选择题1.解:由勾股定理得:斜边长为:=5.故选:B.2.解:设三个角的度数分别为x,2x,x,∴根据三角形内角和定理可求出三个角分别为45°,45°,90°,∴这个三角形是等腰直角三角形,∴斜边等于直角边的倍,∴相对应三边之比为1::1.故选:B.3.解:①设两个较小的角为x,则2x+2x=180°,则三角分别为45°,45°,90°,故是直角三角形;②设较小的角为3x,则其于两角为4x,5x,则三个角分别为45°,60°,75°,故不是直角三角形;③因为三边符合勾股定理的逆定理,故是直角三角形;④因为52+122=132符合勾股定理的逆定理,故是直角三角形.所以有三个直角三角形,故选:C.4.解:A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、1.52+22=2.52,能构成直角三角形,不是正整数,故不是勾股数;C、(32)2+(42)2≠(52)2,不能构成直角三角形,故不是勾股数;D、()2+()2=()2,不能构成直角三角形,不是正整数,故不是勾股数.故选:A.5.解:两只鼹鼠10分钟所走的路程分别为80cm,60cm,∵正北方向和正东方向构成直角,∴由勾股定理得=100,∴其距离为100cm.故选:A.6.解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.7.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=52,∴(a﹣b)2=25﹣16=9,∵正方形的边长a﹣b>0,∴a﹣b=3,故选:C.8.解:∵△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵CD∥AB,∴∠1=∠A,∴∠1=30°,故选:A.9.解:A、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;B、∵52+62≠82,∴能构成直角三角形,故本选项不符合题意;C、∵52+122=132,∴能构成直角三角形,故本选项符合题意;D、∵72+122≠152,∴不能构成直角三角形,故本选项不符合题意.故选:C.10.解:∵BD平分∠ABC,∴∠ABD=∠DBC=20°,∴∠ABC=40°,∵∠ACB=90°,∴∠A=90°﹣∠ABC=90°﹣40°=50°,∵CD∥AB,∴∠ACD=∠A=50°,故选:D.二.填空题11.解:由四边形ABCD 与四边形EFGH 均为正方形,点H 是DE 的中点,可知E 、F 、G 分别为AF 、BG 、CH 的中点,且AE =EH =DH =HG =CG =FG =BF =EF =BE , ∴S △AEH =S △DHG =S △CGF =S △BFE =,∴S 阴影=3×S 正方形EFGH =24, ∴S 正方形EFGH =8, ∴EH =DH =, ∴DE =2EH =4,又∠AED =90°, ∴===.故答案为:2.12.解:设三边分别为5x ,12x ,13x , 则5x +12x +13x =60, ∴x =2,∴三边分别为10cm ,24cm ,26cm , ∵102+242=262, ∴三角形为直角三角形, ∴S =10×24÷2=120cm 2. 故答案为:120.13.解:根据勾股定理,楼梯水平长度为=12米,则红地毯至少要12+5=17米长, 故答案为:17. 14.解:连接AC ,由勾股定理得:AC 2=22+12=5, BC 2=22+12=5, AB 2=12+32=10,∴AC 2+BC 2=5+5=10=BA 2,∴△ABC 是等腰直角三角形,∠ACB =90°, ∴∠ABC =45°,故答案为:45.15.解:∵∠C=90°,∠A=65°,∴∠B=90°﹣65°=25°.故答案为:25°.16.解:∵∠C=Rt∠,∠A=70°,∴∠B=90°﹣∠A=90°﹣70°=20°.故答案为:20°.17.解:设较小锐角为x度.由题意:4x+x=90,解得x=18,故答案为18.18.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴△ABC是等腰直角三角形,∴BC=AB=2,BF=AF=BC=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴BD=BF+DF=1+,故答案为:1+.19.解:方法1:观察“勾股数组”(a,b,c),当a为奇数时,c=b+1,又a=2n+1(n为正整数),由勾股定理可得:c2﹣b2=(2n+1)2,即(b+1)2﹣b2=(2n+1)2,解得b=2n2+2n,∴c=2n2+2n+1,∴b+c=4n2+4n+1,故答案为:4n2+4n+1.方法2:观察“勾股数组”(a,b,c),当a为大于1的正奇数时,有如下规律:32=4+5,52=12+13,72=24+25,…,a2=b+c,∴当a=2n+1时,b+c=(2n+1)2.20.解:设直角三角形ABC的两直角边是a和b,斜边是c,则由勾股定理得:a2+b2=c2,则分别以ab为边长的两个正方形的面积之和是a2+b2=7cm2+8cm2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2=15cm2,故答案为:15.三.解答题21.证明:∵CD⊥AB,∠ACB=90°,∴∠ADC=90°=∠ACB.∵∠A+∠ACD+∠ADC=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠B.22.