人教版八年级上册数学试题:第十四章因式分解综合练习题
- 格式:doc
- 大小:61.00 KB
- 文档页数:2
八年级数学上册《第十四章因式分解》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列等式中,从左到右的变形是因式分解的是()A.x(x−2)=x2−2x B.(x−1)2=x2−2x−1C.x2−4=(x+2)(x−2)D.x2+3x+2=x(x+3)+22.用提公因式法分解因式4x3y3+6x3y−2xy2时,应提取的公因式是()A.2x3y3B.−2x3y2C.12x3y3D.2xy3.下列四个多项式中,能用提公因式法进行因式分解的是()①16x2﹣8x;②x2+6x+9;③4x2﹣1;④3a﹣9ab.A.①和②B.③和④C.①和④D.②和③4.将多项式x−x2因式分解正确的是( )A.x(1−x)B.x(x−1)C.x(1−x2)D.x(x2−1) 5.下列多项式中,能因式分解得到(x+y)(x﹣y)的是()A.x2+y2B.x2﹣y2C.﹣x2﹣y2D.-x2+y2 6.已知a、b、c是三角形的边长,那么代数式(a−b)2−c2的值是()A.小于零B.等于零C.大于零D.大小不确定7.已知:a+b=5,a−b=1则a2−b2=()A.5 B.4 C.3 D.28.下列各式中,代数式()是x3y+4x2y2+4xy3的一个因式.A.x2y2B.x+y C.x+2y D.x﹣y二、填空题9.分解因式:36x2−4=.10.将多项式−5a2+3ab提出公因式−a后,另一个因式为.11.分解因式:(x−3)2−2x+6=.12.在实数范围内分解因式:4x2+4xy−y2=.13.已知a−b=1,ab=2则a2b−ab2的值为.三、解答题14.分解因式(1)4a3b−2a2b2(2)x2−4x+4(3)2m2−18(4)a2+7a−1815.若△ABC的三边长分别为a、b、c,且b2+2ab=c2+2ac,判断△ABC的形状.16.如果n是正整数,求证:3n+2-2n+2+3n-2n能被10整除.17.已知,长方形的周长为30cm,两相邻的边长为x cm,y cm,且x3+x2y-4xy2-4y3=0,求长方形的对角线长和面积.18.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2)材料2:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3参考答案1.C2.D3.C4.A5.B6.A7.A8.C9.4(3x+1)(3x−1)10.5a−3b11.(x−3)(x−5)12.(2x+y+√2y)(2x+y−√2y)13.214.(1)解:4a3b−2a2b2=2a2b(2a−b)(2)解:x2−4x+4=(x−2)2(3)解:2m2−18=2(m2−9)=2(m+3)(m−3)(4)解:a2+7a−18=(a+9)(a−2)15.解:∵b2+2ab=c2+2ac∴b2−c2+2ab−2ac=(b+c)(b−c)+2a(b−c)=(b−c)(b+c+2a)=0∵△ABC的三边长分别为a、b、c∴b−c=0∴b=c∴△ABC是等腰三角形.16.证明:∵3n+2-2n+2+3n-2n=3n⋅ 32-2n⋅ 22+3n-2n=3n(32+1)-2n(22+1)=10 ⋅ 3n-10 ⋅ 2n-1=10(3n-2n-1).∴3n+2-2n+2+3n-2n能被10整除.17.∵长方形周长为30cm∴2(x+y)=30,化简得:x+y=15x3+x2y−4xy2−4y3= x2(x+y)−4y2(x+y)= (x+y)(x2−4y2)= (x+y)(x+2y)(x−2y)∵x3+x2y−4xy2−4y3=0(x+y)(x+2y)(x−2y)=0∵x>0∴(x+y)(x+2y)≠0则x−2y=0,即x=2y∵x+y=15∴3y=15,解得:y=5∴x=2y=10∴长方形的对角线长:√x2+y2=√102+52=√125=5√5(cm)长方形的面积:xy=10×5=50(cm2) .18.(1)解:∵8=(−4)×(−2),−6=(−4)+(−2)∴ x2﹣6x+8 =(x−4)(x−2)(2)解:令x−y=A∵3=1×3,4=1+3则(x﹣y)2+4(x﹣y)+3 =(A+3)(A+1)∴(x﹣y)2+4(x﹣y)+3 = (x−y+3)(x−y+1)。
可编辑修改精选全文完整版八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)一、单选题1.下列多项式:①244x x +;②2224x xy y -+;③2214a ab b -+;④224a b -+中,能用公式法分解因式的有( ).A .1个B .2个C .3个D .4个 2.计算()()9910022-+-的结果为( ) A .992- B .992 C .2- D .23.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b 的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ).A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++4.若a+b=1,则22a b 2b -+的值为( )A .4B .3C .2D .1 5.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+- 6.如果(x -2)(x+3)=x 2+px+q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=6C .p=5,q=-6D .p=1,q=-67.下列各式子的运算,正确的是( )A .(3a +2b )(3a ﹣2b )=3a 2﹣2b 2B .222(2)44x y x xy y -+=-+C .221136222x y xy xy xy x y ⎛⎫⎛⎫-+÷-=-+ ⎪ ⎪⎝⎭⎝⎭ D .(a +2)(a ﹣3)=a 2﹣68.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =2,n =4B .m =3,n =6C .m =﹣2,n =﹣4D .m =﹣3,n =﹣69.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .aB .2()a b +C . 2()a b -D .22a b -10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( )A .3-,4-B .3-,4C .3,4-D .3,411.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0二、填空题12.分解因式:24xy x -=__________.13.边长为m 、n 的长方形的周长为14,面积为10,则33m n mn +的值为_________.14.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为___.15.若多项式225a ka ++是完全平方式,则k 的值是______.16.已知2310a a -+=,求441a a +的值为____.17.若2260x x --=,则()()()22321212x x x x -++--的值为__________.三、解答题18.因式分解(1)229(3)4(32)a b a b +--(2)()()22252732x x x x +++-+ 19.计算:(1)(﹣2a 2b )2•ab 2÷(﹣a 3b );(2)(x ﹣1)(x +1)(x 2+1);(3)20202﹣2022×2018(用乘法公式计算);(4)(a ﹣b ﹣3)(a ﹣b +3).20.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.21.(1)先化简,再求值:x 2﹣3x ﹣5=0,求代数式(x ﹣3)2+(x +y )(x ﹣y )+y 2的值;(2)已知x +y =4,xy =3,求x 2+y 2,(2x ﹣2y )2的值.22.我们知道几个非负数的和等于0,只有这几个数同时等于0才成立,如|x -2|+(y +3)2=0,因为|x -2|,(y +3)2都是非负数,则x -2=0,y +3=0,即可求x =2,y =-3,应用知识解决下列各题:(1)若(x +4)2+(y -3)2=0,求x ,y 的值.(2)若x 2+y 2-2x+4y=-5,求y x .(2)若2x 2+3y 2+8x -6y =-11,求(x +y )2020的值.23.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。
