最新版初三中考数学模拟试卷易错题及答案4926868
- 格式:doc
- 大小:889.50 KB
- 文档页数:17
人教版九年级数学中考模拟试卷考 生须知 1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为 (A )41310⨯(B )51.310⨯(C )60.1310⨯(D )71.310⨯2.如图是某几何体的三视图,该几何体是 (A )三棱柱 (B )三棱锥 (C )长方体 (D )正方体3.实数a ,b ,c 在数轴上对应点的位置如图所示,则正确的结论是(A )2a >-(B )1b > (C )0a c +>(D )0abc >4.下列图案中,是中心对称图形的为(A ) (B ) (C ) (D )bca–1–2–3–412345.如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G , 若1∠=70︒,则2∠的度数是 (A )60︒ (B )55︒ (C )50︒(D )45︒6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用 平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为()1,1-,表示点B 的坐标为()32,,则表示其他位置的点的坐标正确的是7.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是 指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是 (A )与2017年相比,2018年年末全国农村贫困人口减少了1386万人 (B )2015 ~2018年年末,与上一年相比,全国农村贫困发生率逐年下降 (C )2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万(D )2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点BACDEGF 212014 ~ 2018年年末全国农村贫困人口统计图2014 ~ 2018年年末全国农村贫困发生率统计图8.如图,在平面直角坐标系xOy 中,△AOB 可以看作是 由△OCD 经过两次图形的变化(平移、轴对称、旋转) 得到的,这个变化过程不可能...是 (A )先平移,再轴对称 (B )先轴对称,再旋转 (C )先旋转,再平移 (D )先轴对称,再平移二、填空题(本题共16分,每小题2分) 9.写出一个大于2且小于3的无理数:.10.右图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m n . (填“>”,“=”或“<”)11.一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为. 12.若正多边形的一个内角是135︒,则该正多边形的边数为. 13.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥BC .若6AE =,3EC =,8DE =, 则BC =.14.如果230m m --=,那么代数式211m m m m +⎛⎫-÷ ⎪⎝⎭的值是.15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为.16.如图,AB 是⊙O 的一条弦,P 是⊙O 上一动点 (不与点A ,B 重合),C ,D 分别是AB ,BP 的中点. 若AB = 4,∠APB = 45°,则CD 长的最大值为.EDCBA三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 及直线l 外一点A . 求作:直线AD ,使得AD ∥l .作法:如图2,①在直线l 上任取一点B ,连接AB ; ②以点B 为圆心,AB 长为半径画弧, 交直线l 于点C ;③分别以点A ,C 为圆心,AB 长为半径 画弧,两弧交于点D (不与点B 重合); ④作直线AD .所以直线AD 就是所求作的直线. 根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.(说明:括号里填推理的依据)证明:连接CD .∵AD=CD=BC=AB ,∴四边形ABCD 是().∴AD ∥l ().18.计算:()02cos3023π︒++-.19.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 20.关于x 的一元二次方程()2320x m x m -+++=. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值.lA图1图2l21.如图,在△ABC 中,90ACB ∠=︒,D 为AB 边上一点,连接CD ,E 为CD 中点,连接BE 并延长至点F ,使得EF =EB ,连接DF 交AC 于点G ,连接CF . (1)求证:四边形DBCF 是平行四边形; (2)若30A ∠=︒,4BC =,6CF =,求CD 的长.22.如图,AB 是⊙O 的直径,过⊙O 上一点C 作⊙O 的切线CD ,过点B 作BE ⊥CD于点E ,延长EB 交⊙O 于点F ,连接AC ,AF . (1)求证:12CE AF =; (2)连接BC ,若⊙O 的半径为5,tan 2CAF ∠=,求BC 的长.23.如图,在平面直角坐标系xOy 中,函数()0ky x x=<的图象经过点()16A -,, 直线2y mx =-与x 轴交于点()10B -,. (1)求k ,m 的值;(2)过第二象限的点P ()2n n -,作平行于x 轴的直线,交直线2y mx =-于点C ,交 函数()0ky x x=<的图象于点D . ①当1=-n 时,判断线段PD 与PC 的数量关系,并说明理由; ②若2PD PC ≥,结合函数的图象,直接写出n 的取值范围.CFDG EBA24.如图,Q 是AB 上一定点,P 是弦AB 上一动点,C 为AP 中点,连接CQ ,过点P 作PD ∥CQ 交AB 于点D ,连接AD ,CD .已知8AB cm ,设A ,P 两点间的距离为x cm ,C ,D 两点间的距离为y cm . (当点P 与点小荣根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整:(1x x(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合函数图象,解决问题:当DA DP ⊥时,AP 的长度约为cm .25.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了 整理、描述和分析.下面给出了部分信息.a .甲、乙两校40名学生成绩的频数分布统计表如下:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以 下为不合格)b .甲校成绩在70≤x <80这一组的是: 70707071727373737475767778c 根据以上信息,回答下列问题: (1)写出表中n 的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是; (3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m . (1)求m 的值;(2)求抛物线的顶点坐标;(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围.27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC <,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.28.在平面直角坐标系xOy 中,正方形ABCD 的顶点分别为(0,1)A ,(1,0)B -,(0,1)C -,(1,0)D .对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为正方形ABCD边上任意一点,如果P ,Q 两点间的距离有最大值,那么称这个最大值为图形M 的 “正方距”,记作d (M ). (1)已知点(0,4)E ,①直接写出()d E 点的值;②直线4y kx =+(0)k ≠与x 轴交于点F ,当()d EF 线段取最小值时,求k 的取 值范围;(2)⊙T 的圆心为(,3)T t ,半径为1.若()6d T <,直接写出t 的取值范围.DB参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.答案不唯一,10.>11.31012.813.12 14.315.552x y x y =+⎧⎪⎨=-⎪⎩16.三、解答题(本题共68分,第17-22题,每小题5分,第23 - 26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.解:(1)补全的图形如图所示:(2)菱形;四条边都相等的四边形是菱形; 菱形的对边平行. 18.解:原式=213+ 2+=.………………2分………………5分………………4分 ………………4分 ………………5分19.解:解不等式13(3)x x -<-,得4x >. 解不等式52x x +≥,得5x ≥. ∴原不等式组的解集为5x ≥.20.(1)证明:依题意,得()()2342m m ∆=⎡-+⎤-+⎣⎦ 26948m m m =++--()21m =+.∵()210m +≥, ∴0∆≥.∴方程总有两个实数根.(2)解:解方程,得1212x x m ==+,, ∵方程的两个实数根都是正整数,∴21m +≥. ∴1m -≥.∴m 的最小值为1-.21.(1)证明:∵点E 为CD 中点, ∴CE =DE .∵EF =BE ,∴四边形DBCF 是平行四边形.(2)解:∵四边形DBCF 是平行四边形,∴CF ∥AB ,DF ∥BC .∴30FCG A ∠=∠=︒,90CGF CGD ACB ∠=∠=∠=︒.在Rt △FCG 中,CF =6,∴132FG CF ==,CG = ∵4DF BC ==, ∴1DG =. 