证明:∵AD=AB,∴∠B=∠D,设∠B=∠D=α,∴∠BAD=180°﹣∠B﹣∠D=180°﹣2α=2(90°﹣α),∵∠BAC=90°,∴∠ACB=90°﹣∠B=90°﹣α,∴∠BAD=2∠ACB.23.解:∵∠B=30°,CD⊥AB于D,∴∠DCB=90°﹣∠B=60°.∵CE平分∠ACB,∠ACB=90°,∴∠ECB=∠ACB=45°,∴∠DCE=∠DCB﹣∠ECB=60°﹣45°=15°;(2)∵∠CEF=135°,∠ECB=∠ACB=45°,∴∠CEF+∠ECB=180°,∴EF∥BC.24.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+6=2x,解得:x=6,即当M、N运动6秒时,点N追上点M;(2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1,AM=t,AN=6﹣2t,∵∠A=60°,当AM=AN时,△AMN是等边三角形∴t=6﹣2t,解得t=2,∴点M、N运动2秒后,可得到等边三角形△AMN.②当点N在AB上运动时,如图3,若∠AMN=90°,∵BN=2t,AM=t,∴AN=6﹣2t,∵∠A=60°,∴2AM=AN,即2t=6﹣2t,解得t=;如图3,若∠ANM=90°,由2AN=AM得2(6﹣2t)=t,解得t=.综上所述,当t为或s时,△AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵∠AMC=∠ANB,∠C=∠B,AC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,∴t﹣6=18﹣2t,解得t=8,符合题意.所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形.25.解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=ab×4+(b﹣a)2,化简得:a2+b2=c2.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+ab×4,化简得:a2+b2=c2.在图3中,梯形的面积等于三个直角三角形的面积的和.即(a+b)(a+b)=ab×2+c2,化简得:a2+b2=c2.(2)①三个图形中面积关系满足S1+S2=S3的有3个;故答案为3;②结论:S1+S2=S3.∵S1+S2=()2+()2+S3﹣()2,∴S1+S2=π(a2+b2﹣c2)+S3,∴a2+b2=c2.∴S1+S2=S3.(3)①a2+b2+c2+d2=m2;②b与c的关系为b=c,a与d的关系为a+d=m.故答案为:m2;b=c,a+d=m.26.解:(1)点O到△ABC的三个顶点A、B、C的距离的关系是OA=OB=OC;(2)△OMN的形状是等腰直角三角形,证明:∵△ABC中,AB=AC,∠BAC=90°,O为BC中点,∴OA=OB=OC,AO平分∠BAC,AO⊥BC,∴∠AOB=90°,∠B=∠C=45°,∠BAO=∠CAO=45°,∴∠CAO=∠B,在△BOM和△AON中∵,∴△BOM≌△AON(SAS),∴OM=ON,∠AON=∠BOM,∵∠AOB=∠BOM+∠AOM=90°,∴∠AON+∠AOM=90°,即∠MON=90°,∴△OMN是等腰直角三角形.27.解:(1)是.理由:∵AM2+BN2=22+(2)2=16,MN2=42=16,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形.故点M、N是线段AB的勾股分割点.(2)设BN=x,则MN=12﹣AM﹣BN=7﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(7﹣x)2=x2+25,解得x=;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=25+(7﹣x)2,解得x=.综上所述BN的长为或.。
随堂测试3.2勾股定理的逆定理一、选择题1.满足下列条件的△ABC,不是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A﹣∠B D.b2﹣a2=c22.适合下列条件的△ABC中,∠A,∠B,∠C是三个内角,a,b,c分别是∠A,∠B,∠C的对边,直角三角形的个数是()①a=7,b=24,C=25;②a=1.5,b=2,c=7.5;③∠A:∠B:∠C=1:2:3;④a=1,b=,c=.A.1个B.2个C.3个D.4个3.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形4.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2;④∠A=38°,∠B=52°.A.1个B.2个C.3个D.4个5.在下列以线段a、b、c的长为边,能构成直角三角形的是()A.a=3,b=4,c=6B.a=5,b=6,c=7C.a=6,b=8,c=9D.a=7,b=24,c=256.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形7.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2,C.三边长为a,b,c的值为,2,4D.a2=(c+b)(c﹣b)8.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列判断错误的是()A.如果∠C-∠B=∠A,则△ABC是直角三角形B.