人教版八年级数学上册第十四章《整式乘法与因式分解》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是( ) A .610aB .910aC .37aD .67a2.下列运算正确的是( ) A .22a a a ⋅=B .824a a a ÷=C .()2242a b a b =D .()325a a =3.下列计算正确的是( ) A .623a a a ÷=B .()326a a =C .248a a a ⋅=D .532a a a -=4.下列计算结果正确的是( ) A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++5.下列计算正确的是( ) A .25611a a a += B .()235326b b b -⋅= C .623623b a a ÷=D .()()22339b a a b a b +-=-6.已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( ) A .24B .443C .163D .4-7.已知()()2221x x x +--=,则2243x x -+的值为( ) A .13B .8C .-3D .58.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023B .2022C .2021D .20209.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27.第二次输出的结果为9,…,第2022次输出的结果为( )A .1B .3C .9D .2710.下列等式从左到右的变形,其中属于因式分解的是( ) A .2221(1)--=-x x x B .22221(1)x y xy xy ++=+ C .2(3)(3)9x x x +-=-D .32822(41)a a a a -=-11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( ) A .1个B .2个C .3个D .4个12.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记1nk k =∑=1+2+3+…+(n ﹣1)+n ,()3n k x k =+∑=(x +3)+(x +4)+…+(x +n );已知()3nk x x k =⎡+⎤⎣⎦∑=9x 2+mx ,则m 的值是( ) A .45B .63C .54D .不确定二、填空题13.分解因式:216x y xy -=______.14.因式分解:322242m m n mn -+=________. 15.因式分解:32312x xy -=_________.16.已知2223,15a b b c a b c -=-=++=,则ab bc ca ++的值等于________.三、解答题 17.分解因式: (1)22a ab a ++; (2)()()222m n m n +-+18.化简:()()()482x y x y xy xy xy +---÷.19.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 20.先化简,再求值:22()()(2)34x y x y x y y y ⎡⎤+----÷⎣⎦,其中20201x y ==-,.21.已知有理数a ,b ,c 满足()222434|41|02aa cbc b +-+--+--=∣∣,试求313242n n n a b c +++-的值.22.先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==. 23.已知x +1x =3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x . 24.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.25.如图,长为40,宽为x 的大长方形被分割为9小块,除阴影A ,B 两块外,其余7块是形状、大小完全相同的小长方形,其较短一边长为y .(1)分别用含x,y的代数式表示阴影A,B两块的周长,并计算阴影A,B两块的周长和.(2)分别用含x,y的代数式表示阴影A,B两块的面积,并计算阴影A,B的面积差.(3)当y取何值时,阴影A与阴影B的面积差不会随着x的变化而变化,并求出这个值.参考答案:1.A【分析】直接利用单项式乘以单项式运算法则计算得出答案. 【详解】解:6332510a a a =⋅, 故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键. 2.C【分析】根据同底数幂乘除法、积的乘方和幂的乘方法则进行计算,即可作出判断. 【详解】A :23a a a ⨯=,故A 错误,不符题意; B :826a a a ÷=,故B 错误,不符题意; C :()2242a b a b =,故C 正确,符合题意; D :()326a a =,故B 错误,不符题意; 故选:C.【点睛】此题考查了同底数幂乘除法、积的乘方和幂的乘方运算,熟练掌握运算法则是解本题的关键. 3.B【分析】根据同底数幂的除法法则对A 进行判断;根据幂的乘方法则对B 进行判断;根据同底数幂的乘法法则对C 进行判断;根据合并同类项对D 进行判断. 【详解】A. 624a a a ÷=,所以此项不正确; B. ()326a a =,所以此项正确;C. 246a a a ⋅=,所以此项不正确;D. 53a a -,不能合并,,所以此项不正确; 故选B .【点睛】本题考查了同底数幂的除法:am ÷an =am -n (m 、n 为正整数,m >n ).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项. 4.D【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意; 故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 5.D【分析】根据合并同类项法则、同底数幂的乘除法、平方差公式计算即可求解. 【详解】A. 5611a a a +=,计算错误,本选项不符合题意;B. ()235326b b b -⋅=-,计算错误,本选项不符合题意;C. 6622362b b a a÷=,计算错误,本选项不符合题意;B. ()()22339b a a b a b +-=-,计算正确,本选项符合题意;故选:D .