令t=x2-2x-8,则y=ln t(t>0).
∵要求f(x)的单调递增区间,且y=ln t是增函数,
∴根据复合函数的单调性可知,只需求出t=x2-2x-8在定义域内的单调递增区间即
可.
∵x∈(4,+∞)时,t=x2-2x-8为增函数,
∴函数f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞),故选D.
(2)含有绝对值的函数的图象一般是经过对称变换得到的.
第1讲 描述运第动四的章基本指概数念函数与对数函数
已知a>0,且a≠1,则函数y=ax与y=loga(-x)的图象只能是 ( B )
第1讲 描述运第动四的章基本指概数念函数与对数函数
思路点拨 可利用函数的性质识别图象,注意底数a对图象的影响,也可根据图象的位置结合单 调性来判断. 解析 解法一:首先,曲线y=ax只可能在x轴上方,y=loga(-x)的图象只可能在y轴左侧, 从而排除A,C, 然后,y=ax与y=loga(-x)的增减性正好相反,又可排除D.故选B. 解法二:若0<a<1,则函数y=ax在其定义域上单调递减且图象过点(0,1),而函数y=loga (-x)在其定义域上单调递增且图象过点(-1,0),所有选项均不符合这些条件; 若a>1,则函数y=ax在其定义域上单调递增且图象过点(0,1),而函数y=loga(-x)在其定 义域上单调递减且图象过点(-1,0),只有B满足条件.
x∈(0,1)时,y∈(0,+∞); x∈[1,+∞)时,y∈(-∞,0]
函数y=logax与y= log1x的图象关于③ x轴 对称
a
第1讲 描述运第动四的章基本指概数念函数与对数函数
反函数 一般地,指数函数y=ax(a>0,且a≠1)与对数函数④ y=logax(a>0,a≠1) 互为反 函数.它们的定义域与值域正好互换. 互为反函数的两个函数的单调性相同,但单调区间不一定相同. 互为反函数的两个函数的图象关于直线y=x对称.