如果a2+c2=b2,则△ABC不是直角三角形C.如果(c-a)(c+a)=b2,则△ABC是直角三角形D.如果∠A∶∠B∶∠C=5∶2∶3,则△ABC是直角三角形9.如图,在4×4的方格中,△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()二、填空题11.在△ABC中,三边长分别为8、15、17,那么△ABC的面积为.12.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是.13.在△ABC中,如果(a+b)(a﹣b)=c2,那么∠=90°.14.如果△ABC的三边长a,b,c满足关系式(a-24)2+∣b-18∣+∣c-30∣=0,则△ABC的形状是。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练3.1勾股定理一.选择题1.在Rt △ABC 中,∠C =90°,AB =2AC ,若AC =6,则BC 的长为()A .8B .12C .D .2.在Rt △ABC 中,90ACB Ð=°,3AB =,则222AB BC AC ++=()A .9B .18C .20D .243.如图,在ABC 中,90C °Ð=,2AC =,点D 在BC 上,ADC 2B Ð=Ð,AD =则BC 的长为()A 1-B .1+C 1D 14.如图,等边ABC 中,AD BC ^,DE AC ^,8AB =,则DE =()A .2B .4C .D .5.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积分别为6,10,4,6,则最大正方形E 的面积是()A .94B .26C .22D .166.如图,数轴上点A 对应的数是0,点B 对应的数是1,BC⊥AB,垂足为B,且BC=2,以A 为圆心,AC 为半径画弧,交数轴于点D,则点D 表示的数为()A.2.2B.C.D.7.若直角三角形的三边长分别为2,4,x,则x 的值可能有().A.1个B.2个C.3个D.4个8.以面积为9cm 2的正方形对角线为边作正方形,其面积为()A.9cm2B.13cm2C.18cm2D.24cm29.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A .B .C .D .10.等腰直角三角形的斜边长为5cm ,则它的面积是()A .25cm 2B .12.5cm 2C .10cm 2D .6.25cm 2二.填空题11.若一个直角三角形的两边长分别是4cm ,3cm ,则第三条边长是cm .12.如图所示,图1中x 的值为_______,图2中的y 的值为_______.13.如图,在ABC 中,90ABC Ð=°,分别以BC 、AB 、AC 为边向外作正方形,面积分别记为1S 、2S 、3S ,若24S =,36S =,则1S =______.14.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD =17,BE =5,那么AC 的长为_______15.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm,则正方形1的边长为__________cm.三.解答题16.如图,∠BAC=90°,BC=28,AC=14,BD=13,AD=15.(1)求AB的长度;(2)作DH⊥AB,并求△ADB的面积.17.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.18.在学习勾股定理时,我们学会运用图(Ⅰ)验证它的正确性.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab.由此推出勾股定理a2+b2=c2这种方法可以极简单地直观推论或验证出数学规律和公式.(1)请你用图(Ⅱ)的面积表达式验证勾股定理(其中四个全等的直角三角形围成一个大正方形ABCD,中间的部分是一个小正方形EFGH,AE=a,BE=b,AB=c);(2)请你用图(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+y)2=x2+2xy+y2.参考答案一.选择题1.C2.B3.D4.C6.D.7.B.8.C.9.D.10.D二.填空题11.5或.12.41313.214.1315.8三.解答题16.AB=25,CD=12=,连结BG、FG,17.延长ED至G,使DG DEÐ=Ð,=AD BD,ADE BDG\D@D,ADE BDGÐ=Ð,AE BG\=,A DBG\,AC BG\Ð+Ð=°,90\Ð=°,FBGC FBG180222\+=,BG BF GF=,又ED FD,ED GD^\=,EF GF222AE BF EF\+=.55 4.18.(1);(2)20;(3)S n(4)。