【点睛】本题考查整式的混合运算,解题的关键是熟练掌握合并同类项法则、同底数幂的乘除法、平方差公式计算法则. 6.B【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案.【详解】解:2(23)(2)(2)-++-m n m n m n 222241294m mn n m n =-++- 225125m mn n =-+()5212mn mn =+- 107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn , ∴220mn mn ++≥, ∴32mn ≥-, ∴23mn ≥-,∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键. 7.A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 8.D【分析】原式先提取公因式,再运用平方差公式进行计算即可. 【详解】解:2022202020222022- =202022022(20221)- =20202022(20221)(20221)+- =2020202220232021⨯⨯∵2022202020222022202320222021-=⨯⨯n ∴2020202220232021202320222021n ⨯⨯=⨯⨯ ∴202020222022n = ∴2020n =. 故选:D .【点睛】本题主要考查了整式的运算,熟练掌握平方差公式是解答本题的关键. 9.A【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【详解】解:第1次,181273⨯=,第2次,12793⨯=,第3次,1933⨯=,第4次,1313⨯=,第5次,123+=,第6次,1313⨯=,⋯,依此类推,从第3次开始以3,1循环,(20222)21010-÷=,∴第2022次输出的结果为1.故选:A .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键. 10.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】解:2221(1)x x x -+=-,故A 不符合题意; 22221(1)x y xy xy ++=+,故B 符合题意;2(3)(3)9x x x +-=-是整式乘法,故C 不符合题意;32822(41)2(21)(21)a a a a a a a -=-=+-,故D 不符合题意;故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别. 11.D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=, 1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=, 2422-=-=,220-=,为最小值,故③正确; 按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k , k 的最大值为10, 设b 为较大数字,当1a =时,2110a b b --=-=, 解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=, 则210a b --=-,即8b a -= 故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确; 故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力. 12.B【分析】根据条件和新定义列出方程,化简即可得出答案.【详解】解:根据题意得:x (x +3)+x (x +4)+…+x (x +n )=x (9x +m ), ∴x (x +3+x +4+…+x +n )=x (9x +m ), ∴x [(n ﹣3+1)x +(31)(3)2n n -++]=x (9x +m ),∴n ﹣2=9,m =(31)(3)2n n -++,∴n =11,m =63. 故选:B .【点睛】本题考查了新定义,根据条件和新定义列出方程是解题的关键. 13.(16)xy x -【分析】利用提公因式法进行分解即可. 【详解】解:216(16)x y xy xy x -=-, 故答案为:(16)xy x -.【点睛】本题考查了因式分解-提公因式法,解题的关键是熟练掌握因式分解-提公因式法. 14.()22m m n -【分析】首先提取公因式2m ,再利用完全平方公式即可分解因式. 【详解】解:322242m m n mn -+()2222m m mn n =-+ ()22m m n =-故答案为:()22m m n -【点睛】本题考查了提公因式法和公式法分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.15.()()322x x y x y +-【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键.16.225- 【分析】利用完全平方公式求出(a −b ),(b −c ),(a −c )的平方和,然后代入数据计算即可求解.【详解】解:∵35a b b c -=-=, ∴65a c -=()()()2225425a b b c a c -+-+-= ∴()()222542225a b c ab bc ac ++-++=, ∵2221a b c ++=,∴()27125ab bc ac -++=, ∴225ab bc ca ++=-, 故答案为:225- 【点睛】本题考查了完全平方公式,解题的关键是分别把35a b -=,35b c -=,相加凑出,65a c -=三个式子两边平方后相加,化简求解. 17.(1)()2.a a b ++(2)()32.m m n +【分析】(1)提取公因式a 即可;(2)按照平方差公式进行因式分解即可.【详解】(1)解:22a ab a ++()2.a a b =++(2)()()222m n m n +-+()()22m n m n m n m n =++++--()32.m m n =+【点睛】本题考查的是多项式的因式分解,掌握“提公因式法与公式法分解因式”是解本题的关键.18.222x y -+【分析】根据整式的混合运算法则计算即可.【详解】解:原式()()2222224222x y xy xy x y x y =---÷=---=-+【点睛】本题考查整式的混合运算,熟练掌握该知识点是解题关键.19.12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++ 12x =+ 当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.20.2,2022x y -【分析】根据平方差公式,完全平方公式,先计算括号内的,然后根据多项式除以单项式进行计算,最后将20201x y ==-,代入即可求解.【详解】解:原式=()222224434x y x xy y y y --+--÷()2484xy y y =-÷2x y =-.当20201x y ==-,时,原式=2020-2×(-1)=2022.【点睛】本题考查了整式的化简求值,掌握平方差公式,完全平方公式,多项式除以单项式是解题的关键.21.34-【分析】根据非负数的性质求出a ,b ,c 的值,然后代入计算即可. 