(课标版)2020高考物理二轮复习考前第4天电场和磁场课件
- 格式:ppt
- 大小:2.09 MB
- 文档页数:40
[课后作业(十三)] (建议用时:40分钟)一、选择题1.(2018·浙江选考4月)在城市建设施工中,经常需要确定地下金属管线的位置,如图所示.有一种探测方法是,首先给金属长直管线通上电流,再用可以测量磁场强弱、方向的仪器进行以下操作:①用测量仪在金属管线附近的水平地面上找到磁场最强的某点,记为a ;②在a 点附近的地面上,找到与a 点磁感应强度相同的若干点,将这些点连成直线EF ;③在地面上过a 点垂直于EF 的直线上,找到磁场方向与地面夹角为45°的b 、c 两点,测得b 、c 两点距离为L .由此可确定金属管线( )A .平行于EF ,深度为L 2B .平行于EF ,深度为LC .垂直于EF ,深度为L 2D .垂直于EF ,深度为L解析:选A.由图可知磁场最强点为a 点,在导线的正上方,所以导线平行于EF ,且h =L 2. 2.如图所示,两根水平放置且相互平行的长直导线分别通有方向相反的电流I 1与I 2.且I 1>I 2,与两根导线垂直的同一平面内有a 、b 、c 、d 四点,a 、b 、c 在两根导线的水平连线上且间距相等,b 是两根导线连线的中点,b 、d 连线与两根导线连线垂直.则( )A .I 2受到的安培力水平向左B .b 点磁感应强度为零C .d 点磁感应强度的方向必定竖直向下D .a 点和c 点的磁感应强度不可能都为零解析:选D.电流I 1在I 2处的磁场方向竖直向下,根据左手定则可知,I 2受到的安培力的方向水平向右,故A 错误;电流I 1与I 2在b 处产生的磁场方向相同,所以合磁场方向向下,磁感应强度不等于零,故B 错误;两根水平放置且相互平行的长直导线分别通有方向相反、大小相等的电流I 1与I 2时,d 点的磁感应强度的方向是竖直向下,当两电流的大小不相等时,d 点的合磁场方向不是竖直向下,故C 错误;电流I 1的大小比电流I 2的大,则c 点的磁感应强度可能等于零,a 点的磁感应强度不可能等于零,故D 正确.3.如图所示,一带电塑料小球质量为m ,用丝线悬挂于O 点,并在竖直平面内摆动,最大摆角为60°,水平磁场垂直于小球摆动的平面.当小球自左方最大摆角处摆到最低点时,悬线上的张力恰为零,则小球自右方最大摆角处摆到最低点时悬线上的张力为( )A .0B .2mgC .4mgD .6mg解析:选C.设小球自左方最大摆角处摆到最低点时速度为v ,则12m v 2=mgL (1-cos 60°),此时q v B -mg =m v 2L,当小球自右方最大摆角处摆到最低点时,v 大小不变,洛伦兹力方向发生变化,此时有T -mg -q v B =m v 2L,解得T =4mg ,故C 正确. 4.(2019·浙江选考4月)在磁场中的同一位置放置一条直导线,导线的方向与磁场方向垂直,则下列描述导线受到的安培力F 的大小与通过导线的电流I 的关系图象正确的是( )答案:A5.(多选)两个质量相同,所带电荷量相等的带电粒子a 、b ,以不同的速率对准圆心O 沿着AO 方向射入圆形匀强磁场区域,其运动轨迹如图所示,若不计粒子的重力,则下列说法正确的是( )A .a 粒子带负电,b 粒子带正电B .a 粒子在磁场中所受洛伦兹力较大C .b 粒子动能较大D .b 粒子在磁场中运动时间较长解析:选AC.粒子向右运动,根据左手定则可知,b 向上偏转,带正电;a 向下偏转,带负电,故A 正确.洛伦兹力提供向心力,即q v B =m v 2r ,得r =m v qB,故半径较大的b 粒子速度大,受洛伦兹力较大,动能也大,故B 错误,C 正确.T =2πm Bq,则两粒子运动周期相等,磁场中偏转角大的运动的时间长;a 粒子的偏转角大,因此运动的时间较长,故D 错误.6.如图所示,边长为L 的正方形有界匀强磁场ABCD ,带电粒子从A 点沿AB 方向射入磁场,恰好从C 点飞出磁场;若带电粒子以相同的速度从AD 的中点P 垂直AD 射入磁场,从DC 边的M 点飞出磁场(M 点未画出).