苏科版八年级数学上册第3章勾股定理 周末强化训练卷(20.10.24)一、选择题 1、在ABC ∆中,ABC ∆,90A ∠=︒,A ∠,B ∠,C ∠的对边长分别为,,a b c ,则下列结论错误的是( ) A. 222a b c += B. 222b c a += C. 222a b c -= D. 222a c b -= 2、如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3, 则图中的阴影部分的面积( ) A .9B .29 C .49 D .3(2) (3) (4)3、我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a ,b ,那么(a-b)2的值是( )A .1B .2C .12D .134、如图所示在△ABC 中,点D 是BC 上的一点,已知AC =CD =5,AD =6,BD=25,则△ABC 的面积是( ) A .18 B .36 C .72 D .125 5、下列长度的三条线段能组成直角三角形的是( ) A .4,6,8 B .6,8,9 C .7,24,25 D .5,11,12 6、 满足下列条件△ABC ,不是直角三角形的是( )A .∠A =∠B +∠C B .∠A :∠B :∠C =1:1:2 C .b 2=a 2+c 2D .a :b :c =1:1:27、如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( ) A .9m B .14m C .11m D .10m(7) (8) (9)8、如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以20米/秒的速度行驶时,A 处受噪音影响的时间为( )A .16秒B .18秒C .20秒D .22秒9、如图,将一边长为a 的正方形 (最中间的小正方形) 与四个边长为b 的正方形 (其中b >a ) 拼接在一起,则四边形ABCD 的面积为 ( )A .b 2+(b -a )2B .b 2+a 2C .(b +a )2D .a 2+2ab10、如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC上的动点,则PC+PQ 的最小值是( )A .125B .4C .245D .5二、填空题11、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm ,则正方形A ,B ,C ,D 的面积的和是____________.(11) (13) 12、在中,,,BC 边上的高为12cm ,则的面积为 .13、如图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边5BC =,将四个直角三角形中较长的直角边分别向外延长一倍,得到图②所示的“数学风车”,若BCD ∆的周长是30,则这个风车的外围周长是 .14、△ABC 中,AB =AC =10,BC =16,则BC 边上的高长为 .15、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.16、如图,在ABC ∆中,5,12,13AC BC AB ===,CD 是AB 边上的中线,则CD = .(16) (17) (18)17、如图,在一次暴风灾害中,一棵大树在离地面2米处折断,树的另一部分倒地后与地面成30°角,那么这棵树折断之前的高度是 米.18、如图,将一根长为20cm 的吸管,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设吸管露在杯子外面的长度是为hcm ,则h 的取值范围是 . 19、如图,长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=BC .如果用一根细线从点A 开始经过3个侧面缠绕一圈到达点P ,那么所用细线最短需要 cm.(19) (20)20、如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F ,如果AB =2,BC =4,则AF = . 三、解答题21、如图,在△ABC 中,CD ⊥AB 于点D ,AC =20,CD =12,BD =9. (1)求BC 的长;(2)求△ABC 的面积.22、如图,△ABC≌△DBE,∠CBE=60°,∠DCB=30°.求证:DC2+BE2=AC2.23、如图,每个小正方形的边长为1.(1)直接写出四边形ABCD的面积和周长;(2)求证:∠BCD=90°.24、学完勾股定理之后,同学们想利用升旗的绳子、卷尺测算出学校旗杆的高度.小明发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,请你帮小明求出旗杆的高度.25、如图,BF,CG分别是△ABC的高线,点D,E分别是BC,GF的中点,连结DF,DG,DE.(1)求证:△DFG是等腰三角形;(2)若BC=10,FG=6,求DE的长.26、如图,在Rt ABCBC=,点D为AC边上的动点,点D从点C出发,AB=,6∠=︒,8∆中,90ABC沿边CA向点A运动,当运动到点A时停止,若设点D运动的时间为t秒.点D运动的速度为每秒1个单位长度.(1)当2t=时,CD=,AD=;(2)求当t为何值时,CBD∆是直角三角形,说明理由;(3)求当t为何值时,CBD∆是以BD或CD为底的等腰三角形?并说明理由.27、在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=BC,由于某种原因,由C到B的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点D(A、D、B在同一条直线上),并新修一条路CD,测得CA=6.5千米,CD=6千米,AD=2.5千米.(1)问CD是否为从村庄C到河边最近的路?请通过计算加以说明;(2)求原来的路线BC的长.+28、如图,矩形ABCD中,P为AD上一点,将△ABP沿BP翻折至△EBP,点A与点E重合;(1)如图1,若AB=10,BC=6,点E落在CD边上,求AP的长;(2)如图2,若AB=8,BC=6, PE与CD相交于点O,且OE=OD,求AP的长;+29、在△ABC中,∠BAC=90°,AB=AC.