在Rt △DCG 中, 由勾股定理,得CD =………………………………2分………………………………3分 ………………………………4分………………………………5分………………………………2分 ………………………………4分 ………………………………5分………………………………2分………………………………3分………………………………4分………………………………5分CFDG EBA22.(1)证明:连接CO 并延长交AF 于点G . ∵CD 是⊙O 的切线, ∴90ECO ∠=︒.∵AB 是⊙O 的直径, ∴90AFB ∠=︒. ∵BE CD ⊥, ∴90CEF ∠=︒.∴四边形CEFG 是矩形.∴GF CE =,90CGF ∠=︒. ∴CG AF ⊥.∴12GF AF =. ∴12CE AF =.(2)解:∵CG AF ⊥, ∴CF CA =.∴CBA CAF ∠=∠.∴tan tan 2CBA CAF ∠=∠=.∵AB 是⊙O 的直径,∴90ACB ∠=︒.在Rt △CBA 中,设BC x =,2AC x =,则=52AB =⨯.∴BC x ==23.解:(1)∵函数()0ky x x=<的图象G 经过点A (-1,6), ∴6k =-.…………… 1分∵直线2y mx =-与x 轴交于点B (-1,0),∴2m =-. ……………………… 2分(2)①判断:PD =2PC .理由如下:……… 3分当1n =-时,点P 的坐标为(-1,2),∴点C 的坐标为(-2,2),点D 的坐标为(-3,2).∴PC =1,PD =2.∴PD =2PC .…………… 4分②10n -<≤或3n -≤.…………… 6分………………………………3分………………………………4分………………………………5分………………………………2分24.解:(1)(2)(3)3.3125.解:(1)(2乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排 在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生.(3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为1680032040⨯=.26.解:(1)∵1(0)y kx k =+≠经过点A 23(,),∴1k =.∵直线1y x =+与抛物线2y ax bx a =++的对称轴交于点C ()m,2,∴1m =.(2)∵抛物线2y ax bx a =++的对称轴为1x =,∴12ba-=,即2b a =-. ∴22y ax ax a =-+2(1)a x =-.∴抛物线的顶点坐标为()1,0.……………………………4分 ……………………………6分………………………………4分……………………………1分……………………………2分(3) 当0a >时,如图,若抛物线过点B 01(,),则1a =.结合函数图象可得01a <<. 当0a <时,不符合题意.综上所述,a 的取值范围是01a <<.27.(1)补全的图形如图1所示.…………… 1分 (2)证明:△ABC 是等边三角形, ∴AB BC CA ==.60ABC BCA CAB ∠=∠=∠=︒.由平移可知ED ∥BC ,ED =BC .………… 2分60ADE ACB ∴∠=∠=︒.90GMD ∠=︒,2DG DM DE ∴==.…………… 3分 DE BCAC ==, DG AC ∴=.AG CD ∴=.…………… 4分(3)线段AH 与CG 的数量关系:AH = CG .…………… 5分证明:如图2,连接BE ,EF .,ED BC =ED ∥BC ,BEDC ∴四边形是平行四边形.BE CD CBE ADE ABC ∴=∠=∠=∠,. GM ED 垂直平分,EF DF ∴=.DEF EDF ∴∠=∠. ED ∥BC ,BFE DEF BFH EDF ∴∠=∠∠=∠,. BFE BFH ∴∠=∠. BF BF =,BEF BHF ∴△≌△.…………… 6分 BE BH CD AG ∴===. AB AC =,AH CG ∴=.…………… 7分 ………………………………6分 图1图228.解:(1)①5.②如图,(5d E =点.()d EF ∴线段的最小值是5.∴符合题意的点F 满足()5d F 点≤.当()=5d F 点时,125BF DF ==.∴点1F 的坐标为()4,0,点2F 的坐标为()4,0-. ∴1k =-或1k =.结合函数图象可得1k ≤-或1k ≥.(2)33t -<<.………………………………5分………………………………7分。
2024 年中招第二次模拟考试数 学 试 题注意事项:1.本试题卷共6页,三个大题,满分 120分,考试时间 100分钟.2.试题卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面指定的位置.一、选择题(每小题3分,共30分)下列各题均有四个答案,其中只有一个是正确的.1.下列各数中,与相加等于0的数是( )A. 2 B. C.D. 【答案】B 【解析】【分析】此题考查了绝对值,有理数的加法,正确掌握绝对值的性质是解题关键.直接利用绝对值的性质化简,再利用有理数的加法得出答案.【详解】解:∵,∴与相加等于0的数是.故选:B .2. 如图所示是一个物体的三视图,则这个物体可以是( )A. B.2-2-1212-22-=2-2-C. D.【答案】C 【解析】【分析】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 根据三视图的定义逐项分析即可.【详解】A .左视图不符合题意,故不正确;B .俯视图与左视图与题意不符,故不正确;C .符合题意,正确;D .俯视图不符合题意,故不正确.故选C .3. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量仅有克,数据用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:,故选:C .4. 将一副三角尺如图摆放,点 D 在 上,延长交的延长线于点F ,,则的度数是()0.0000000760.00000007670.7610-⨯77.610-⨯87.610-⨯97610-⨯10n a ⨯110a ≤<80.0000000767.610-⨯=AC EA CB 903045ABC ADE C E ∠=∠=︒∠=︒∠=︒,,F ∠A. B. C. D. 【答案】B 【解析】【分析】本题考查三角板中的角度计算,直角三角形的性质等知识,根据直角三角形互余及平角的定义即可求解.【详解】解:如图,,,,,,,,.故选:B .5. 数形结合是我们解决数学问题常用的思想方法.如图,一次函数与 (m ,n 为常数,)的图象相交于点,则不等式的解集在数轴上表示正确的是( )10︒15︒20︒25︒30,90C ABC ∠=︒∠=︒ 60BAC ∴∠=︒45,90E ABC ∠=︒∠=︒ 45EAD ∴∠=︒180FAB BAC EAD ∠+∠+∠=︒ 180604575FAB ∴∠=︒-︒-︒=︒90,90ABF F FAB ∠=︒∠+∠=︒ 907515F ∠=︒-︒=︒=1y x --y mx n =+0m ≠(1)2-,1x mx n --<+A. B. C.D.【答案】A 【解析】【分析】本题考查的是一次函数与一元一次不等式,在数轴上表示不等式的解集,能利用数形结合求出不等式的解集是解题的关键.直接根据一次函数的图象即可得出结论.【详解】解:由一次函数的图象可知,当时,一次函数的图象在一次函数的图象的下方,关于的不等式的解集是.在数轴上表示的解集,只有选项A 符合,故选:A6. 如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,修路的方法有 ( )A. 1种B. 2种C. 4种D. 无数种【答案】D 【解析】【分析】根据正方形的性质即可解答.【详解】解:由正方形的对称性可知,只要将十字架交点放在正方形的中心,转动任意角度,都能将正方形分成面积相等的四部分,则修路的方法有无数种,故选:D .【点睛】本题考查了正方形的性质,解题关键在于理解正方形的性质.7. 若关于x 的一元二次方程 有两个不相等的实数根,则a 的值可以是( )A.B. 0C.D. 【答案】A 【解析】【分析】本题考查了一元二次方程根的情况,根据一元二次方程根的情况,可得,解出的1x >=1y x --y mx n =+∴x 1x mx n --<+1x >1x >²210ax x --=1-2-440a ∆=+>a取值范围,即可进行判断.【详解】解:根据题意,得,解得,,,故选:A .8. 小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟,下列选项中的图像,能近似刻画s 与t 之间关系的是( )A. B.C. D.【答案】A 【解析】【分析】分别对每段时间的路程与时间的变化情况进行分析,画出路程与时间图像,再与选项对比判断即可.【详解】解:对各段时间与路程的关系进行分析如下:从家到凉亭,用时10分钟,路程600米,s 从0增加到600米,t 从0到10分,对应图像为在凉亭休息10分钟,t 从10分到20分,s 保持600米不变,对应图像为()441440a a ∆=-⨯-=+>1a >-0a ≠ a ∴从凉亭到公园,用时间10分钟,路程600米,t 从20分到30分,s 从600米增加到1200米,对应图像为故选:A .【点睛】本题考查了一次折线图像与实际结合的问题,注意正确理解每段时间与路程的变化情况是解题关键.9. 如图,点是反比例函数的图象与的一个交点,图中阴影部分的面积为,则反比例函数的解析式为( )A. B. C. D. 【答案】D 【解析】【分析】本题考查反比例函数图象的对称性的知识点,根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据在反比例函数的图象上,以及在圆上,即可求得的值.【详解】解:设圆的半径是,根据圆的对称性以及反比例函数的对称性可得:阴影部分的面积等于圆的面积的,∴,),Aa ky x=O 4π2y x=y =4y x=y =14A k r 142144r ππ=解得:.∵点是反比例与在第三象限的一个交点,.∴且∴,∴,则反比例函数的解析式是:故选D .10. 如图,在中,,,,点 P 从点A 出发,沿向点C 以的速度运动,同时点 Q 从点C 出发,沿向点B 以的速度运动(当点 Q 运动到点 B 时,点 P ,Q 同时停止运动).