设粒子从A 点运动到C 点所用时间为t 1,由P 点运动到M 点所用时间为t 2(带电粒子重力不计),则t 1∶t 2为( )A .2∶1B .2∶3C .3∶2 D.3∶ 2 解析:选C.如图所示为粒子两次运动轨迹图,由几何关系知,粒子由A 点进入C 点飞出时轨迹所对圆心角θ1=90°,粒子由P点进入M 点飞出时轨迹所对圆心角θ2=60°,则t 1t 2=θ1θ2=90°60°=32,故选项C 正确. 7.如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R 2.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A.qBR 2mB.qBR mC.3qBR 2mD.2qBR m解析:选B.作出粒子运动轨迹如图中实线所示.因P 到ab 距离为R 2,可知α=30°.因粒子速度方向改变60°,可知转过的圆心角2θ=60°.由图中几何关系有⎝⎛⎭⎫r +R 2tan θ=R cos α,解得r =R .再由Bq v =m v 2r 可得v =qBR m,故B 正确. 8.如图所示,在一绝缘、粗糙且足够长的水平管道中有一带电荷量为q 、质量为m 的带电球体,管道半径略大于球体半径.整个管道处于磁感应强度为B 的水平匀强磁场中,磁感应强度方向与管道垂直.现给带电球体一个水平速度v 0,则在整个运动过程中,带电球体克服摩擦力所做的功不可能为( )A .0B.12m ⎝⎛⎭⎫mg qB 2C.12m v 20D.12m ⎣⎡⎦⎤v 20-⎝⎛⎭⎫mg qB 2 解析:选B.当q v 0B =mg 时,球不受摩擦力,摩擦力做功为零,故A 可能.当q v 0B <mg时,球做减速运动到静止,只有摩擦力做功,根据动能定理得-W =0-12m v 20,解得W =12m v 20,故C 可能.当q v 0B >mg 时,球先做减速运动,当q v B =mg ,即当v =mg qB时,不受摩擦力,做匀速直线运动.根据动能定理得-W =12m v 2-12m v 20,解得W =12m ⎣⎡⎦⎤v 20-⎝⎛⎭⎫mg qB 2,故D 可能.选不可能的,故选B.9.如图所示,三根长为L 的通电直导线在空间构成等边三角形,电流的方向垂直纸面向里,电流大小为I ,其中A 、B 电流在C 处产生的磁感应强度的大小均为B 0,导线C 位于水平面处于静止状态,则( )A .导线C 受到的静摩擦力为0B .导线C 受到的静摩擦力为3B 0IL ,水平向右C .若将导线A 中电流反向,则导线C 受到的支持力不变D .若同时将导线A 与B 中电流反向,则导线C 受到的支持力变小解析:选B.根据安培定则,导线AB 在C 点处产生的磁感应强度方向如图甲所示,总的磁感应强度竖直向下,大小为3B 0,根据左手定则,导线C 受到的安培力水平向左,静摩擦力向右,A 错误;静摩擦力大小与安培力相等,为3B 0IL ,B 正确;将导线A 中电流反向,磁感应强度如图乙所示,磁场的矢量和向右,导线C 受到的安培力向下,支持力变大,C 错误;若同时改变A 、B 的电流方向,磁感应强度如图丙所示,磁场矢量和向上,竖直方向上力未发生变化,支持力都等于重力,D 错误.10.如图所示,R 1和R 2是同种材料、厚度相同、上下表面为正方形的金属导体,但R 1的尺寸比R 2的尺寸大.将两导体同时放置在同一匀强磁场B 中,磁场方向垂直于两导体正方形表面,在两导体上加相同的电压,形成图示方向的电流;电子由于定向移动,会在垂直于电流方向受到洛伦兹力作用,从而产生霍尔电压,当电流和霍尔电压达到稳定时,下列说法中正确的是( )A .R 1中的电流大于R 2中的电流B .R 1 中的电流小于R 2中的电流C .R 1 中产生的霍尔电压小于R 2中产生的霍尔电压D .R 1中产生的霍尔电压等于R 2中产生的霍尔电压解析:选D.