东华大学2012研究生入学考试《高等代数》考试大纲
- 格式:doc
- 大小:21.50 KB
- 文档页数:1
814--《高等代数》考研大纲一、基本要求要求考生全面系统地理解高等代数的基本概念和基本理论,熟练掌握高等代数的基本思想和基本方法。
要求考生具有较强的抽象思维能力、逻辑推理能力、数学运算能力以及综合运用所学知识分析问题和解决问题的能力。
二、考试范围(一)多项式1.多项式的带余除法及整除性、最大公因式、互素多项式;2.不可约多项式、因式分解唯一性定理、重因式、复系数与实系数多项式的因式分解、有理系数多项式不可约的判定;3.多项式函数与多项式的根、代数基本定理、有理系数多项式的有理根的求法、根与系数的关系。
(二)行列式1.行列式的定义及性质,行列式的子式、余子式及代数余子式;2.行列式按一行、列的展开定理、Cramer法则、Laplace定理和行列式乘法定理、Vandermonde行列式;3.运用行列式的性质及展开定理等计算行列式。
(三)线性方程组1.Gauss消元法与初等变换;2.向量组的线性相关性、向量组的秩与极大线性无关组、矩阵的秩;3.线性方程组有解的判别定理与解的结构。
(四)矩阵1.矩阵的基本运算、矩阵的分块及常用分块方法;2.矩阵的初等变换、初等矩阵、矩阵的等价、矩阵的迹、方阵的多项式;;3.逆矩阵、矩阵可逆的条件及与矩阵的秩和初等矩阵之间的关系,伴随矩阵及其性质;4.运用初等变换法求矩阵的秩及逆矩阵。
(五)二次型理论1.二次型及其矩阵表示、矩阵的合同、二次型的标准形与规范形、惯2.实二次型在合同变换下的规范形以及在正交变换下的特征值标准型的求法;3.实二次型或实对称矩阵的正定、半正定、负定、半负定的定义、判别法及其应用。
(六)线性空间1.线性空间、子空间的定义与性质,向量组的线性相关性,线性(子)空间的基、维数、向量关于基的坐标,基变换与坐标变换,线性空间的同构;2.子空间的基扩张定理,生成子空间,子空间的和与直和、维数公式;3.一些常见的子空间,如线性方程组的解空间、矩阵空间、多项式空间、函数空间。
东华大学专业学位硕士研究生入学考试大纲科目编号科目名称:计算机及软件工程专业基础综合一、考试总体要求计算机及软件工程专业基础综合包括计算机学科专业基础课程:数据结构、数据库系统原理、软件工程导论、计算机网络,各门课的要求如下。
1、数据结构:深入理解数据的逻辑结构和物理结构,合理地组织数据、有效地存储和处理数据,正确地设计算法以及对算法进行分析和评价。
2、数据库系统原理:深入理解数据库系统的基本概念、原理和方法,掌握数据库设计和使用的技能。
3、软件工程导论:掌握软件工程的基本概念,理解不同软件开发模型,掌握结构化开发方法的原理、过程,能够用UML进行面向对象的系统分析与设计,掌握软件测试的方法。
4、计算机网络:掌握计算机网络的基本概念、基本原理和基本方法。
掌握计算机网络的体系结构和典型网络协议,了解典型网络设备的组成和特点,理解典型网络设备的工作原理。
能够运用计算机网络的基本概念、基本原理和基本方法进行网络系统的分析、设计和应用。
二、考试内容及比例(一)数据结构(40分)1、掌握线性表的基本概念,熟练运用顺序存储结构和链式存储结构实现相应操作。
2、掌握栈和队列的特点,理解栈的应用、递归算法的设计。
3、掌握树的基本概念,熟练掌握二叉树的性质、存储结构,了解线索二叉树、树与森林,熟练掌握树的遍历及应用。
4、理解图的基本概念,掌握图的存贮结构,图的遍历和拓扑排序。
5、掌握查找的基本概念、查找性能分析、熟练掌握顺序查找、折半查找和哈希查找。
6、熟练掌握直接插入排序、希尔排序、快速排序、简单选择排序和归并排序,理解堆排序和各种排序方法的比较。
(二)数据库系统原理(35分)1、掌握数据库系统的基本概念,包括三层模式结构与两级映像、数据独立性等。
2、掌握关系模型的基本概念,熟练掌握关系代数运算和关系代数表达式的优化。
3、熟练掌握关系数据库语言SQL,包括数据定义、数据查询、数据更新、视图及索引的使用。
4、掌握函数依赖、第一范式、第二范式和第三范式等概念,熟练判断关系模式的范式、进行关系模式的分解。
东华大学 2012----2013 学年第 一 学期 试卷A 卷 踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负。
课程名称 高等数学(1) 使用专业 卓越工程师计划相关专业 教师 班号 姓名 学号 考试教室一.填空题(每小题 4分,总计 40 分 ) 1、=---→145lim1x xx x 。
2、计算1)1232(lim +∞→++x x x x = 。
3、设⎪⎩⎪⎨⎧≥+<--=1,11,1)1sin(3)(x e x x x x f ax 在+∞-∞,()上连续,则常数a = 。
4、设)1tan(23+=x y ,则=dy 。
5、设)(x f ''存在,函数)(ln x f y =,则y ''= 。
6、设函数)(x y y =由方程1=++xy e y x 所确定,求=x dxdy。
7、求曲线⎪⎩⎪⎨⎧=+=ty t x arctan 1ln 2在1=t 点处的切线方程 。
8、曲线31x y =的拐点坐标是 。
9、曲线x y arctan =的上凸区间是 。