在运动过程中,四边形的面积最小为( )A.B.C.D.【答案】C 【解析】【分析】本题考查了二次函数的应用,勾股定理,列函数关系是解题的关键.先根据勾股定理求出的长,再设点 P 运动时间为t ,四边形的面积为y ,根据题意表示出y 与t 的函数关系式,进一步利用二次函数的性质即可求解.【详解】解:由题可知,是直角三角形,∴,设点 P 运动时间为t ,四边形的面积为y ,则,4r =),Aa ky x=O 0a <2k =24OA r a ====2a =-()22k =-=y =ABC 90C ∠=︒4cm BC =5cm AB =AC 1cm/s CB 2cm/s PABQ 215cm 229cm 22154cm 29cm 4AC PABQ ABC 3AC ==PABQ 1122y AC BC CQ CP =⋅⋅-⋅⋅∴,则当时,y 最小为.故选:C .二、填空题(每小题3 分,共15 分)11. 北京冬季里某一天的气温为,的含义是 ________ .【答案】零下【解析】【分析】本题考查了负数的定义,根据温度的定义,联系生活,想想我们看过的天气预报,从而想到含义.【详解】解:含义是零下.故答案为:零下.12. 不等式组 的正整数解的和为 ________.【答案】3【解析】【分析】本题考查了解一元一次不等式组,熟练运用不等式性质解一元一次不等式是解题的关键.先求出不等式组的解集,再确定正整数解,最后进行计算即可.【详解】解:解不等式①,得解不等式②,得∴不等式组的解集为:∴正整数解为1,2即故答案为:3.13. 某校“综合与实践”小组为了解全校2400名学生的读书情况,随机抽取部分学生进行问卷调查,绘制了如图所示的统计图:()21131534232224y t t t ⎛⎫=⨯⨯-⋅⋅-=-+ ⎪⎝⎭32t =1543~3-℃℃3-℃3℃3℃3℃123212x x -≥-⎧⎪⎨+>-⎪⎩123212x x -≥-⎧⎪⎨+>-⎪⎩①②2x ≤4x >-42x -<≤123+=调查内容为:您平均每周阅读课外书的时间大约是(以下四个选项只能单选,每项含最小值,不含最大值)_________A .8小时及以上B .6~8小时C .4~6小时D .0~4 小时估计该校2400名学生中,平均每周阅读课外书时间在“6小时及以上”的人数为 _______________ 名【答案】1152【解析】【分析】本题主要考查了用样本估计总体,扇形统计图,用2400乘以样本中平均每周阅读课外书时间在“6小时及以上”的人数占比即可得到答案.【详解】解:名,∴估计该校2400名学生中,平均每周阅读课外书时间在“6小时及以上”的人数为名故答案为:.14. 我国古代《四元玉鉴》中记载二果问价问题,其内容如下:九百九十九文钱,甜果苦果买千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?其意思为:九百九十九文钱买了甜果和苦果共一千个.已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?若设买甜果x 个,买苦果y 个,根据题意所列方程组是______.【答案】【解析】【分析】设买甜果x 个,买苦果y 个,根据“九百九十九文钱买了甜果和苦果共一千个.已知十一文钱可买九个甜果,四文钱可买七个苦果”,列出方程组,即可求解.【详解】解:设买甜果x 个,买苦果y个,根据题意得:()240016%32%1152⨯+=11521152100011499997x y x y +=⎧⎪⎨+=⎪⎩.故答案为:【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确列出方程组是解题的关键.15. 如图所示,在中,,,是的中位线,是边上一点,,是线段上的一个动点,连接,相交于点.若是直角三角形,则的长是__________ .【答案】或【解析】【分析】由图可知,在中,的度数是一个定值,且不为直角.故当或时,是直角三角形.因此,本题需要按以下两种情况分别求解.当和当两种情况求解即可.【详解】∵,∴,,当时,则.过点作,垂足为.如图100011499997x y x y +=⎧⎪⎨+=⎪⎩100011499997x y x y +=⎧⎪⎨+=⎪⎩ABC 45A B ∠∠==︒16AB =EF ABC D AB 2AD =P DB EP DF O DOP OE 165ODP ODP ∠ODP ∠90OPD ∠=︒90DOP ∠=︒ODP 90OPD ∠=︒90DOP ∠=︒45A B ∠∠==︒180454590ACB ∠=︒-︒-︒=︒CA CB =①90OPD ∠=︒EP AB ⊥F FN AB ⊥N ()∵在中,,,,,∴在中,∵是中位线,∴∴在中,,∵,,,∴.∵,,∴在中,,∵是的中位线,,∴,,∴,即,∴,∴在中,.当时,则.过点作,垂足为.如图∵,,的Rt CAB 90C ∠=︒CA CB =16AB =45A B ∠∠==︒Rt CAB cos cos 4516AC BC AB A AB ==⋅=⋅︒==EF CAB 1122BF BC ==⨯=Rt BNF sin sin 454BN FN BF B BC ==⋅=⋅︒==2AD =16AB =4NB =162410DN AB AD NB =--=--=4FN =10DN =Rt DNF 42tan 105FN FDN DN ∠===EF CAB 16AB =1116822EF AB ==⨯=EF AB ∥EFD FDN ∠∠=EFO FDN ∠∠=2tan tan 5FDN EFO ∠=∠=Rt OEF 216tan 855OE EF EFO =⋅∠=⨯=②90DOP ∠=︒EP DF ⊥F FN AB ⊥N ()4FN =10DN =∴在中,,∴在中,,∵,∴,∵,∴在中,综上所述,的长是.故答案为:.【点睛】在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解.另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.三、解答题(本大题共8个小题,共75分)16. 先化简,再求值∶ 其中.解:原式……解:原式……乙同学(1)甲同学解法的依据是 ,乙同学解法的依据是 ;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.Rt DNF DF ===Rt DNF sin FN NDF DF ∠===EFO FDN ∠∠=5sin sin 13DEO EMF ∠=∠=10EF =Rt EOF sin 8OE EF EFO =⋅∠==EO 16516521,11x x x x x x -⎛⎫+⋅ ⎪-+⎝⎭1.x =()()()()()()21111111x x x x x x x x x x⎡⎤+--=+⋅⎢⎥-++-⎢⎥⎣⎦221111x x x x x x x x--=⋅+⋅--【答案】(1)②,③(2)见解析【解析】【分析】本题考查了分式的混合运算,根据题目的特点,灵活选用合适的解法是解题的关键.(1)甲同学的解法两个分式先通分依据是分式的基本性质,乙同学根据乘法分配律先算乘法,后算加法,这样简化运算,更简便了.(2)选择甲同学的解法,先通分,再约分化简即可;选择乙同学的解法,先因式分解,再约分,最后进行加法运算即可.【小问1详解】甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】选择甲同学的解法.原式 ;或选择乙同学的解法原式当时,原式17. 2024年3月25日,是第29个全国中小学生安全教育日,为切实增强同学们的安全防范意识和避险能力,保障学生安全,提高学生面临突发安全事件自救自护应变能力,某校在 3月份开展了一系列的安全知识讲座以及相应的安全演练,为了解学生对“安全知识”的掌握情况.学校分别从八年级和九年级随机抽取各40名学生进行测试,并收集了这些学生的测试成绩,整理和分析,研究过程中的部分信息如下:信息一:安全知识测试题共10道题目,每题10分;信息二:九年级成绩的频数分布直方图如下:()()()()()()2111.1111x x x x x x x x x x⎡⎤+--=+⎢⎥-++-⎢⎥⎣⎦()()222212211x x x x x x x x x x x ⎡⎤++--=⋅==⎢⎥-+⎢⎥⎣⎦221111x x x x x x x x--=⋅+⋅-+()()()()111111x x x x x x x x x x+-+-=⋅+⋅-+112x x x =++-=1x=-)212=-=-信息三:八年级平均成绩的计算过程如下:(分)信息四:统计量平均数中位数众数方差九年级82.580n 八年级80.5m 70根据以上信息,解答下列问题:(1) , ;(2)你认为哪个年级的成绩更加稳定?请说明理由;(3)在本次测试中,九年级甲同学和八年级乙同学的成绩均为80分,你认为两人在各自年级中谁的成绩排名更靠前?请说明理由.(4)学校安排七年级主办一期安全知识宣传板报,要求从A .交通安全,B .食品安全,C .消防安全,D .网络与信息安全,E .心理健康与安全中选择两个主题,请用列表或画树状图的方法求七年级选择D 和E 的概率.【答案】(1)75;80(2)九年级的成绩更稳定,理由见解析(3)乙同学的成绩在自己年级排名更靠前,理由见解析(4)七年级选择D 和E 的概率为.【解析】【分析】本题考查列表法或树状图法,以及方差的意义、众数和中位数等知识.(1)根据中位数和众数的定义求解即可;6037017803909100880.5317398⨯+⨯+⨯+⨯+⨯=++++118.75174.75m =n =110(2)根据方差的意义求解即可;(3)根据中位数的意义求解即可;(4)先画树状图,再由概率公式解题即可.【小问1详解】解:八年级成绩第20和21个数分别为:70和80,则八年级成绩的中位数,九年级成绩,80分出现了14次数,次数最多,九年级成绩的众数,故答案为:75;80;【小问2详解】解:九年级1班的成绩更稳定,九年级成绩的方差为,八年级成绩的方差为,九年级方差八年级的方差,九年级的成绩更稳定;【小问3详解】解:九年级成绩的中位数为80,八年级成绩的中位数为75,而甲同学成绩小于该班成绩中位数,而乙同学成绩大于该班成绩中位数,乙同学成绩在该班成绩的排名更靠前;【小问4详解】解:画树状图如下:所有等可能的结果数有20种,其中七年级选择D 和E 的结果数有2个,七年级选择D 和E 的概率为.18. 