点D从点B出发沿射线BC移动,以AD为边在AB的右侧作△ADE,且∠DAE=90°,AD=AE.连接CE.(1)如图1,若点D在BC边上,则∠BCE=º;(2)如图2,若点D在BC的延长线上运动.①∠BCE的度数是否发生变化?请说明理由;②若BC=3,CD=6,则△ADE的面积为图1 图2+30、如图,(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,则∠AEB的度数为________,线段AD、BE之间的关系________.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.①请判断∠AEB的度数,并说明理由;②当CM=5时,AC比BE的长度多6时,求AE的长.+31、已知:如图,△ABC中∠ACB的平分线与AB的垂直平分线交于点D,DE⊥AC于点E,DF⊥BC交CB 的延长线于点F.(1)求证:AE=BF;(2)若AE=7,BC=10,AB=26,判断△ABC的形状,并证明;(3)设AB=c,BC=a,AC=b(b>a),若∠ACB=90°,且△ABC的周长与面积都等于30,求CE的长.+32、【新知学习】如果一个三角形有一边上的中线等于这条边的一半,那么我们就把这样的三角形叫做“智慧三角形”. 【简单运用】(1)下列三个三角形,是智慧三角形的是 (填序号);(2)如图,已知等边三角形ABC ,请用刻度尺在该三角形边上找出所有满足条件的点D ,使△ABD为“智慧三角形”,并写出作法;【深入探究】(3)如图,在正方形ABCD 中,点E 是BC 的中点,F 是CD 上一点,且CF =41CD , 试判断△AEF 是否为“智慧三角形”,并说明理由;【灵活应用】(4)如图,等边三角形ABC 边长5cm .若动点P 以1cm /s 的速度从点A 出发,沿△ABC的边AB -BC -CA 运动.若另一动点Q 以2cm /s 的速度从点B 出发,沿边BC -CA -AB 运动,两点同时出发,当点Q 首次回到点B 时,两点同时停止运动.设运动时间为t (s ),那么t 为 (s )时,△PBQ 为“智慧三角形”.苏科版九年级数学上册第3章勾股定理 周末强化训练卷(答案20.10.24)一、选择题 1、在ABC ∆中,ABC ∆,90A ∠=︒,A ∠,B ∠,C ∠的对边长分别为,,a b c c ,则下列结论错误的是( A ) A. 222a b c += B. 222b c a += C. 222a b c -= D. 222a c b -= 2、如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3, 则图中的阴影部分的面积( ) A .9B .29 C .49 D .3【解答】在Rt △ABC 中,AB 2=AC 2+BC 2,AB =3,设AE=EC=a ,CF=BC=b ,AD=BD=c , 则AC²=2a²,BC²=2b²,AB²=2c²,S 阴影=S △AEC +S △BFC +S △ADB22c 2(AC 2+BC 2+AB 2)AB 232. 故选:B . 3、我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a ,b ,那么(a-b)2的值是( )A .1B .2C .12D .13【解答】根据勾股定理可得a 2+b 2=13 四个直角三角形的面积是:12ab ×4=13−1=12,即:2ab =12 则(a −b )2=a 2−2ab +b 2=13−12=1 故选:A4、如图所示,在△ABC 中,点D 是BC 上的一点,已知AC =CD =5,AD =6,BD=25,则△ABC 的面积是( ) A .18 B .36 C .72 D .125【解答】作AE ⊥CD 于点E ,作CF ⊥AD 于点F , ∵AC =CD =5,AD =6,CF ⊥AD , ∴AF =3,∠AFC =90°,∴,∵,∴,解得.AE,∵BD,CD=5,∴BC,∴△ABC的面积是:18,故选A.5、下列长度的三条线段能组成直角三角形的是()A.4,6,8 B.6,8,9 C.7,24,25 D.5,11,12【解答】A、62+42≠82,不可以组成直角三角形,故此选项不符合题意;B、62+82≠92,不可以组成直角三角形,故此选项不符合题意;C、72+242=252,可以组成直角三角形,故此选项符合题意;D、52+112≠122,不可以组成直角三角形,故此选项不符合题意;故选:C.6、满足下列条件△ABC,不是直角三角形的是()A.∠A=∠B+∠C B.∠A:∠B:∠C=1:1:2 C.b2=a2+c2 D.a:b:c=1:1:2【解答】A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴2∠A=180°,即∠A=90°,∴是直角三角形,故此选项不合题意;B、∠A:∠B:∠C=1:1:2,则∠C=180°90°,∴是直角三角形,故此选项不合题意;C、b2=a2+c2,是直角三角形,故此选项不合题意;D、a:b:c=1:1:2,则a2+b2≠c2,∴不是直角三角形,故此选项符合题意;故选D.7、如图,一棵大树在离地面3m,5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是()A.9m B.14m C.11m D.10m【解答】如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=2m,∵OC=6m,∴DC=4m,∴由勾股定理得:,∴大树的高度为5+5=10(m),故选D.8、如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以20米/秒的速度行驶时,A 处受噪音影响的时间为( )A .16秒B .18秒C .20秒D .22秒【解答】如图:过点A 作AC ⊥ON ,AB =AD =200米,∵∠QON =30°,OA =240米,∴AC =120米,当火车到B 点时对A 处产生噪音影响,此时AB =200米,∵AB =200米,AC =120米,∴由勾股定理得:BC =160米,CD =160米,即BD =320米, ∵火车在铁路MN 上沿ON 方向以20米/秒的速度行驶,∴影响时间应是:320÷20=16秒. 