【详解】解:由题得:22043404102a cbc a b ⎧⎪+-=⎪--=⎨⎪⎪--=⎩, 解得:4141a b c =⎧⎪⎪=⎨⎪=-⎪⎩, 所以313242n n n a b c +++-()3242311414n n n +++⎛⎫=⨯-- ⎪⎝⎭31114144n +⎛⎫=⨯⨯- ⎪⎝⎭34=-. 【点睛】本题考查了非负数的性质,解三元一次方程,积的乘方法则的逆用等知识,利用代入法或加减法把解三元一次方程组的问题转化为解二元一次方程组的问题是解题的关键.22.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:()()()22x y x y xy xy x +-+-÷=x 2-y 2+y 2-2y=x 2-2y当x =1,y =12时,原式=12-2×12=0.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.23.(1)5(2)47【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x -⋅⋅+,进而得到21()x x+﹣4x •1x即可解答; (2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x+=2221()x x +﹣2即可解答. (1)解:∵21()x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x+⋅+-⋅=21()x x +﹣4x •1x=32﹣4=5. (2)解:∵21()x x -=2212x x -+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x++,∴441x x +=2221()x x +﹣2=49﹣2=47. 【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.24.(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.25.(1)阴影A 的周长为:21480x y -+,∴阴影B 的周长为:21680x y +-,则其周长和为:42x y +;(2)阴影A 的面积为:240120412x y xy y --+,阴影B 的面积为:2416016xy y y -+,阴影A ,B 的面积差为:2404084x y xy y +-- ; (3)当y =5时,阴影A 与阴影B 的面积差不会随着x 的变化而变化,这个值是100.【分析】(1)由图可知阴影A 的长为(404y -),宽为(3x y -),阴影B 的长为4y ,宽为()404x y --⎡⎤⎣⎦,从而可求解;(2)结合(1),利用长方形的面积公式进行求解即可;(3)根据题意,使含x 的项提公因式x ,再令另一个因式的系数为0,从而可求解.(1)解:(1)由题意得:阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的周长为:()()()240432404321480y x y y x y x y -+-=-+-=-+⎡⎤⎣⎦∵阴影B 的长为4y ,宽为()404404x y x y --=-+⎡⎤⎣⎦,∴阴影B 的周长为:()()240424042168044y y x y x y x y +-+=+-+=+-⎡⎤⎣⎦,∴其周长和为:()()214802168042x y x y x y -+++-=+;(2)∵阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的面积为:()()2404340120412y x y x y xy y --=--+. ∵阴影B 的长为4y ,宽为404x y -+,∴阴影B 的面积为:()24404416016y x y xy y y -+=-+, ∴阴影A ,B 的面积差为:()()22240120412416016404084x y xy y xy y y x y xy y --+--+=+--.(3)∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,阴影A ,B 的面积差()22404084408404x y xy y y x y y =+--=-+-.∴当4080y -=,即5y =时,阴影A 与阴影B 的面积差不会随着x 的变化而变化.此时:阴影A ,B 的面积差()2408540545100x =-⨯+⨯-⨯=.【点睛】本题主要考查列代数式,代数式求值,与某个字母无关型问题,解答的关键是根据图表示出两个长方形的长与宽.。
第十四章整式的乘法与因式分解练习一、选择题1.下列计算正确的是()A.2x2⋅3x3=6x6B.x3÷x3=0C.(2xy)3=6x3y3D.(x3)n÷x2n=x n2.下列各式变形中,是因式分解的是()A.a2−2ab+b2−1=(a−b)2−1B.x4−1=(x2+1)(x+1)(x−1)C.(x+2)(x−2)=x2−4D.2x2+2x=2x2(1+1x)3.化简(-x)3·(-x)2的结果正确的是()A.−x6B.x6C.x5D.−x5 4.已知x m=4,x n=6,则x2m−n的值为()A.9 B.34C.83D.435.如果x2−kxy+9y2是一个完全平方式,那么k的值是()A.3 B.±6 C.6 D.±36.若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为()A.2 B.-2 C.4 D.-47.若x−y=−3,xy=5,则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-308.将图甲中阴影部分的小长方形变换到图乙位置,从图形的面积关系得到的数学公式是()A.(a+b)(a−b)=a2−b2B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−ab=a(a−b)二、填空题9.8x3y2和12x4y的公因式是.10.因式分解a2+a−6的结果是.11.已知a+b=4,ab=1,则a3b+2a2b2+ab3的值为.12.如图,有5个形状大小完全相同的小长方形构造成一个大长方形(各小长方形之间不重叠且不留空隙),图中阴影部分的面积为32,则每个小长方形的对角线为.13.关于x的多项式2x−m与3x+5的乘积,一次项系数是25,则m的值为.三、计算题14.计算:(1)(ab2)2⋅(−a3b)3÷(−5ab);(2)(3x−2y)2−(3x−y)(3x+y).15.先化简,再求值:(x−5)(x+2)−(x−3)(x+3),其中x=−1.216.分解因式:(1)x2−4(2)x2+4xy+4y2(3)(a−b)2+4ab(4)(a−b)(x−y)+(b−a)(x+y)四、解答题17.如图,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张?18.下面是小华同学分解因式9a2(x−y)+4b2(y−x)的过程,请认真阅读,并回答下列问题.解:原式=9a2(x−y)+4b2(x−y)①=(x−y)(9a2+4b2)②=(x−y)(3a+2b)2③任务一:以上解答过程从第步开始出现错误.任务二:请你写出正确的解答过程.19.如图是某单位办公用房的平面结构示意图(长度单位:米),图形中的四边形均是长方形或正方形.(1)用含x、y的式子分别表示会客室和会议厅的占地面积.(2)如果x+y=5,xy=7,会议厅比会客室大多少平方米?20.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2-2xy+y2-16;(2)△ABC三边a,b,c 满足a2-ab-ac+bc=0,判断△ABC的形状.。