如图,内接于,是的直径,D 是的中点,连接.7080752m +==80n = 118.75174.75∴<∴ ∴212010==ABC O AB O BCAD(1)请用无刻度的直尺和圆规,过点D 作直线l 垂直于直线(保留作图痕迹,不写作法).(2)若(1)中所作的直线l 与直线交于点E ,与的延长线交于点F .①判断直线与的位置关系,并说明理由.②若,的长为 .【答案】(1)见解析(2)①直线与相切,理由见解析;②【解析】【分析】(1)根据垂线的作图方法画图即可;(2)①连接交于点G ,证明四边形是矩形得,可证直线与相切;②证明,结合可求出,,从而,利用锐角三角函数求出,可得半径,然后根据弧长公式求解即可.【小问1详解】如图,直线l 即为所求,【小问2详解】①如图,连接交于点G ,∵是的直径,∴.∵,∴.∵D 是的中点,AC AC AB EF O DF DA =DE =AD EF O 43πOD BC CEDG 90ODE ∠=︒EF O AFD BAD CAD ∠=∠=∠90ADE CAD ∠+∠=︒30AFD BAD CAD ∠=∠=∠=︒60BAC ∠=︒120AOD ∠=︒4AB =OD BC AB O 90ACB ∠=︒EF AC ⊥90CED ∠=︒ BC∴,∴四边形是矩形,∴,.∵是的半径,∴直线与相切;②∵D 是的中点,∴.∵,∴,∵,∴,∴,∴.∵,∴,,∴,∴.∵,∴,∴,∴的长为∶.【点睛】本题考查了尺规作图,矩形的判定与性质,垂径定理,切线的判定,等边三角形的判定与性质,解直角三角形,以及弧长公式,正确作出辅助线是解答本题的关键.19. 水龙头关闭不严会造成滴水,为了调查漏水量与漏水时间的关系,某兴趣小组进行以下试验与探究:试验:在滴水的水龙头下放置一个能显示水量的容器量筒,每记录一次容器中的水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如下表中的一组数据.时间510152025…OD BC ⊥CEDG 90ODE ∠=︒CG DE ==OD O EF O BCBAD CAD ∠=∠OD BC ⊥2BC CG ==DF DA =AFD BAD ∠=∠AFD BAD CAD ∠=∠=∠2ADE BAC BAD ∠=∠=∠90ADE CAD ∠+∠=︒30AFD BAD CAD ∠=∠=∠=︒60BAC ∠=︒260BOD BAD ∠=∠=︒120AOD ∠=︒sin BC BAC AB∠=4AB ==2OA OB == AD 120241803ππ⨯=5min t/min水量173247a 77…(1)探究:根据上表中的数据,请判断和 (,为常数)哪个解析式能准确的反映水量y 与时间t 的函数关系?求出该解析式并写出漏记的a 值;(2)应用:①兴趣小组用量筒进行测量,请估计在第30分钟量筒是否滴满?②成年人每天大约需饮水,请估算这个水龙头一个月(按30天计)的漏水量可供一位成年人饮用天数.【答案】(1)(2)①的量筒没有装满;②81天【解析】【分析】本题考查了反比例函数的应用,以及一次函数的应用,正确列出函数解析式是解答本题的关键.(1)根据表格中的数据特点分析即可;(2)把代入求出y 的值,与比较即可;②求出30天的漏水量,进而可判断可供一位成年人饮用天数.【小问1详解】∵,∴表中的数据不符合.观察表格, 可发现时间t 每增加5分钟, 水量y 增加15mL , 故可得 能正确反映水量y 与时间t 的函数关系.把和代入得,解得 ,∴水量y 与时间t 函数关系.把代入得【小问2详解】的y/mL ()110k y k t≠=2y k t b =+20k ≠2k 100mL 1600mL 32,62y t a =+=100mL 30t =32y t =+100mL 5171032⨯≠⨯()110k y k t≠=y k t b =+₂5,17t y ==10,32t y ==2y k t b =+225171032k b k b +=⎧⎨+=⎩232k b =⎧⎨=⎩32y t =+20,t y a ==32y t =+320262a =⨯+=①把代入得∵∴的量筒没有装满②∵由函数解析式可知每分钟的滴水量为,∴30天滴水量, (天)答:这个水龙头一个月(按30天计)的漏水量可供一位成年人饮用81天.20. 如图①所示的手机平板支架由托板,支撑板和底座构成,如图所示图②是其侧面结构示意图.已知托板长,支撑板长,,托板固定在支撑板顶端点C 处,可绕C 点旋转,支撑板可绕点D 转动.(结果精确到)(1)若,点A 到底座的距离是;(2)为了观看舒适,在(1)中的调整成.再将绕点D 顺时针旋转,恰好使点B 落在直线上,则顺时针旋转旋转的角度为 ,此时点A 到底座的距离与(1)中相比是增大了还是减小了?增大或减小了多少?【答案】(1)(2)30,此时点到底座的距离与(1)中相比减小了.【解析】【分析】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)过点C 作, 垂足为N , 过点A 作,交的延长线于点M ,过点C 作,垂足为F ,则四边形是矩形,从而可得,先在中, 求出的长, 再在中,求出,然后进行计算即可解答;(2)根据题意先画出图形, 然后在中,利用锐角三角函数求出,然后进行计算30t =32y t =+330292y =⨯+=92100<100mL 3mL ()3024603129600mL ⨯⨯⨯=129600160081÷=150mm AB =m CD =60mm BC =AB CD 0.1mm 2.24≈≈≈7560DCB CDE ∠=︒∠=︒,DE mm 75DCB ∠=︒90︒CD DE CD ︒DE 153.5A DE 23.7 mm CN DE ⊥AM DE ⊥ED CF AM ⊥CFMN ,90FM CN FCN =∠=︒Rt CDN △CN Rt AFC △AF Rt DCB △30CDB ∠=︒即可解答.【小问1详解】解:过点作,垂足为,过点作,交的延长线于点,过点作,垂足为,如图:则四边形是矩形,∴,∵,,∴,在中, ,∴,∵,∴,∵,∴,∴,在中,,,∴点到直线的距离为,故答案为:.【小问2详解】解:如图:过点作于点,C CN DE ⊥N A AM DE ⊥ED M C CF AM ⊥F CFMN ,90FM CN FCN =∠=︒150mm AB =60mm BC =90mm AC AB BC =-=Rt CDN△60CD CDE =∠=︒sin6090mm,CN CD ∴=⋅︒==90mm FM CN ==90CND ∠=︒90906030DCN CDN ∠=︒-∠=︒-︒=︒75DCB ∠=︒45BCN DCB DCN ∠=∠-∠=︒180180904545ACF FCN BCN ∠=︒-∠-∠=︒-︒-︒=︒Rt AFC △90mm AC=sin459063.5mm,AF AC ∴=⋅︒==≈9063.5153.5mm AM AF FM ∴=+=+=A DE 153.5mm 153.5A AM DE ⊥M∵,在中,∴旋转的角度为在,∴,∵在中,,∴,∵,∴此时点到底座的距离与(1)中相比减小了.21. 习近平总书记说,读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.某校为提高学生的阅读品味,决定购买获得茅盾文学奖的甲、乙两种书.已知每本甲种书比每本乙种书多元,若购买相同数量的甲、乙两种书分别需花费元和元.(1)求甲、乙两种书的单价.(2)如果学校决定再次购买甲、乙两种书共本,总费用不超过元,那么该校最多可以购买甲种书多少本?【答案】(1)甲、乙两种书的单价分别为元、元(2)该校最多购买本甲种书【解析】【分析】本题主要考查了分式方程及不等式的应用,读懂题意,正确找出相等关系和不等关系是解题的关键.90DCB ∠=︒Rt DCB△60mm,DC BC ==tan BC CDB CD ∴∠===30,CDB ∴∠=︒CD 603030,=︒-︒=︒Rt DCB △30,CDB ∠=︒9060ABM CDB ∠=︒-∠=︒Rt AMB △150mm AB=sin6015075 1.73129.8mm AM AB =⨯︒==≈⨯≈153.5129.823.7mm -=A DE 23.7mm 10175012501002800352530设甲种书的单价为元,则乙种书的单价为元,根据购买相同数量的甲、乙两种书分别需花费元和元求解即可;设该校购买了甲种书本,则购买了乙种书本,根据购买甲、乙两种书共本,总费用不超过元,列不等式求解即可.【小问1详解】解:设甲种书的单价为元,则乙种书的单价为元,由题意得解得经检验,是原分式方程的解,且符合实际.∴答:甲、乙两种书的单价分别为元、元.【小问2详解】解:设该校购买了甲种书本,则购买了乙种书本,则,解得∶∴该校最多购买本甲种书.22. 根据以下素材,探索并完成任务.探究汽车刹车性能“道路千万条,安全第一条”.刹车系统是车辆行驶安全重要保障,某学习小组研究了刹车性能的相关问题(反应时间忽略不计).素材1刹车时间:驾驶员从踩下刹车开始到汽车完全停止,汽车所行驶的时间.刹车距离:驾驶员从踩下刹车开始到汽车完全停止,汽车所行驶的距离.汽车研发中心设计一款新型汽车,某兴趣小组成员记录了模拟汽车在公路上以某一速度匀速行驶时的刹车性能测试数据,具体如下:刹车后汽车行驶时间1234素材2刹车后汽车行驶距离27486372素材3该兴趣小组成员发现:()1x ()10x -17501250()2m ()100m -1002800x ()10x -1750125010x x =-35x =35x =10351025x -=-=3525m ()100m -()3525 100 2800m m +-≤30m ≤30()s t ()m y①刹车后汽车行驶距离y (单位:)与行驶时间t (单位:)之间具有函数关系(、a 、b 为常数);②刹车后汽车行驶距离y 随行驶时间t 的增大而增大,当汽车刹车后行驶的距离最远时,汽车完全停止.问题解决:请根据以上信息,完成下列任务.任务一:求 y 关于t 函数解析式.任务二:汽车司机发现正前方处有一个障碍物在路面,立刻刹车,判断该车在不变道的情况下是否会撞到障碍物?请说明理由.【答案】任务一 :;任务二:该车在不变道的情况下不会撞到障碍物.理由见解析【解析】【分析】本题考查二次函数的应用,理解题意,掌握待定系数法是解题的关键.(1)利用待定系数法即可求出y 关于t 的函数解析式;(2)求出(1)中函数的最大值,与比较,即可解决问题.