10、写出x e x x f 2)(=的带佩亚诺余项的n 阶麦克劳林公式 。
二.选择题(每小题 3分,总计18分 ) 1、若3)(lim 2=→x f x ,则必定有[ ](A )3)2(=f ;(B ))(x f 在2=x 处无定义;(C )在2=x 的某去心邻域中,4)(<x f ;(D )在2=x 的某去心邻域中,3)(≠x f 。
2、设11211)(---=x e x x x f ,则下面结论正确的是[ ] (A ))(lim 1x f x →存在,但)(x f 在1=x 处不连续;(B ))(lim 1x f x -→和)(lim 1x f x +→存在,但)(lim 1x f x →不存在;(C ))(lim 1x f x -→存在,)(lim 1x f x +→不存在;(D ))(lim 1x f x -→不存在,)(lim 1x f x +→存在3、下列极限正确的是[ ](A )1sin lim =→x x x π; (B )11sin lim =∞→xx x ;(C )x x x 1sin 1lim ∞→不存在; (D )1sin lim =∞→xxx ;4、设方程n n n n n a a a a x a x a x ,,,(021111ΛΛ=++++--为常数),且0<n a ,则[ ] (A )方程没有实根; (B )方程至少有一个负实根;(C )方程至少有一个正实根; (D )方程至少有一个正实根和一个负实根5、设α是实数,⎪⎩⎪⎨⎧≤>--=1,01,11cos )1(1)(x x x x x f α在1=x 处可导,则α满足[ ] (A )1-<a ; (B )01<≤-a ; (C )10<≤α; (D )1≥α。
中国传媒大学硕士研究生入学考试《高等代数》考试大纲一、考试的总体要求《高等代数》是大学本科数学专业的一门重要基础理论课,也是大多数理工科专业必修的一门基础课程。
主要内容包括多项式、行列式、矩阵及其标准型、线性方程组、线性空间、欧氏空间和二次型等内容。
要求考生熟悉基本概念、掌握基本定理,有较强的运算能力以及综合分析解决问题的能力。
二、考试内容(一)多项式1.一元多项式的概念2.整除的概念与多项式整除关系的判别3.辗转相除法4.最高公因式(二)行列式1.行列式的概念与基本性质2.行列式的计算与行列式的展开3.Cramer(克拉默)法则(三)矩阵1.矩阵的概念与基本运算2.初等矩阵、初等变换和矩阵的秩3.矩阵乘积的行列式4.矩阵的逆、伴随矩阵5.分块矩阵的运算(四)线性方程组1.线性方程组的概念2.线性方程组有解的充分必要条件及解的结构3.Gauss消元法(五)线性空间1.线性空间的定义与简单性质2.向量的线性相关与线性无关3.向量组的秩、线性空间的基与维数4.基变换与坐标变换5.矩阵的相似6.子空间的定义,子空间的交与和,维数公式7.线性空间的同构(六)线性变换1.线性变换的定义、运算2.线性变换的矩阵3.线性变换的值域与核4.特征值、特征向量与特征子空间5.可对角化条件6.不变子空间(七)Jordan标准型1.线性变换及矩阵的最小多项式2.矩阵的Jordan标准型3.初等因子和不变因子(八)欧几里德空间(欧氏空间)1.欧氏空间的概念及基本性质2.欧氏空间的标准正交基3.Gram-Schmidt(格拉姆-施密特)正交化过程4.正交变换、正交矩阵的性质5.对称变换、实对称阵的正交相似标准型(九)二次型1.二次型及其标准型、惯性定理2.正定二次型与正定阵的定义3.实对称阵正定的充分必要条件三、考试的基本题型主要题型可能有:概念题、选择题、填空题、简答题、计算题、证明题等。
四、考试的形式及时间笔试,不需要任何辅助工具。
2012年研究生入学统一考试数学(三)大纲考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital )法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle )定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz )公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p 级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解x e .sin x .cos x .ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为()00xe f x x λλ-⎧=⎨≤⎩若x>0若 5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N u uσσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩2χ分布t 分布F 分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--∑ 2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布得上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