电阻R =ρLS ,设正方形金属导体边长为a ,厚度为b ,则R =ρa ab =ρb,则R 1=R 2,在两导体上加上相同电压,则R 1中的电流等于R 2中的电流,故A 、B 错误.根据电场力与洛伦兹力平衡,则有e v B =eU H a ,解得:U H =Ba v =Ba ·I neab =1ne ·BI b,则有R 1中产生的霍尔电压等于R 2中产生的霍尔电压,故C 错误,D 正确.二、非选择题11.如图,在0≤x ≤d 的空间,存在垂直xOy 平面的匀强磁场,方向垂直xOy 平面向里.y 轴上P 点有一小孔,可以向y 轴右侧垂直于磁场方向不断发射速率均为v 、与y 轴所成夹角θ可在0~180°范围内变化的带负电的粒子.已知θ=45°时,粒子恰好从磁场右边界与P 点等高的Q 点射出磁场,不计重力及粒子间的相互作用.求:(1)磁场的磁感应强度;(2)若θ=30°,粒子射出磁场时与磁场边界的夹角(可用三角函数、根式表示);(3)能够从磁场右边界射出的粒子在磁场中经过的区域的面积(可用根式表示).解析:(1)粒子在磁场中做匀速圆周运动,设粒子的轨道半径为R ,磁场的磁感应强度为B ,则:q v B =m v 2R如图甲所示,由几何关系得:d =2R cos 45°解得:B =2m v qd . (2)如图乙所示,由几何关系d =R cos 30°+R cos α解得:α=arccos 22-32. (3)能够从磁场右边界射出的粒子在磁场中经过的区域,如图丙中两圆弧间斜线部分所示, 由几何关系得:R 2-(d -R )2=PM 2由割补法得该区域面积为:S =d ·PM解得:S =d 22-1.答案:(1)2m v qd(2)arccos 22-32 (3)d 22-112.如图甲所示,M 、N 为竖直放置彼此平行的两块平板,板间距离为d ,两板中央各有一个小孔O 、O ′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向.有一群正离子在t =0时垂直于M 板从小孔O 射入磁场.已知正离子质量为m 、带电荷量为q ,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T 0,不考虑由于磁场变化而产生的电场的影响.求:(1)磁感应强度B 0的大小;(2)要使正离子从O ′孔垂直于N 板射出磁场,正离子射入磁场时的速度v 0的可能值. 解析:(1)正离子射入磁场,由洛伦兹力提供向心力,即q v 0B 0=m v 20r① 做匀速圆周运动的周期T 0=2πr v 0② 联立两式得磁感应强度B 0=2πm qT 0. ③ (2)要使正离子从O ′孔垂直于N 板射出磁场,两板之间正离子只运动一个周期即T 0时,v 0的方向应如图所示,有r =d 4 ④当在两板之间正离子共运动n 个周期,即nT 0时,有r =d 4n (n =1,2,3,…) ⑤联立①③⑤求解,得正离子的速度的可能值为v 0=B 0qr m =πd 2nT 0(n =1,2,3,…). 答案:(1)2πm qT 0 (2)πd 2nT 0(n =1,2,3,…)。
高考物理电场与磁场公式总结高考物理电场公式1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109Nm2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-QuAb (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ε:介电常数)14.带电粒子在电场中的加速(V0=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度V0进入匀强电场时的偏转(不考虑重力作用的情况下)类平抛运动;垂直电场方向:匀速直线运动L=V0t,平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m强调:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记,见课本。