【详解】解∶任务一 :将、代入 得 解得 ∴y 关于 t 的函数解析式为任务二:不会∴当时, 汽车停下, 行驶了,∵∴该车在不变道的情况下不会撞到障碍物.23. 综合与实践问题情境:“综合与实践”课上,李老师进行如下操作,将图①中的矩形纸片沿着对角线剪开,得到两个全等的三角形纸片,表示为和,其中,将和按图②所示的方式摆放,其中点B 与点G 重合(标记为点B ),并将绕点B 旋转,直线、相交于的m s ²y at bt =+0a ≠90m 2330y t t =-+90m ()1,27()2,48²y at bt=+27,4842,a b a b =+⎧⎨=+⎩330.a b =-⎧⎨=⎩2330.y t t =-+()223303575y t t t =-+=--+ 5t =75m 7590<ACB △DEG △90ACB DEG ∠=∠=︒A D ∠=∠ACB △DEG △DEG △DE AC点F .初探发现:(1)如图②,猜想,数量关系是 .深入探究:(2)李老师将图②中的绕点B 继续旋转.①“善思”小组提出猜想:旋转过程中,当点E 落在的内部,如图③,线段,,有一定的数量关系,请你写出他们的猜想,并说明理由.②“智慧”小组也提出:在旋转的过程中,当时,过点A 做于点H ,若给出,,可以求出的长.请你思考此问题,直接写出结果.【答案】(1)(2)①,理由见解析;②或3【解析】分析】(1)通过来证明即可求解.(2)①主要利用推出,进行等量变换即可.②Ⅰ.当在上方时,设与交点为M ,过点M 作交于点N ,通过推出,进而得到,利用勾股定理和即可求出,的值,再通过即可求解.Ⅱ.当在下方时,通过,,【CF EF DEG △ACB △AF EF ED DEG △CBE BAC ∠=∠AH DE ⊥3BC =4AC =AH CF EF =AF EF ED +=95ACB DEG △≌△()Rt Rt HL BCF BEF △△≌ACB DEG △≌△AF FC DF EF +=-BE BC AB DE MN DB ⊥BD ACB DEG △≌△DBM D Ð=ÐND NB =cos DN DE D DM DB ∠==AM BM AMH BME △∽△BE BC AB HE ∥AH BE ∥证明四边形是矩形即可求出.小问1详解】解:连接,∵∴,∴∴∴故答案为:.【小问2详解】①由(1)可知∵∴∴∴∴②Ⅰ.当在上方时,设与交点为M ,过点M 作交于点N∵∴,,,【90E H ∠=∠=︒AHEB BF ACB DEG△≌△CB EB =90C DEB ∠=∠=︒90BEF ∠=︒()Rt Rt HL BCF BEF △△≌CF EF=CF EF =CF EF=ACB DEG△≌△AC DE=AF FC DF EF+=-AF EF DF FC DF EF DE+=-=-=AF EF ED+=BE BC AB DE MN DB ⊥BD ACB DEG△≌△CAB D ∠=∠ABC DGE ∠=∠3EG BC ==4DE AC ==∴∴∵∴∴∵∴由勾股定理可得∴∵∴∴∴∵,,∴∴∴Ⅱ.当在下方时,如图:∵∴,, ∴ABC ABE DBE ABE∠-∠=∠-∠CBE DBM∠=∠CBE BAC∠=∠DBM DÐ=ÐMD MB=MN DB⊥ND NB=5AB ==115222ND BD AB ===cos DN DE D DM DB ∠==258DN DB DM DE ⋅==258MD MB ==2515588AM AB BM =-=-=AH DE ⊥BE DE ⊥AMH BME∠=∠AMH BME△∽△AH AM BE DM=153982558AM BE AH BM ⨯⋅===BE BC ACB DEG△≌△CAB EDG ∠=∠ABC DGE ∠=∠ABC DBC DBE DBC∠-∠=∠-∠∴∵∴∴∵,,∴∴∴四边形是矩形∴【点睛】本题考查了全等三角形的性质、相似三角形的性质与判定、勾股定理、三角函数的应用、矩形的性质和判定,适当添加辅助线构造相似三角形是解题的关键.ABD EBC∠=∠CBE BAC∠=∠ABD EDG∠=∠AB HE∥AH DE ⊥BE DE ⊥90E H ∠=∠=︒AH BE∥AHEB 3AH BE ==。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.计算-4a(2a2+3a-1)的结果是()A.-8a3+12a2-4a B.-8a3-12a2+1 C.-8a3-12a2+4a D.8a3+12a2+4a2.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:如果鞋店要购进...的是()A.20双B.30双C.50双D.80双3.下列事件中,属于必然事件的是()A.如果 a>b,那么a+c>b+c B.如果 a>b,那么 ac>bcC.如果 a>b,那么 a2>b2 D.如果 a>b,那么a b>4.从1 到9这九个自然教中任取一个,是2 的倍数或是3 的倍数的概率是()A.19B.29C.12D.235.一道含有 A,B,C,D 四个选项,某同学不会做,随手写了 A,B,C,D 四个签,抽签决定选项,他恰好选对的概率是()A.12B.14C.1 D.136.解方程组32(1)3211(2)x yx y-=⎧⎨+=⎩的最优解法是()A.由①得32y x=-,再代人②B.由②得3112x y=-,再代人①C.由②一①,消去x D.由①×2+②,消去y7.下列计算正确的是()A.23(31)3a a a a--=-- B.222()a b a b-=-C.2(23)(23)94a a a---=-D.235()a a=8.从A、B、C、D四人中用抽签的方法,任选2人去打扫公共场地,选中A•的概率是()A .41 B .21 C .43 D .以上都不对9.化简(-2x )3·y 4÷12x 3y 2的结果是( ) A .61y 2B .-61y 2 C .-32y 2 D .-32xy 2 10.下列计算27a 8÷31a 3÷9a 2的顺序不正确的是( )A .(27÷31÷9)a 8-3-2B .(27a 8÷31a 3)÷9a 2C .27a 8÷(31a 3÷9a 2)D .(27a 8÷9a 2)÷31a 311.下列说法中,正确的是( ) A .买一张电影票,座位号一定是偶数 B .投掷一枚均匀的硬币,正面一定朝上 C .三条任意长的线段可以组成一个三角形D .从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大 12.“一条鱼在白云中飞翔”是( ) A . 必然事件B . 不确定事件C . 确定事件D . 不可能事件13.下列方程中,是二元一次方程组的是( ) A .111213542 (113)3412(2)332x x y x y x y xy y B C D xy x y y x y y x⎧⎧+=-=⎪⎪+=-+=⎧⎧⎪⎪⎨⎨⎨⎨=-=⎩⎩⎪⎪-=--=⎪⎪⎩⎩ 14.下面每组图形中的两个图形不是通过相似变换得到的是( )15.下列分式中是最简分式的是( )A .122+x x B .x24C .112--x xD .11--x x16.关于x 的方程4332=-+x a ax 的解为x=1,则a=( ) A .1B .3C .-1D .-317.下列从左到右的变形,属于因式分解的是( ) A .2(3)(2)6x x x x +-=+- B .1()1ax ay a x y --=--C .2323824a b a b =⋅D .24(2)(2)x x x -=+-18.如图,从下列四个条件:①BC=B ′C ,②AC=A ′C ,③∠A ′CA =∠B ′CB ,④AB=A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是( ) A . 1B .2C .3D .419.把多项式2(2)(2)m a m a -+-分解因式等于( ) A .2(2)()a m m -+ B .2(2)()a m m -- C .(2)(1)m a m --D .(2)(1)m a m -+20. 根据图中所给数据,能得出( ) A .a ∥b ,c ∥dB .a ∥b ,但c 与d 不平行C .c ∥d ,但a 与b 不平行D .a 与b ,c 与d 均不互相平行21.如图,以 A .B 两点为其中两个顶点作位置不同的正方形,一共可以作( ) A .1 个B .2 个C .3 个D .4 个22.如果△ABC 是等腰三角形,那么它的边长可以是( ) A .AB=AC=5,BC=11 B .AB=AC=4,BC=8 C .AB=AC=4,BC=5D .AB=AC=6,BC=1223.某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是( ) A . 30吨B . 31 吨C . 32吨D . 33吨24.一组数据2-,1-,0,1,2的方差是( ) 2C.3 D.425 )A ..D .26.23b )A .23,2B .23,3C .23-,2D .23-,327. 下列各数中,比2-大的是( ) A .|2|--B .(2)--C .(6)--D .(6)-+28.设20042005a =,20052006b =,20062007c =,则下列选项中正确的是( ) A . a b c << B .a c b << C . b c a <<D .c b a <<29.仔细思考下列各对量:①胜2局与负 3局;②气温上升3℃与气温为-3℃;③下降3 米与后退5米.其中具有相反意义的量有( ) A . 1 对B .2对C .3对D .0对30.在-3,+3,12-,-4.7,-0.1,0,2中,最大的数是( ) A . -0.1B . 0C .-4.7D .+331.用四舍五入法对60340取近似数,保留两个有效数字,结果为( ) A .6.03×104B .6.0×104C .6×104D .6.0×10332.下列运算中,错误的是( )A . 1(3)3(3)3÷-=⨯- B .15()5(2)2-÷-=-⨯-C .8(2)82--=+D .020090÷=33.将长为1m 的绳子,截去一半,然后将剩下的再截去一半,如此下去,若余下的绳子长不足1cm ,则至少..需截几次( )A .6次B .7次C .8次D .9次34.已知||3x =,7y =,且0xy <,则x y +的值等于( ) A . 