人教版八年级上册数学第十四章整式的乘法与因式分解一、单选题1.下列各式,能用平方差公式计算的是()A.(a-2b)(-a+2b)B.(a-2b)(-a-2b)C.(a-1)(a+2)D.(a-2b)(2a+b)2.下列各式中,从左到右的变形是因式分解的是( )A.6x7=3x2⋅2x5B.3x+3y−5=3(x+y)−5C.4x2+4x=4x(x+1)D.(x+1)(x−1)=x2−13.下列运算正确的是()A.a2+a3=a5B.(﹣2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b24.在多项式16x2+1添加一个单项式,使得到的多项式能运用完全平方公式分解因式,则下列表述正确的是()嘉琪:添加±8x,16x2+1±8x=(4x±1)2陌陌:添加64x4,64x4+16x2+1=(8x2+1)2嘟嘟:添加−1,16x2+1−1=16x2=(4x)2A.嘉琪和陌陌的做法正确B.嘉琪和嘟嘟的做法正确C.陌陌和嘟嘟的做法正确D.三位同学的做法都不正确5.如图1,将一张长方形纸板的四角各剪去一个边长为a的小正方形(阴影部分),制成如图2的无盖纸盒,若该纸盒的容积为2a2b,则图2中纸盒底部长方形的周长为()A.4a+2b B.2ab C.6a+2b D.4ab6.若x2−kxy+9y2是一个完全平方式,则k的值为()A.3B.6C.±81D.±67.已知a m=2,a n=12,a2m+3n的值为( )A.6B.12C.2D.112b2,则m,n的值分别为()8.已知8a3b m÷28a n+1b2=27A.m=4,n=3B.m=4,n=2C.m=2,n=2D.m=2,n=39.下列有四个结论,其中正确的是()①若(x−1)x+1=1,则x只能是2;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=16,则a−b=6④若4x=a,8y=b,则22x−3y可表示为abA.①②③④B.②③④C.①③④D.②④10.已知m=2b+2022,n=b2+2023,则m和n的大小关系中正确的是() A.m>n B.m≥n C.m<n D.m≤n二、填空题11.因式分解:xy−3y=.12.计算:(1)x3⋅x5=;(2)a5÷a2=;(3)[−(−a)2]3=;(4)(−3ab3)3=;(5)(−0.125)2021×82022=;(6)(a−b)2⋅(b−a)3=.13.若x m=4,x n=9,则x2m−n=.14.如果a,b是长方形的长和宽,且(a+b)2=16,(a−b)2=4,则长方形面积是.15.若(2x2+mx−8)(x2−3x+n)的展开式中不含x2和x3项,则m=,n=.16.已知2x-3y-2=0,则(10x)2÷(10y)3=.17.如图,两个正方形的边长分别为a和b,已知a+b=10,ab=22,那么阴影部分的面积是.三、解答题18.计算:(1)a2•(﹣a4)+2(a2)3(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)(3)(2x﹣3y)2+2(y+3x)(3x﹣y)(4)(a﹣2b+3)(a+2b+3)(5)(x−3y−2)2(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)19.先化简,再求值:[(x−2y)2−(x−y)(x+y)−2y2]÷y,其中x=−1,y=−2.20.如图,在某一禁毒基地的建设中,准备在一个长为6a米,宽为5b米的长方形草坪上修建两条宽分别为a和b米的通道.(1)剩余草坪的面积是多少平方米?(2)若a=1,b=3,则剩余草坪的面积是多少平方米?21.观察以下等式:(x+1)(x2−x+1)=x3+1(x+3)(x2−3x+9)=x3+27(x+6)(x2−6x+36)=x3+216(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2−xy+y2)−(x−y)(x2+xy+y2)22.如图,甲长方形的两边长分别为m+1、m+7;乙长方形的两边长分别为m+2、m+4(其中m为正整数).(1)设图中的甲长方形的面积为S1,乙长方形的面积为S2,试比较S1与S2的大小;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S−S1)是一个常数,请求出这个常数.23.阅读材料:若m2−2mn+2n2−8n+16=0,求m、n的值.解:m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0.∵(m−n)2≥0,(n−4)2≥0,∴(m−n)2=0,(n−4)2=0,∴m=4,n=4.根据你的观察,探究下面的问题:(1)a2+b2−4a+4=0,则a=______;b=______.(2)已知△ABC的三边长a、b、c都是正整数,且a2+b2−2a−6b+10=0,求c的值.24.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中的阴影部分的面积;(2)观察图②请你写出三个代数式(m+n)2、(m−n)2、4mn之间的等量关系式.(3)请运用(2)中的关系式计算:若x+y=−6,xy=2.75,求(x−y)2的值.参考答案:1.B2.C3.B4.A5.A6.D7.B8.B9.D10.D11.y(x−3)12.x8a3−a6−27a3b9−8(b−a)513.16914.315. 6 1316.10017.1718.(1)a6(2)21x+17(3)22x2−12xy+7y2(4)a2+6a+9−4b2(5)x2−6xy+9y2−4x+12y+4(6)4m2−n219.−4x+3y,−2.20.(1)剩余草坪的面积是20ab平方米;(2)若a=1,b=3,则剩余草坪的面积是60平方米.21.(1)a2−ab+b2(3)2y322.(1)S1>S2(2)S−S1=923.(1)2,0(2)c=324.(1)S阴影=(m−n)2或S阴影=(m+n)2−4mn(2)(m−n)2=(m+n)2−4mn(3)25。
第十四章综合测试题(满分 100分,时间 90 分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.化简( (−x)³⋅(−x)²的结果正确的是( ).A.−x⁶B. x⁶C. x⁵D.−x⁵2.下面是某同学在一次作业中的计算摘录:①3a+2b=5ab;②4m³n-5mn³=-m³n;③4x³ · (-2x²)=--6x⁵;④4a³b÷(-2a²b)=-2a;⑤(a³)²=a⁵;⑥(-a)³÷(-a)=-a²其中正确的个数有( ).A.1个B.2个C.3个D.4 个3.(x²−mx+6)(3x−2)的积中不含x 的二次项,则m的值是( ).A.0 B 23C.−23D.−324.若x²+2(m−3)x+16是完全平方式,则m的值等于( ).A.3B. -5C.7D.7 或-15.计算( (xⁿ⁺¹)²⋅(x²)ⁿ⁻¹的值为( ).A. x⁴nB.x⁴ⁿ⁺³C.x⁴ⁿ⁺¹D.x⁴ⁿ⁻¹6.下列因式分解正确的是 ( ).A.4−x²+3x=(2−x)(2+x)+3xB.-x²+3x+4=--(x+4)(x-1)C.1−4x+4x²=(1−2x)²D.x²y−xy+x³y=x(xy−y+x²y)7.从边长为a的正方形中去掉一个边长为b的小正方形,如下图所示,然后将剩余部分剪后拼成一个矩形,上述操作所能验证的等式是( ).A.a²−b²=(a+b)(a−b)B.(a−b)²=a²−2ab+b²C.(a+b)²=a²+2ab+b²D.a²+ab=a(a+b)8.当(−bⁿ)ᵐ=−bⁿᵛ成立,则( ).A. m、n必须同时为正奇数B. m、n必须同时为正偶数C. m为奇数D. m为偶数9.