故选A .9、如图,将一边长为a 的正方形 (最中间的小正方形) 与四个边长为b 的正方形 (其中b >a ) 拼接在一起,则四边形ABCD 的面积为 ( A )A .b 2+(b -a )2B .b 2+a 2C .(b +a )2D .a 2+2ab10、如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC上的动点,则PC+PQ 的最小值是( )A .125B .4C .245D .5【解答】如图,过点C 作CM ⊥AB 交AB 于点M ,交AD 于点P ,过点P 作PQ ⊥AC 于点Q ,∵AD 是∠BAC 的平分线.∴PQ=PM ,这时PC+PQ 有最小值,即CM 的长度,∵AC=6,BC=8,∠ACB=90°,∴22AC BC +=2268+.∵S △ ABC =12AB•CM=12AC•BC , ∴CM=AC BC AB =6810⨯=245,即PC+PQ 的最小值为245.故选:C .二、填空题11、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积的和是____________.【解答】根据勾股定理知正方形A,B,C,D的面积的和是92=81cm2.故答案是81.12、在中,,,BC边上的高为12cm,则的面积为.【解答】如图,当为锐角时,由勾股定理得,,,可求得如图,当为钝角时,同理可得,,,,可求得综上所述,的面积为或.故答案为126或66.13、如图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边∆BC=,将四个直角三角形中较长的直角边分别向外延长一倍,得到图②所示的“数学风车”,若BCD 5的周长是30,则这个风车的外围周长是.答案:设BD=x, AC=AD=y,则x2=4y2+5, x+2y+5=30, ∴x=13,y=6,∴这个风车的外围周长是4(x+y)=7614、△ABC中,AB=AC=10,BC=16,则BC边上的高长为6.【解答】过A作AD⊥BC于D,则BD=8,在Rt△ABD中,AB=10,BD=8,则AD6.AD=6所以BC边上高的长的高为6.故答案为:6.15、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.【解答】由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1;根据勾股定理得()22213+1x x =+解得84x =,则第⑥组勾股数:13,84,85。
第三章勾股定理单元测试卷
(总分100分时间90分钟)
一、选择题(每小题3分,共30分)
1.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )
A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b2
2.已知一个直角三角形的三边的平方和为1800 cm2,则斜边长为( )
A.30 cm B.80 cm C.90 cm D.120 cm
3.如果a、6、c是一个直角三角形的三边,则a:b:c等于( )
A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13
4.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为( ) A.4πcm2B.6πcm2C.12πcm2D.24πcm2
5.在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,若DC=3,BC=6,AD =5,则AB=( )
A.9 B.10 C.11 D.12
6.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是( )
A.4 B.3 C.5 D.4.5
7.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为7m,
梯子的顶端B到地面的距离为24 m,现将梯子的底端A向外移动到
A',使梯子的底端A'到墙根O的距离等于15 m.同时梯子的顶端
B下降至B',那∠BB'等于( )
A.3m B.4 m C.5 m D.6 m
8.聪聪在广场上玩耍,他从某地开始,先向东走10米,又向南走40米,再向西20米,又向南走40米,最后再向东走70米,则聪聪到达的终止点与原出发点间的距离是( ) A.80米B.100米C.120米D.95米
9.在Rt△ABC中,AC=6,BC-8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为( )
A.24 B.24πC.25
2
D.