10B . 4C .10±D .4±35.已知240mx y +++,且x 、y 互为相反数,则m 的值为( ) A . 4B .-4C . 2D .-236.下列叙述正确的是( ) A .5 不是代数式 B .一个字母不是代数式C .x 的 5 倍与 y 的14的差可表示为 5x-14y D .2s R π=是代数式37.已知下列事件:①导体通电时发热;③某人射击一次,中靶;③抛一石块,下落;④抛一枚硬币,正面朝上;③在常温下,锡溶化. 其中属于随机事件的是( ) A .②④B .①②⑤C .②③⑤D .②⑤38.下列各组两个式子中,是同类项的是( ) A .34ab 与3a bB .1n n a bc +-与2235n n a bc C .210()()x y x y -+-与2()()x y x y -+D .235mn 与28nm39.在某城市,80%的家庭年收入不小于2.5万元,下面一定不小于2.5万元的是( ) A .年收入的平均数 B .年收入的众数 C .年收入的中位数D .年收入的平均数和众数40.当122x =-,4y =-时,代数式222x xy y -+的值是( ) A .124-B .124C .1424D .1424-41.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利l5元,则这种服装每件的成本价是 ( ) A .120元B .125元C .135元D .14042.从一只船上看小岛,方向为北偏东35°,那么从小岛上看这只船,其方向为( ) A .南偏西35° B .南偏东55°C .北偏东55°D .北偏西35°43.在223.14, , , 0.31, 0.80800800087π-…(每两个8之间依次多1个0)这些数中,无理数的个数为 ( ) A .1个B .2个C .3个D .4个44.国家游泳中心——“水立方”是北京2008年奥运会场馆之-,它的外层膜的展开面积约为260 000平方米,用科学记数法表示260000,并保留二个有效数字,结果可表示为 ( ) A.26B .26×104C.2.6×105D.2.6×10645.已知26x y -+=,则4)2(3)2(22+---y x y x 的值是( ) A .144B .94C .58D .14246.下列图形中不是轴对称图形的是 ( )47.如图所示,如果直线m 是多边形ABCDE 的对称轴,其中∠A=130°,∠B=110°,那么∠BCD 的度数为( )A .30°B .10°C .50°D .60°48.如图所示,已知AB=A ′B ′,∠A=∠A ′,若△ABC ≌△A ′B ′C ′,还需要( ) A .∠B=∠B ′B .∠C=∠C ′ C .AC=A ′C ′D .以上均可49.如图所示,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆孔,最后将正方形纸片展开,得到的图案是( )50. m 箱橘子a (kg ),则 3箱橘子的重量是( ) A .3am(kg ) B .3ma(kg ) C .3am (kg ) D .3am(kg ) 51. 抛物线y=x 2+6x+8与y 轴交点坐标( ) A .(0,8)B .(0,-8)C .(0,6)D .(-2,0)(-4,0)52.下列说法正确的是( ) A .有两个角为直角的四边形是矩形 B .矩形的对角线互相垂直 C .等腰梯形的对角线相等D .对角线互相垂直的四边形是菱形53.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有( )条鱼 A .400条 B .500条 C .800条 D .1000条54.的结果的是( ) A .-2B .2C .2±D .1655.如图,AB ∥DE ,︒=∠65E ,则C B ∠+∠=( ) A . ︒135B . ︒115C . ︒36D . ︒6556. 一个二次函数的图像经过A (0,0),B (-1,-11),C (1,9)三点,则这个二次函数的解析式是( ) A .y =-10x 2+xB .y =-10x 2+19xC .y =10x 2+xD .y =-x 2+10x57.如图,在⊙O 中,弦 AD ∥BC ,DA=DC ,∠AOC= 160°,则∠BCO 等于( ) A .20°B .30°C .40°D .50°58.已知弦AB 把圆周角分成1 : 3的两部分,则弦AB 所对的圆周角的度数为( )A .0452B . 01352C . 900或270D . 450或135059.下列图形中的角是圆周角的是( )60.下列图形不相似的是( ) A . 所有的圆B .所有的正方形C . 所有的等边三角形D . 所有的菱形61.若四边形ABCD 与四边形A 1B 1C 1D 1 是位似图形,且位似比为 k ,则下列式子不成立的是( ) A .1111AC BDk AC B D == B .△ABC ∽△A 1B 1C l C .11111111AB BC GD DAk A B B C C D D A +++=+++D .21ABC A B C S s k∆'''∆= 62.下列命题为真命题的是( )A .三角形的中位线把三角形的面积分成相等的两部分B .对角线相等且相互平分的四边形是正方形C .关于某直线对称的两个三角形是全等三角形D .一组对边平行,另一组对边相等的四边形一定是等腰梯形63.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD •的长为1米,继续往前走2米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度等于( ) A .4.5米B .6米C .7.2米D .8米64.有下列四个命题:⑴对顶角相等;⑵内错角相等;⑶有两边和其中一边的对角对应相等的两个三角形全等;⑷在同一平面内,如果两条直线都垂直于第三条直线 ,那么这两条直线平行.其中真命题有( ) A .1个B .2个C .3个D .4个65.小张外出旅游时带了两件上衣(一件蓝色,一件黄色)和3条长裤(一件蓝色,一件黄色,一件绿色),他任意拿出一件上衣和一条长裤,正好是同色上衣和长裤的概率是 ( ) A .16B .15C .13D .1266.如图,两个半圆,大半圆中长为16cm 的弦AB 平行于直径CD ,且与小半圆相切,则图中阴影部分的面积为( C ) A .234cm πB .2128cm πC .232cm πD .216cm π67.在△ABC 中,∠C= 90°,如果∠B = 60°,那sinA+cosB=( ) A .14B .1C .122D.12+68.如图所示,在离地面 5m 处引拉线固定电信信号接收杆,若拉线与地面成 60°角,则拉线AB 的长是( )A .mB mC mD .lOm69.如图所示,从山顶A 望地面C 、D 两点,俯角分别为 45°、30°,如果CD= 100 m ,那么山高AB 为( )A .lOOmB . 1)mC .D .70.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A .15B .25C .625D .192571.已知⊙O 的半径为 5 cm ,如果一条直线和圆心0的距离为 5 cm ,那么这条直线和⊙O 的位置关系是( ) A .相交B .相切C . 相离D . 相交或相离72.下列说法错误的是( ) A .太阳光所形成的投影为平行投影B .在一天的不同时刻,同一棵树所形成的影子长度不可能一样C .在一天中,不论太阳怎样变化,两棵相邻平行树的影子都是平行的D .影子的长短不仅和太阳的位置有关,还和物体本身的长度有关73.两名百米赛跑运动员几乎同时到达终点时,哪种视图有利于区分谁是冠军( ) A .主视图B .左视图C . 俯视图D .B 与C 都行74.生活处处皆学问,如图,眼镜镜片所在两圆的位置关系是( ) A .外离B .外切C .内含D .内切75.圆O 的直径为12cm ,圆心O 到直线l 的距离为7cm ,则直线l 与圆O 的位置关系是( ) A .相交B .相切C .相离D .不能确定76.某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图所示),则小鱼上的点(a ,b )对应大鱼上的点.( ) A .(-2a ,-2b )B .(-a ,-2b )C .(-2b ,-2a )D .(-2a ,-b )77.如图,下列说法中。
中考数学模拟考试卷(附有答案)(满分:120 分;考试时长:120分钟)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.()24-的相反数是()A .-4B .4C .-2D .22.下列运算结果正确的是( )A .2m+3n=5mnB .(a -b)2=a 2-ab+b 2C .a 8÷a 4=a 2D .(−2a 2)3=−8a 63.如图,将一块含有030角的直角三角板的两个顶点叠放在矩形的两条对边上,如果 ∠1=27°,那么∠2的度数为( )A.53°B.55°C.57°D.60°4.东营市某中学组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小刚从中任选一道试题做答,她选中创新能力试题的概率是( ) A.25 B.15 C.310 D.125.如图是一个几何体的三视图,则这个几何体的侧面积( )A.π102cm B.2π102cm C.π62cm D.π32cm6.如图,已知∠AOB .按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交∠AOB 的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB 内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( ) A .∠CEO =∠DEO B .CM =MD C .∠OCD =∠ECD D .S 四边形OCED =21CD ·OE (第3题图) 2cm3cm2cm3cm2cm俯视图左视图主视图(第5题图)7.如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是()A.abc>0B.b2>4ac C.a-b+c>0D.2a+b=08.我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”:其大意如下有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x人,y辆车,则可列方程组为()A.B.C.D.9.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()OAB CDEMA .B .C .D .10.如图,在边长为4的正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,DE 、AF 交于点G ,AF 的中点为H ,连接BG 、DH 给出下列结论:①AF DE ⊥;②85DG =;③HD//BG ;④ABG DHF .其中正确的结论有________.A. ①②③④B. ②④C. ①③D. ①④二、填空题:(本大题共8小题,期中11-14题每小题3分,15-18题每小题4分,共28分。