如果a=2⁵⁵,b=3⁴⁴,c=4³³,,那么( ).A. a>b>cB. b>c>aC. c>a>bD. c>b>a10.对于任何整数m,多项式( (4m+5)²−9都能( ).A.被8整除B.被m整除C.被m-1整除D.被(2m-1)整除二、填空题(本大题共10小题,每小题2分,共20分)11.若4ᵃ=2ᵃ⁺⁵,求(a−4)²⁰¹³=.12.计算( (x+5)(x²+25)(x−5)=.13.如果(2a+2b+1)(2a+2b--1)=63,那么a+b的值为 .14.若正方形的面积是9x²+6xy+y²(x⟩0,y>0),,则它的边长是 .15.如果x+y=0, xy=-7,则. x²y+xy²=,x²+y²=.16.已知:x+y=0.5,x+3y=1.2,则3x²+12xy+9y²=.17.(a+ b)(a−b)(a⁴+a²b²+b⁴)÷(b⁶−a⁶)=.18.把4x⁴y²−5x²y²−9y²分解因式的结果是 .19.若|m−1|+√n2−18n+81=0,将mx²−ny²因式分解得 .20.计算: −22−23−⋯−218−219+220=¯: ·三、解答题(21,24题每题12分,22,23,25,26题每题5分,27题每题6分)21.计算与化简:(1)3x²y ⋅(−2xy³) (2)2a²(3a²−5b )(3)(−2a²)(3ab²−5ab³) (4)(5x +2y )(3x −2y )(5)(3y+2)(y-4)-3(y-2)(y-3) (6)(−3)2012⋅(13)201322.若2x+5y-3=0,求4ˣ·32ʸ的值.23.已知: x²+xy =12,xy +y²=15,求 (x +y )²−(x +y )(x −y )的值.24.将下列各式分解因式:(1)4x −16x³ (2)2a (x +1)²−2ax(3)4a (b −a )−b² (4)(a −b )(3a +b )²+(a +3b )²(b −a )25.已知 a =12m +1,b =12m +2,c =12m +3,求 a²+2ab +b²−2ac +c²−2bc 的值.26.△ABC 的三边a 、b 、c 有如下关系式: −c²+a²+2ab −2bc =0,求证:这个三角形是等腰三角形.27. 已知:长方形的长、宽为x 、y ,周长为 16cm ,且满足 x −y −x²+2xy −y²+2=0,求长方形的面积.一、选择题1. D;2. A;3. C;4. D;5. A;6. C;7. A;8. C;9. B; 10. A二、填空题11.1; 12. x ⁴—625; 13.±4; 14.3x+y15.0;14; 16.1.8; 17.—1.18. y²(x²+1)(2x +3)(2x −3)19.(x+3y)(x-3y);20.6三、解答题21.(1)−6x³y⁴;(2)6a⁴−10a²b;(3)−6a³b²+10a³b³ (4)15x 2−4xy −4y 2;(5)5y −26;(6)13. 22.原式 =2²ˣ⋅2⁵ʸ=2²ˣ⁺⁵ʸ=2³=823.原式=2xy+2y²,将 xy +y²=15代入得30.24.(1)4x(1+2x)(1-2x);(2)2a(x²+x+1);(3)-(2a-b)²;(4)8(a-b)²(a+b).25.a²+2ab +b²−2ac +c²−2bc=(a +b )²−2c (a +b )+c²=(a +b −c )²:a =12m +1,b =12m +2,c =12m +3 ∴原式=(a+b-c)²=[(12m +1)+(12m +2)−(12m +3)]2=14m 2 26.∵−c²+a²+2ab −2bc =0,∴(a +c )(a −c )+2b (a −c )=0∴(a-c)(a+c+2b)=0.∵a 、b 、c 是△ABC 的三条边,∴a+2b+c>0.∴a-c=0,即a=c,△ABC 为等腰三角形.7.∵x −y −x²+2xy −y²+2=0.∴(x²−2xy +y²)−(x −y )−2=0∴(x −y )²−(x −y )−2=0∴(x-y-2)(x-y+1)=0.∴x-y-2=0或x-y+1=0.又∵x+y=8,∴{x −y −2=0x +y =8或 {x −y +1=0x +y =8 解得 {x =5y =3或 {x =3.5y =4.5∴长方形的面积为15cm²或 634cm 2.。
八年级数学上册《第十四章因式分解》同步练习题及答案(人教版)班级姓名学号一、单选题1.下列说法正确的是().A.不论x取何值,(x-1)0=1 B.6226的值比3224大C.多项式x2+x+1是完全平方式D.4´3100-399是11的倍数2.下列各式从左到右的变形属于因式分解的是()A.x2−9=(x+3)(x−3)B.6x2y3=2x2⋅3y3C.(x+2)(x−3)=x2−x−6D.x2+2x+1=x(x+2)+13.已知m=1+√2,n=1−√2,且(7m2−14m+a)(3n2−6n−7)=8,则a的值等于()A.-5 B.5 C.-9 D.94.若x3+x2+x+1=0,则x27+x26+…+x+1+x+…x26+x27的值是()A.1 B.0 C.-1 D.25.如果二次三项式x2+px−6可以分解因式为(x+q)·(x-2),那么(p−q)2的值为()A.2 B.3 C.4 D.96.a、b、c为某一三角形的三边,且满足a2+b2+c2=6a+8b+10c﹣50,则三角形是()A.直角三角形B.等边三角形C.等腰三角形D.锐角三角形7.下列分解因式正确的是()A.2x2−xy−x=2x(x−y−1)B.−xy2+2xy−3y=−y(xy−2x−3)C.x(x−y)−y(x−y)=(x−y)2D.x2−x−3=x(x−1)−38.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:a−b,x−1,3,x2+1,a,x+ 1分别对应下列六个字:你、爱、中、数、学、国,现将3a(x2−1)−3b(x2−1)因式分解,结果呈现的密码信息可能是()A.你爱数学B.你爱学C.爱中国D.中国爱你二、填空题9.计算21×3.14+79×3.14的结果为.10.因式分解:ab2−4ab+4a=.11.若 mn = 1, m - n = 2,则 m2n - mn2的值是.12.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2−ky2总能分解成两个一次因式积的形式;③已知二元一次方程组{x+y=6ax+y=4的解也是二元一次方程x−3y=−2的解,则a的值是2;④若x=2m+1,y=4m−3,则y=x2−4;其中正确的说法是.13.已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /三、解答题14.已知;a、b、c是△ABC的三边的长,且满足a3+ab2+bc2=ac2+a2b+b3,试判断△ABC的形状.15.用平方差公式因式分解(1)−3xy3+27x3y(2)4a2x2−16a2y2(3)(a+2)(a−8)+6a(4)81x4−y416.(1)因式分解:2a3−8a.(2)如图AB//CD,∠A=40°,∠D=45°求∠1和∠2的度数.17.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543…都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.18.如图,在一块长为2x米,宽为x米的长方形广场中心,留一块长为2y米,宽为y米的活动场地,其余的地方做花坛.(1)求花坛的面积;(2)当x=45,y=35且修建花坛每平方米需花费50元时,则修建整个花坛需要多少元?19.阅读材料:将(x+y)2+2(x+y)+1分解因式.