高等代数(下)复习提纲课程考试大纲一.课程考核方法与命题要求:本课程考核以笔试为主,一般采用闭卷形式,主要考核学生对基础理论,基本概念的掌握程度,以及学生逻辑推理能力计算能力以及综合应用能力。
平时成绩占30%,期末成绩占70%。
考试大纲根据教学目标,划分标准为“识记、领会、简单应用、综合应用”四级,其中识记占20%,领会占30%,简单应用占40%,综合应用占10%,考试的试题应按照这四个层次,按比例命题。
其中选择8个小题,填空5个小题,计算3个小题,证明2个小题。
本课程考试题型分为客观题和主观题两部分,其中客观题目有选择题(判断题)、填空题,主观题有解答题(计算题)、证明题等。
(第二学期考核第一至第五章部分;第三学期考核第六至第九章部分)二.课程内容与考核要求:第六章向量空间1.知识范围:本章主要介绍了向量空间,子空间,向量的线性相关性,极大无关组,向量空间的基和维数,坐标等概念,并研究了基变换与坐标变换之间的关系,同时还介绍了关于子空间的几种运算,最后介绍了线性空间的同构概念,矩阵的秩和齐次线性方程组的解空间。
2.考核要求:熟练掌握向量空间,子空间,生成元,子空间的和,子空间的直和,维数,基,坐标,过渡矩阵,基变换公式,坐标变换公式,同构映射,理解向量空间的性质,子空间的判定及性质,直和的判定,基变换与坐标变换理论,同构映射的性质,同构的判定。
齐次线性方程组解的结构。
3.考核知识点:向量空间,子空间,生成子空间维数的确定,向量的线性相关性,极大无关组的求法,求向量的坐标,过渡矩阵,基变换公式,坐标变换公式,同构映射,求齐次线性方程组的基础解系。
第七章线性变换1.知识范围:本章主要介绍了线笥映射,线性变换的概念,运算,及线性变换的矩阵,一个线性变换的特征值与特征向量,化一个矩阵为对角矩阵的方法(若可以对角化),矩阵的相似,不变子空间等知识。
2.考核要求:深入理解线性变换的定义,线性变换的运算,线性变换的矩阵,熟练掌握特征值与特征向量,线性变换的矩阵在某组基下的矩阵是对角矩阵的条件,矩阵的相似,理解不变子空间。
2012年全国硕士研究生入学考试湖北师范学院自命题考试科目考试大纲(科目名称:高等代数科目代码:801)一、考查目标《高等代数》考试是为招收数学各专业硕士研究生而设置的业务水平考试。
目的是测试考生对高等代数基础知识的掌握程度和应用相关知识解决问题的能力和熟练程度。
要求考生理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和方法,具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
二、考试形式与试卷结构(一)试卷成绩及考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
(三)试卷题型,题量,结构题型:计算题,证明题。
题量:11-13大题。
结构:计算与证明的综合。
(四)主要参考书目北京大学数学系几何与代数教研室代数小组编,《高等代数》,高等教育出版社,2002年。
三、考查范围(一)多项式整除理论:整除性;带余除法;最大公因式;互素的概念与性质。
因式分解理论:不可约多项式;因式分解定理;重因式;实系数与复系数多项式的因式分解;有理系数多项式不可约的判定。
根的理论:多项式的根;有理系数多项式的有理根求法。
(二)行列式行列式的定义、性质;行列式的子式、代数余子式及展开定理;行列式的计算方法。
(三)向量和矩阵向量:向量的线性组合和线性表示;向量组的等价;向量组的线性相关与线性无关;向量组的极大线性无关组;向量组的秩;向量组的秩与矩阵的秩之间的关系。
矩阵:矩阵的概念;矩阵的基本运算;矩阵的转置;伴随矩阵;初等变换与初等矩阵;逆矩阵的概念和性质;矩阵可逆的充分必要条件;分块矩阵;矩阵的秩;矩阵的等价、合同、相似;矩阵的对角化。
(四)线性方程组克莱姆(Cramer)法则;齐次线性方程组有非零解的充分必要条件;非齐次线性方程组有解的充分必要条件;线性方程组解的性质和结构;齐次线性方程组的基础解系和通解;解空间及其维数;非齐次线性方程组的通解。
东华大学2012研究生入学考试《高等代数》考试大纲
一、课程的基本要求
《高等代数》的基本要求是掌握多次或环的基本理论;掌握和熟悉矩阵,行列式的基本性
质,掌握和熟悉线性空间的基本理论和线性变换的性质;掌握欧几里得空间的基本理论;了解
万一矩阵和Jordan标准形的理论,了解双线性函数及代数基本概念。
二、基本内容
1、多项式(因式分解定理,一元多项式,多元多项式);
2、行列式;
3、线性方程组;
4、矩阵(矩阵运算,矩阵的初等变换及应用);
5、二次型;
6、线性空间(线性空间,子空间,基变换,坐标变换,子空间直和,同构);
7、线性变换(线性变换及运算,特征值与特征向量,对角阵,值域与核,Jardan标准形)
8、λ一矩阵(λ矩阵的标准形,不变因子,初等因子,Jordan标准形推导);
9、欧几里得空间(标准正交基,正交变换,对称阵的标准形,最小二乘法);
10、双线性函数(对偶空间,线性函数,双线性函数)。
三、参考教材
《高等代数》,北京大学数学系编,高等教育出版社,2010年第三版