专题9.8 三角形边界磁场问题一.选择题1、(2020金考卷)如图所示,在一个边长为a 的正六边形区域内存在磁感应强度为B ,方向垂直于纸面向里的匀强磁场。
三个相同带正电的粒子比荷为m q ,先后从A 点沿AD 方向以大小不等的速度射入匀强磁场区域,粒子在运动过程中只受磁场力作用。
已知编号为①的粒子恰好从F 点飞出磁场区域,编号为②的粒子恰好从E 点飞出磁场区域,编号为③的粒子从ED 边上的某一点垂直边界飞出磁场区域。
则下列说法正确的是( )A. 编号为①的粒子进入磁场区域的初速度大小为mBqa 33B. 编号为②的粒子在磁场区域内运动的时间qBm t 6π=C. 编号为③的粒子在ED 边上飞出的位置与E 点的距离()a 332-D. 三个粒子在磁场内运动的时间依次减少并且为4:2:1【参考答案】ACD【命题意图】本题考查带电粒子在有界匀强磁场中的运动、洛伦兹力、牛顿运动定律及其相关的知识点。
编号为③的粒子从ED 边上的某一点垂直边界飞出磁场区域,画出粒子运动轨迹如图所示,带电粒子在磁场中运动轨迹所对的圆心角为30°,偏转角为30°在磁场中运动时间为t 3=T/12;由几何关系可得编号为③的粒子在ED 边上飞出的位置与E 点的距离a/2,选项C 错误;三个粒子在磁场内运动的时间依次减少,并且为t 1∶t 2∶t 3=4:2:1,选项D 正确。
2.(2020河南漯河五模)如图所示,在一个直角三角形区域ABC内,存在方向垂直于纸面向里、磁感应强度为B的匀强磁场,AC边长为3l,∠C=90°,∠A=53°.一质量为m、电荷量为+q的粒子从AB边上距A 点为l的D点垂直于磁场边界AB射入匀强磁场,要使粒子从BC边射出磁场区域(sin53°=0.8,cos53°=0.6),则()A.粒子速率应大于B.粒子速率应小于C.粒子速率应小于D.粒子在磁场中最短的运动时间为【参考答案】AC.【名师解析】由几何知识知BC=4l,BD=4l,粒子运动轨迹与BC边相切为一临界,由几何知识知:r+r=4l得:r=1.5l根据牛顿第二定律:qvB=m得:v==,即为粒子从BC边射出的最小速率;粒子恰能从BC边射出的另一边界为与AC边相切,由几何知识恰为C点,半径r m=4l则v==,即为粒子从BC边射出的最大速率;T=t min=T=;综上可见AC正确,BD错误;3.等腰直角三角形ABC区域内(含边界)有垂直纸面向里的匀强磁场,磁感应强度为B,t=0时刻有一束质量均为m、电荷量均为q的正离子由直角顶点B沿BC方向射入磁场,可认为所有离子都是同时进入磁场且各离子速度大小不等,不计离子的重力及离子间的相互作用,则()A.同一时刻,磁场中的所有离子都在同一直线上B.由AB边界射出的离子在磁场中运动的时间均为m qB πC.在磁场中的运动时间大于4m qBπ的离子将不会从AC边射出D.在磁场中的运动时间大于34mqBπ的离子将不会从AC边射出【参考答案】ABD【名师解析】粒子在磁场中做匀速圆周运动,匀速圆周运动的周期:T=2mqBπ,轨道半径r=mvqB;同一时刻即经历相同的时间,则转过的圆心角相同,如下图中的E、E、F三点,因为O1、O2、O3三点共线,由几何知识知DEF三点共线,即任何同一时刻磁场中的所有离子都在同一直线上,故A正确;由AB边界射出的离子运动轨迹如下图所示,其运动的轨迹均为半圆,则转过的圆心角均为π/2,,运动时间均为:T/2=mqBπ,故B正确;由AC边界射出的离子在磁场中运动的轨迹如下图所示,当粒子运动轨迹与AC相切时,粒子恰好不能从AC边射出,此时粒子转过的圆心角为135°,粒子的运动时间t=135360ooT=34mqBπ,当粒子转过的圆心角大于135°粒子不能从AC边射出,故C错误,D正确;二.计算题1. (2020高考海南物理)如图,A、C两点分别位于x轴和y轴上,∠OCA=30°,OA的长度为L。