解:将x+y看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将A还原,原式=(x+y+1)2.上述材料解题过程用到了整体思想,整体思想是数学中的常用方法,请根据上面方法完成下列各小题.(1)因式分解:(m+n)2﹣6(m+n)+9;(2)设M=(a﹣b)(a﹣b﹣2)+1.①因式分解M;②若M=0,求a﹣b的值.参考答案1.D2.A3.C4.C5.C6.A7.C8.D9.31410.a(b−2)211.212.①13.15;3714.解:∵a3+ab2+bc2=ac2+a2b+b3∴(a3﹣a2b)+(ab2﹣b3)+(bc2﹣ac2)=0a2(a﹣b)+b2(a﹣b)﹣c2(a﹣b)=0(a﹣b)(a2+b2﹣c2)=0∴a=b或a2+b2=c2则三角形是等腰三角形或直角三角形.15.(1)解:原式=-3xy(y2-9x2)=-3xy(y+3x)(y-3x)(2)解:原式=4a2(x2-4y2)=4a2(x+2y)(x-2y)(3)解:原式=a2-8a+2a-16+6a=a2-16=(a+4)(a-4)(4)解:原式=(9x2+y2)(9x2-y2)= (9x2+y2)(3x+y)(3x−y)16.(1)解:原式=2a(a2−4)=2a(a+2)(a−2).(2)解:∵AB//CD∴∠1=∠A=40°∵∠D=45°∴∠2=∠1+∠D=85°.17.(1)【解答】解:四位“和谐数”:1221,1331,1111,6666…(答案不唯一)任意一个四位“和谐数”都能被11整除,理由如下:设任意四位“和谐数”形式为:abcd,则满足:最高位到个位排列:d,c,b,a个位到最高位排列:a,b,c,d.由题意,可得两组数据相同,则:a=d,b=c则abcd11=1000a+100b+10c+d11=1000a+100b+10b+a11=91a+10b为正整数.∴四位“和谐数”能被11整数又∵a,b,c,d为任意自然数∴任意四位“和谐数”都可以被11整除;(2)【解答】设能被11整除的三位“和谐数”为:xyz,则满足:个位到最高位排列:x,y,z.最高位到个位排列:z,y,x.由题意,两组数据相同,则:x=z故 xyz=xyx=101x+10y故xyz11=101x+10y11=99x+11y+2x−y11=9x+y+2x−y11为正整数.故y=2x(1≤x≤4,x为自然数).18.(1)解:根据题意可知长方形广场的面积为2x2平方米活动场地的面积为2y2平方米故花坛的面积为(2x2−2y2)平方米;(2)解:当x=45,y=35时2x2−2y2=2(x+y)(x−y)=2(45+35)(45−35)=2×80×10= 160050×1600=80000(平方米)答:修建整个花坛需要80000元.19.(1)解:令m+n=A原式=A2﹣6A+9=(A﹣3)2再将A还原原式=(m+n﹣3)2;(2)解:①M=(a﹣b)(a﹣b﹣2)+1 =(a﹣b)[(a﹣b)﹣2]+1令a﹣b=C则M=C(C﹣2)+1=C2﹣2C+1=(C﹣1)2=(a﹣b﹣1)2;②∵M=0∴(a﹣b﹣1)2=0∴a﹣b﹣1=0∴a﹣b=1∴a﹣b的值为1.。
2023-2024学年八年级数学上册《第十四章因式分解》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列多项式在实数范围内不能分解因式的是()A.a2+1 B.a2+2a﹣1 C.a4﹣4 D.a2﹣52.a2−(b−c)2有一个因式是a+b−c,则另一个因式为()A.a−b−c B.a+b+c C.a+b−c D.a−b+c3.若多项式x2+px+12可分解为两个一次因式的积,则整数p的可能取值的个数为()A.3 B.4 C.5 D.64.若多项式x2+mx−8因式分解的结果为(x+4)(x−2),则常数m的值为()A.−2B.2 C.−6D.65.下列各式从左到右的变形,是因式分解的是()A.3x2+2x=x(3x+2)B.x2−x−2=x(x−1)−2C.(a+b)(a−b)=a2−b2D.a2b=ab•a6.把8a3-8a2+2a进行因式分解,结果正确的是( )A.2a(4a2-4a+1) B.8a2(a-1)C.2a(2a-1)2D.2a(2a+1)27.要将5xyz20x2y化成最简,应将分子分母同时约去它们的公因式,这个公因式为()A.xy B.5xy C.5xyz D.20xy8.王林是一位密码编译爱好者,在他的密码手册中有这样一条信息:x−1,a−b,3,x2+1,a,x+1分别对应六个字:县,爱,我,数,学,澧,现将3a(x2−1)−3b(x2−1)因式分解,结果呈现的密码信息可能是()A.我爱数学B.爱澧县C.我爱澧县D.澧县数学二、填空题9.将x3−6x2+9x进行因式分解,结果为.10.现有下列多项式:①1−a2;②a2−2ab+b2;③4a2−9b2;④3a3−12a.在因式分解的过程中用到“平方差公式”来分解的多项式有.(只需填上题序号即可)11.用提取公因式法将多项式8a3b2+12a3bc−4a2b分解因式时,应提取的公因式是.12.若m+n=3,mn=2则m2n+mn2的值为13.在日常生活中常用到密码,如取款、上网等,有一种“因式分解”法产生密码,方便记忆.如:对于多项式x4−y4,因式分解的结果是(x−y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:x−y= 0,x+y=18,x2+y2=162.于是就可以把“018162”作为一个六位数的密码,对于多项式32x3−8xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可)三、解答题14.已知x2+2x+1是多项式x3−x2+ax+b的一个因式,求a,b的值,并将该多项式因式分解. 15.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.16.因式分解:(1)3m(2x−y)2−3mn2;(2)19x2+y2−23xy(3)−81(x−y)2+25(x+y)217.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7;(3)分解因式:a2+4ab﹣5b2.18.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的()(填序号).A.提取公因式 B.平方差公式C.两数和的完全平方公式 D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.19.数学课后,小玲和同桌小娟各自拿出自己的漂亮的正方形手帕,她们俩各有一条方格手帕和一条绣花手帕,如图,小玲说:“我的方格手帕的边长比你的方格手帕的边长大0.6 cm.”小娟说:“我的绣花手帕的边长比你的绣花手帕的边长大0.6 cm.”设小玲的两块手帕的面积和为S1,小娟的两块手帕的面积和为S2,请同学们运用因式分解的方法算一算S2与S1的差.参考答案1.【答案】A2.【答案】D3.【答案】D4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】B9.【答案】x(x−3)210.【答案】①③④11.【答案】4a2b12.【答案】613.【答案】80103014.【答案】解:设x3−x2+ax+b=(x2+2x+1)(x+m),则x3−x2+ax+b=x3+(m+2)x2+(2m+1)x+m所以m+2=−12m+1=a m=b解得m=−3a=−5b=−3 .所以x3−x2−5x−3=(x2+2x+1)(x−3)=(x+1)2(x−3) . 15.