江苏省九年级中考数学模拟试卷(五)(考试时间:120分钟总分:130分)一、选择题(本题共10小题;第1~8题每小题3分,第9~10题每小题4分,共32分)下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的.1.下列计算正确的是( )A.2-2=-4 B.2-2=4 C.2-2=14D.2-2=-142.把多项式x2-4x+4分解因式的结果是()A.(x+2)2 B.(x-2)2 C.x(x-4)+4 D.(x+2)(x-2)3.观察统计图(见图1),下列结论正确的是()A.甲校女生比乙校女生少B.乙校男生比甲校男生少C.乙校女生比甲校男生多D.甲、乙两校女生人数无法比较4.函数y=kx+b(k≠0)与y=kx(k≠0)在同一坐标系中的图像可能是( )5.某城市计划经过两年的时间,将城市绿地面积从现在的144万m2提高到225万m2,则每年平均增长( )A.15% B.20% C.25% D.30%6.下面四个几何体中,俯视图为四边形的是( )7.100名学生进行20s跳绳测试,测试成绩统计如下表:则这次测试成绩的中位数m满足( )A.40<m≤50 B.50<m≤60 C.60<m≤70 D.m>708.不等式组213351xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是( )9.如图2所示,△ABC ≌△ADE 且∠ABC =∠ADE ,∠ACB =∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC =DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有 ( )A .1个B .2个C .3个D .4个10.如图3所示,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D(5,4),AD =2.若动点E 、F 同时从点O 出发,E 点沿折线OA →AD →DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点时停止,它们运动的速度都是1个单位长度/s .设E运动x s 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图像大致为 ( )二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.11.用四舍五入法,精确到0.1,对5.649取近似值的结果是_______.12.当x =-2时,代数式2531x x --的值是_______.13.如图4所示,在△ABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B =120°,则∠ANM =_______.14.如图5所示,A 是硬币圆周上一点,硬币与数轴相切于原点(A 与原点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A'重合,则点A'对应的实数是_______.15.如图6所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是_______.16.直线y =ax (a>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则4x 1y 2-3x 2y 1=_______. 17.如图所示,在梯形ABCD 中,AD ∥BC ,∠C =90°,BE 平分∠ABC 且交CD 于E ,E 为CD 的中点,EF ∥BC 交AB 于F ,EG ∥AB交BC 于G ,当AD =2,BC =12时,四边形BGEF 的周长为_______.18.对于二次函数y =x 2-2mx -3,有下列说法:①它的图像与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m =1;③如果将它的图像向左平移3个单位后过原点,则m =-1;④如果当x =4时的函数值与当x =时的函数值相等,则当x =时的函数值为-3. 其中正确的说法是_______.(把你认为正确说法的序号都填上)三、解答题(本题共11小题;共76分,解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:()03tan603π-︒--. 20.(本小题5分)解不等式组()213215x x +⎧<⎪⎨⎪-≤⎩,并把解集在数轴上表示出来.21.(本小题5分)已知a =2-1,b =2+1,求代数式a 3b +ab 3的值.22.(本小题6分)在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?23.(本小题6分)如图所示,在△ABC 中,AB =AC =10,BC =8.用尺规法作出BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.24.(本小题8分)如图所示,曲线C 是函数y =6x在第一象限内的图像,抛物线是函数y =-x 2-2x +4的图像.点P n (x ,y)(n =1,2,…)在曲线C 上,且x 、y 都是整数.(1)求出所有的点P n (x ,y).(2)在P n 中任取两点作直线,求所有不同直线的条数.(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率. (24题)(25题)25.(本小题6分)如图所示,一架飞机由A 向B 沿水平直线方向飞行,在航线AB 的正下方有两个山头C 、D .飞机在A 处时,测得山头C 、D 在飞机的前方,俯角分别为60°和30°.飞机飞行了6 km 到B 处时,往后测得山头C 的俯角为30°,而山头D 恰好在飞机的正下方.求山头C 、D 之间的距离.26.(本小题8分)如图所示,一次函数y =kx +b 的图像与x 、y轴分别交于点A(2,0)、B(0,4).(1)求该函数的解析式.(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.27.(本小题8分)如图所示,已知等边△ABC,以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点D作DF_l AC,垂足为点F.(1)判断DF与⊙O的位置关系,并证明你的结论.(2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为4,求FH的长.(结果保留根号)28.(本小题9分)某市政府为落实保障性住房政策,已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到202X年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到202X年底,这两年中投入资金的平均年增长率(只需列出方程).(2)设(1)中方程的两根分别为x1、x2,且mx21-4m2x1x2+mx22的值为12,求m的值.29.(本小题10分)如图所示,在平面直角坐标系Oxy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=45.(1)求过A、C、D三点的抛物线的解析式.(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围.(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.参考答案一、选择题1.C 2.B 3.D 4.A 5.C 6.D 7.B 8.C 9.D 10.C 二、填空题11.5.6 12.5 13.60°14.π15.15416.-3 17.28 18.①④三、解答题19.-120.-32≤x<1解集在数轴上的表示如答图所示:21.622.甲、乙工程队单独完成任务分别需要4天、6天.23.22124.(1)P1(1,6)、P2(2,3)、P3(3,2)、P4(6,1).(2)6条.(3)1 325.山头C、D21.26.(1).y=-2x+4.(2)P的坐标为(0,1) 27.(1)相切(2)FH33 28.(1)10.5.(2)m=-6或m=129.(1)y=-23x2+23x+4(2)当y1 <y2时,-2<x<5.(3)34312教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
(考试时间:120分钟;满分:150分2024年福建省中考数学模拟试题(一))友情提示:请把所有答案填写(涂)到答题卡上!请不要错位、越界答题!!注意:在解答题中,凡是涉及到画图,可先用铅笔画在答题卡上,然后必须用黑色签字笔.....重描确认,否则无效。