2025年⾼考⼈教版物理⼀轮复习阶段复习练(四)—电场和磁场(附答案解析)1.(2024·⼭西晋城市第⼀中学期中)如图甲所⽰,计算机键盘为电容式传感器,每个键下⾯由相互平⾏、间距为d的活动⾦属⽚和固定⾦属⽚组成,两⾦属⽚间有空⽓间隙,两⾦属⽚组成⼀个平⾏板电容器,如图⼄所⽰。
其内部电路如图丙所⽰,则下列说法正确的是( )A.按键的过程中,电容器的电容减⼩B.按键的过程中,电容器的电荷量增⼤C.按键的过程中,图丙中电流⽅向从a流向bD.按键的过程中,电容器间的电场强度减⼩2.(2023·⼴东深圳市期末)如图所⽰,将⼀轻质矩形弹性软线圈ABCD中A、B、C、D、E、F 六点固定,E、F为AD、BC边的中点。
⼀不易形变的长直导线在E、F两点处固定,现将矩形绝缘软线圈中通⼊电流I1,直导线中通⼊电流I2,已知I1≪I2,长直导线和线圈彼此绝缘。
则稳定后软线圈⼤致的形状可能是( )3.(多选)如图甲所⽰,为特⾼压输电线路上使⽤六分裂阻尼间隔棒的情景。
其简化如图⼄,间隔棒将6条输电导线分别固定在⼀个正六边形的顶点a、b、c、d、e、f上,O为正六边形的中⼼,A点、B点分别为Oa、Od的中点。
已知通电导线在周围形成磁场的磁感应强度与电流⼤⼩成正⽐,与到导线的距离成反⽐。
6条输电导线中通有垂直纸⾯向外、⼤⼩相等的电流,其中a导线中的电流对b导线的安培⼒⼤⼩为F,则( )A.A点和B点的磁感应强度相同B.其中b导线所受安培⼒⼤⼩为FC.a、b、c、d、e五根导线在O点的磁感应强度⽅向垂直于ed向下D.a、b、c、d、e五根导线在O点的磁感应强度⽅向垂直于ed向上4.(2024·江苏常州市检测)如图所⽰,ABCD为真空中⼀正四⾯体区域,M和N分别为AC边和AD边的中点,A处和C处分别有等量异种点电荷+Q和-Q。
则( )A.B、D处电场强度⼤⼩相等,⽅向不同B.电⼦在M点的电势能⼩于在N点的电势能C.将⼀试探正电荷从B沿直线BD移动到D静电⼒做正功D.将位于C处的电荷-Q移到B处时M、N点电场强度⼤⼩相等5.(2024·河南周⼝市期中)如图所⽰,在竖直平⾯内有⽔平向左的匀强电场,在匀强电场中有⼀根长为L的绝缘细线,细线⼀端固定在O点,另⼀端系⼀质量为m的带电⼩球。
2020届高考物理二轮复习非选择题特训练习(7)带电粒子在电场或磁场中的运动1、一束初速度不计的电子在经U 的加速电压加速后,在距两极板等距处垂直进入平行板间的匀强电场,如图所示,若板间距离为d ,板长为l,偏转电极边缘到荧光屏的距离为L ,偏转电场只存在于两个偏转电极之间.已知电子质量为m ,电荷量为e ,求:(1)电子离开加速电场时速度大小; (2)电子经过偏转电场的时间;(3)要使电子能从平行板间飞出,两个极板上最多能加多大电压? (4)电子最远能够打到离荧光屏上中心O 点多远处?2、如图所示,一内壁光滑的绝缘圆管A 固定在竖直平面内.圆环的圆心为,O D 点为圆管的最低点,A B 、两点在同一水平线上,2AB L =,圆环的半径为2r L =(圆管的直径忽略不计),过OD 的虚线与过AB 的虚线垂直相交于C 点.在虚线AB 的上方存在水平向右的、范围足够大的匀强电场;虚线AB 的下方存在竖直向下的、范围足够大的匀强电场,电场强度大小等于mgq.圆心O 正上方的P 点有一质量为m 、电荷量为(0)q q ->的绝缘小物体(视为质点),PC 间距为L .现将该小物体无初速释放,经过一段时间,小物体刚好沿切线从A 点无碰撞地进入圆管内,并继续运动.重力加速度用g 表示.(1)虚线AB上方匀强电场的电场强度为多大?(2)小物体从管口B离开后,经过一段时间的运动落到虚线AB上的N点(图中未标出N点),则N点距离C点多远?(3)小物体由P点运动到N点的总时间为多少?3、如图所示,在平面直角坐标系xOy中,Ⅰ、Ⅳ象限内有场强大小E=103V/m的匀强电场,方向与x轴正方向成45°角,Ⅱ、Ⅲ象限内有磁感应强度大小B=1T的匀强磁场,方向垂直坐标平面向里。
现有一比荷为104C/kg的带负电粒子,以速度v0=2×103m/s由坐标原点O垂直射入磁场,速度方向与y轴负方向成45°角。