【答案】解:∵甲看错了b,所以a正确∵(x+2)(x+4)=x2+6x+8∴a=6∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9∴b=9∴a+b=6+9=15. 16.【答案】(1)解:3m(2x−y)2−3mn2= 3m[(2x−y)2−n2]= 3m(2x−y+n)(2x−y−n)(2)解:19x2+y2−23xy= (13x)2−2×13x·y+y2= (13x−y)2(3)解:−81(x−y)2+25(x+y)2= [5(x+y)]2−[9(x−y)]2= [5(x+y)+9(x−y)][5(x+y)−9(x−y)]= (5x+5y+9x−9y)(5x+5y−9x+9y)= (14x−4y)(−4x+14y)= 4(7x−2y)(7y−2x)17.【答案】解:(1)原式=(a+b)(a﹣b)+(a﹣b)=(a﹣b)(a+b+1);(2)原式=(x﹣7)(x+1);(3)原式=(a﹣b)(a+5b).18.【答案】(1)C (2)否;(x﹣2)4(3)解:设为x2﹣2x=t则原式=t(t+2)+1=t2+2t+1=(t+1)2=(x2﹣2x+1)2=(x﹣1)4.19.【答案】解:S2−S1=(29.82+21.22)−(29.22+21.82)=(29.82−21.82)−(29.22−21.22)=(29.8+21.8)(29.8−21.8)−(29.2+21.2)(29.2−21.2)=51.6×8−50.4×8=(51.6−50.4)×8=9.6(cm2)。
人教版八年级数学上册《14.3 因式分解》同步练习题-带有答案一、选择题1.下列各式从左至右是因式分解的是()A.a2−4=(a+2)(a−2)B.x2−y2−1=(x+y)(x−y)−1C.(x+y)2=x2+xy+y2D.(x−y)2=x2+2xy+y22.a2−(b−c)2有一个因式是a+b−c,则另一个因式为()A.a−b−c B.a+b+c C.a+b−c D.a−b+c3.把(a+b)2+4(a+b)+4分解因式得()A.(a+b+1)2B.(a+b−1)2C.(a+b+2)2D.(a+b−2)24.下列各式能用完全平方公式分解因式的有();③m2n2+4−4mn;④a2−2ab+4b2;⑤x2−8x+9①4x2−4xy−y2;②−1−a−a24A.1个B.2个C.3个D.4个5.计算(−2)100+(−2)99的结果为()A.−299B.299C.2100D.-26.把x2+3x+c分解因式得(x+1)(x+2),则c的值是()A.3 B.2 C.-3 D.17.下列因式分解正确的是()A.x2−x=x(x+1)B.a2−3a−4=a(a−3)−4C.a2+b2−2ab=(a+b)2D.x2−y2=(x+y)(x−y)8.若x2-y2=100,x+y=-25,则x-y的值是()A.5 B.4 C.-4 D.以上都不对二、填空题9.2a2与4ab的公因式为.10.因式分解:2m2−4m=.11.一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:。
12.若有理数m使得二次三项式x2+mx+16能用完全平方公式因式分解,则m=.13.当a=3,a-b=1时,代数式a2-ab的值是三、解答题14.因式分解:(1)(2)15.已知,xy=3,求的值.16.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).17.下面是某同学对多项式进行因式分解的过程.解:设,原式(第一步),(第二步)(第三步),(第四步)(1)该同学第二步到第三步运用进行因式分解;(2)该同学是否完成了将该多项式因式分解?若没有完成,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式进行因式分解.参考答案1.A2.D3.C4.B5.B6.B7.D8.C9.2a10.2m(m−2)11.x2−1(答案不唯一)12.±813.314.(1)解:;(2)解:.15.解:∵,∴原式.16.解:(1)x3﹣xy2=x(x﹣y)(x+y)当x=15,y=5时,x﹣y=10,x+y=20可得数字密码是151020;也可以是152010;101520;102015,201510,201015;(2)由题意得:{x+y=13x2+y2=121解得xy=24 而x3y+xy3=xy(x2+y2)所以可得数字密码为24121.17.(1)完全平方公式(2)否;(3)解:设则原式。
因式分解综合练习题
一、填空和选择题:
1、把—6x3y2—3x2y2—8x2y3因式分解时,应提取的公因式是
() A —3 x2y2 B —2 x2y2 C x2y2 D —x2y2
2、下列多项式中能提取公因式的是()
A x2—y2
B x2 +2x
C x2+ y2
D x2—xy+ y2
3、把x2+3x+c分解因式得x2+3x+c=(x+1)(x+2),则c的值为()
A 2
B 3
C —2 D
3、下列各式中能用平方差公式分解因式的有个()(1)x2+ y2(2)x2— y2(3)—x2+ y2 (4)—x2—y2 (5)1—
4
1a2 b2(6)x2—2
4、分解因式结果为—(2a+b)(2a—b)的多项式是()
A 4 a2—b2 B4a2 + b2 C —4a2 + b2 D —4a2— b2
6、将多项式—5a2+3ab提公因式—a后,另一个因式是
7、4(a+b)—2a(a+b)分解因式,应提取的公因式是
8、分解因式:4x n+1+10x n= ,x(x—y)—y(y—x)= 。
9、如图:由一个边长为a的小正方形与两个长,宽都为a、b的长方形拼成大长方形,则整个图形中可表示一些多项式分解因式的等式。
它们是,
,。
10、多项式)
)(
(
)
)(
(x
b
x
a
ab
b
x
x
a
a-
-
+
-
-
-的公因式是()
A、-a、
B、)
)(
(b
x
x
a
a-
-
- C、)
(x
a
a- D、)
(a
x
a-
-
11、a2—16= a2—()2=(a+ )(a— ), x2—4=
12、若n
m y
x-=)
)(
)(
(4
2
2
2y
x
y
x
y
x+
-
+,则m=_______,n=_________。
13、()2
2)3
(
__
6+
=
+
+x
x
x,()2
2)3
(
9
___-
=
+
+x
x,若2
2
9y
k
x+
+是完全平方式,则k=_______。
14、下列多项式能用完全平方公式分解因式的有。
(1)x2 +4x+4 (2)4x2—4x+1 (3)x2 +x+
4
1
(4)4m2 +2mn+ n2 (5)1+16a2(6)1—16a2
15、二次三项式x2 +(p+q)x +pq可分解因式为
x 2 +(p+q )x +pq=(x+p )(x+q )则下列多项式可分解为 x 2+7x+ 10 = x 2—2x —8 =
y2
—7y+ 12 = x 2+7x —18 =
二、分解下列因式
1、3a (x —y )—9b (y —x )
2、 x 2
—9b 2
3、a x 2
—ay 2
4、(x+y )2
—10(x+y )+25
5、(a+b )2——4ab
6、(x+2y )2—(3x —2y )2
7、a 2+2a —8 8、2
1
a 2+ab+2
1 b 2
三、代数式求值
1、已知:a+b=3,ab=2,则—a 2b —ab 2= 。
2、若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值
3、已知:x+y=1,求21x 2+xy+2
1y 2的值
四、简便计算
1、0.7566.24
366.3⨯-⨯ 2、2112—22×211+121
3、2×8.752
—2×7.752
4、2000
2001
2121⎪⎭
⎫ ⎝⎛+⎪
⎭
⎫
⎝⎛-。