25
2
π
10.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》
中就有“若勾三,股四,则弦五”的记载.如图(a)是由边长相等
的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.
图(b)是由图(a)放人长方形内得到的,∠BAC=90°,AB=3,AC=4,
点D,E,F,G,H,I都在长方形KLMJ的边上,
则长方形KLMJ的面积为( )
A.90 B.100 C.110 D.121
二、填空题(每小题3分,共24分)
11.如图阴影部分正方形的面积是_______.
12.若直角三角形中,一斜边比一直角边大2,且另一直角边长为6,则斜边为_______.13.如图,△ABC为等边三角形,AD为BC边上的高,且AB=2,则正方形ADEF的面积为_______.
14.一长方形门框宽为1.5米,高为2米.安装门框时为了增强稳定性,在门框的对角线处钉上一根木条,这根木条至少_______米长.
15.如图是一等腰三角形状的铁皮△ABC,BC为底边,尺寸如图,单位:cm,根据所给的条件,则该铁皮的面积为_______.
16.如图是连江新华都超市一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,小马虎从点A到点C共走了12 m,电梯上升的高度h为6m,经小马虎测量AB=2 m,则BE=_______.
17.如图,P是正△ABC内一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P'AB,则点P与P'之间的距离为PP'=_______,∠APB=_______度.18.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=_______.
三、解答题(共46分)
19.(6分)如图,△ABC中,∠ACB=90°,AC=7,BC=24,CD⊥AB于D.
(1)求AB的长;
(2)求CD的长.
20.(6分)如图,已知AB=13,BC=14,AC=15,AD⊥BC于D,求AD长.
21.(6分)某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B =90°,AB=3m,BC=4 m,AD=12 m,CD=13 m,若每种植1平方米草皮需要100元,问总共需要投入多少元?
22.(6分)如图,两点A,B都与平面镜相距4米,且A,B两点相距6米,一束光由A 点射向平面镜,反射之后恰好经过B点,求B点与入射点间的距离.
23.(6分)如图,一块长方体砖宽AN=5 cm,长ND=10 cm,CD上的点B距地面的高
BD =8 cm ,地面上A 处的一只蚂蚁到B 处吃食,需要爬行的最短路径是多少?
24.(8分)探索与研究:
方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 面积相等,而四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和,根据图示写出证明勾股定理的过程;
方法2:如图(b),是任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写一种证明勾股定理的方法吗?
25.(8分)(1)如图(1),在四边形ABCD 中,BC ⊥CD ,∠ACD =∠ADC . 求证:AB +AC>22BC CD ;
(2)如图(2),在△ABC 中,AB 上的高为CD ,试判断(AC +BC)2与AB 2+4CD 2之间的大小关系,并证明你的结论.
参考答案
1—10 CADBB BBBAC
11.225
12.10
13.3
14.2.5
15.60 cm2
16.8
17.6 150
18.18
19.(1)AB=25;(2)CD=6.72.
20.AD=12.
21.3600(元).
22.5(米).
24.略
25.(1)略(2)大小关系是(AC+BC)2≥AB2+4CD2.。