一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.在-2,12,0,-1这四个数中,最小的数是A .-2B .12C .0D .-12.如图所示几何体的左视图是A .B .C .D .3.下列图形中,既是轴对称图形又是中心对称图形的是A.B.C.D .4.不等式组⎩⎨⎧<+≤-2141x x的解集在数轴上表示正确的是5.不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是A.b a b + B.b a C.a a b + D.a b6.某校利用课后延时服务开展“读书节”活动.现需购买甲,乙两种读本共200本供学生阅读,其中甲种读本的单价为12元/本,乙种读本的单价为9元/本,设购买甲种读本x 本,则购买乙种读本的费用为A .9x 元B .12(200-x )元C .9(200-x )元D .(200-12x )元7.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,若∠CAD =65°,则∠B 的度数是A .50°B .35°C .32.5°D .25°8.现代物流的高速发展,为乡村振兴提供了良好条件,某物流公司的汽车行驶30km 后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h 到达目的地.汽车行驶的时间x (单位:h)与行驶的路程y (单位:km)之间的关系如图所示,请结合图象,判断以下说法正确的是A.汽车在高速路上行驶的平均速度是72km/hB.汽车在乡村道路上行驶的平均速度是40km/hC.汽车在高速路上行驶的路程是180kmD.汽车在高速路上行驶了2.5h9.如图,将线段AB 平移得到线段DC ,其中点A (0,2),B (1,0),若∠ABC =90º,BC =2AB ,则点D 的坐标是A.(4,2)B.(5,2)C.(3,4)D.(4,4)10.若反比例函数2y x =-的图象上有两个不同的点关于y 轴的对称点都在一次函数y =-x +b 的图象上,则b 的取值范围是A .b >22B .b <22-C .b >22或b <22-D .22-<b <22二、填空题:本题共6小题,每小题4分,共24分。
中考数学模拟试卷及答案解析 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 题号 一 总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人 得分 一、选择题
1.如图,直线1l 、2l 、3l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到 三条公路的距离相等,则可选择的地址有( ) A.一处 B.两处 C.三处 D.四处
2.不式式组324235xx的解是( ). A. 12x B. 2x或1x C.无解 D.01x
3.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( ) A.边角边 B.角边角 C.边边边 D.角角边 4.下列运算正确的是( )
A.3362aaa B.853)()(aaa
C.3632244)2(baaba D.22
111
4416339ababba
5.以11xy为解的二元一次方程组是( )
A.01xyxy B.01xyxy C.02xyxy D.02xyxy
6.下列运算中,错误..的是( )
A.(0)aaccbbc B.1abab C.0.55100.20.323abababab D.xyyxxyyx
7.下列说法错误的是( )
A.有一个外角是锐角的三角形是钝角三角形 B.有两个角互余的三角形是直角三角形 C.直角三角形只有一条高 D.任何一个三角形中,最大角不小于60度 8.下列各式中,是分式的个数有( )
①2a;②3a;③2cd;④2ab;⑤sab;⑥4yx. A.1 个 B. 2个 C.3个 D.4个 9. 某校运动员分组训练,若每组 7入,则余 3人;若每组 8人,则缺 5人,设运动员人数为x人,组数为y组,则可列方程组为( ) A. 7385yxyx B. 7385yxyx C. 7385yxyx D. 7385yxyx
10.为迎接图书馆的标准化检查,某中学图书馆将添置图书,用250无购进一种科普书,同时用 140元购进一种文学书. 由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多6本,求文学书的单价. 设这种文学书的单价为x元,则根据题意,列方程正确的是( )
A.1.51402506xx B.14025061.5xx
C.25014061.5xx D.1.51402506xx
11.如图所示,在下列给出的条件中,不能判定 AB∥DF 的是( ) A.∠A+∠2=180° B.∠A=∠3 C.∠1=∠A D.∠1=∠4
12.若(3x2y-2xy2)÷A=-3x+2y,则单项式A为( ) A.xy B.-xy C.x D.-y 13.如图,AB∥CD,AD,BC相交于0点,∠BAD=35°,∠BOD=76°,则∠C的度数是( ) A.31° B.35° C.41° D.76°
14.如右图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是( )
A.9015xyxy B.90215xyxy C.90152xyxy D.290215xxy
15.下面四个图形中,经过折叠能围成如图所示的立方体纸盒的是( )
A. B. C. D.
16.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有( )条鱼 A.400条 B.500条 C.800条 D.1000条 17.如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( ) A. 60分 B. 70分 C.75分 D. 80分 18.数据0,-1,6,1,x的众数为-l,则这组数据的方差是( )
A.2 B.345 C.2 D.265
19.对于数据:80,88,85,85,83,83,84.有下列说法:①这组数据的平均数是84;②这组数据的众数是85;③这组数据的中位数是84;④这组数据的方差是36.其中,错误的有( ) A.1个 B.2个 C.3个 D. 4个 20.当x=2 时,下列不等式中成立的是( ) A.20x B.5(2)0x C.20x D.2(2)9x 21.甲、乙二人沿相同的路线由A到B匀速行进,A,B两地间的路程为20 km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图.根据图象信息,下列说法正确的是 ( ) A.甲的速度是4km/h B.乙的速度是10km/h C.乙比甲晚出发1h D.甲比乙晚到B地3h 22.在下列图形中,不能单独镶嵌成平面图形的是 ( ) A.正三角形 B.正方形 C.正五边形 D.正六边形 23.已知xy,则32x与32y的大小关系是( ) A.3232xy B.3232xy C.3232xy D.3232xy 24.实数a在数轴上对应的点如图 所示,则 a、-a、-1的大小关系是( ) A.1aa B.1aa C.1aa D.1aa 90 85 80 75 70 65 60 55
分数
测验1 测验2 测验3 测验4 测验5 测验6
25.如图,AB∥CD,那么( )
A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4
26.如图是气象工作者绘制的某地元旦这一天的气温变化图,某同学根据该图给出了下列四个结论: ①零点时的气温是+2℃;②4点时气温最低,l4点时气温最高;③气温为0。C的时间是2点钟;④从0点至l4点,气温是随时间的增加而上升的.其中正确的结论有( ) A.①② B.②④ C.①②③ D.①③ 27. 在|7|,|5|,(3),|0|中,负数共有( ) A.1 个 B.2 个 C.3 个 D.4 个 28.现有两个有理数 a、b,它们的绝对值相等,则这两个有理数( ) A.相等 B.相等或互为相反数 C.都是零 D.互为相反数 29.杭州湾跨海大桥全长 36千米,其中 36千米属于( ) A.计数 B. 测量 C.标号 D.排序 30.两个有理数和的绝对值与这两个数绝对值的和相等,那么这两个数( ) A.都是正数 B. 两数同号或有一个数为 0 C.都是负数 D.无法确定 31.下列叙述中,正确的是( ) A.有理数中有最大的数 B.是整数中最小的数 C.有理数中有绝对值最小的数 D.若一个数的平方与立方结果相等,则这个数一定是0 32.下列说法正确的是( ) A.无限小数是无理数 B.不循环小数是无理数 C.无理数的相反数还是无理数 D.两个无理数的和还是无理数 33.下列整式中,属于单项式的有( )
①32;②23xy;③21x;④a;⑤3265xy;⑥2xy;⑦22xxyy;⑧3x
A.2 个 B.3 个 C.4 个 D.5 个
34.单项式223ab的系数和次数分别是( )
A.23,2 B.23,3 C.23,2 D.23,3 35.设某数为x,“比某数的12大3的数等于5的相反数”,列方程为 ( ) A.1352x B.1352x C.1(3)52x D.1352x
36.下列长度的三条线段,能够组成三角形的是 ( ) A.2.5,2.5,5 B. l,6,6 C.2,8,4 D.10,7,2 37.下面每组图形中的两个图形不是通过相似变换得到的是( ) 38.某市按以下标准收取水费:用小不超过20吨,按每吨1.2元收费,超过20吨,则超过部分按每吨1.5元收费.某家庭五月份的水费是平均每吨1.25元,那么这个家庭五月份应交水费( ) A.20元 B.24元 C.30元 D.36元 39.关于不等式22xa的解集如图所示,a的值是( )
A.0 B.2 C.-2 D.-4 40.下列物体的形状,类似于圆柱的个数是( ) ①篮球②书本③标枪头④罐头 ⑤水管 A.1个 B.2个 C.3个 D.4个 41.下列语句中正确的是 ( ) A.两条不相交的直线叫做平行线 B.一条直线的平行线只有一条 C.在同一平面内的两条线段,若它们不相交,则一定互相平行 D.在同一平面内,两条不相交的直线叫做平行线 42.16的平方根为( ) A. 2 B.±2 C. 4 D.±4
43.已知a、b两数在数轴上的对应点如图所示,则下列结论正确的是( ) A. ab B. 0ab C. 0ba D. 0ab 44.如图所示,已知AD⊥BC,BD=CD,则①△ABD≌△ACD,②△ABD和△ACD不全等,③AB=AC,④∠BAD=∠CAD,以上判断正确的是( ) A.① B.② C.①③④ D.①②③