2017年黑龙江省绥化市中考数学真题试题
- 格式:doc
- 大小:1.09 MB
- 文档页数:19
绥化中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.33333D. 3.14答案:B2. 如果一个三角形的两边长分别为3和4,且第三边长是整数,那么第三边长可能是多少?A. 1B. 2C. 5D. 7答案:C3. 一个数的平方是16,那么这个数是?A. 4B. -4C. 4或-4D. 以上都不对答案:C4. 函数y=2x+3的图象经过点(0,3),那么这个函数的斜率是多少?A. 2B. 3C. 0.5D. 1答案:A5. 一个圆的直径是10cm,那么它的半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:A6. 下列哪个选项是方程2x-3=7的解?A. x=5B. x=3C. x=-1D. x=7答案:A7. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的高是多少?A. 4cmB. 3cmC. 2cmD. 1cm答案:B8. 一个数的立方是-27,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不对答案:B9. 函数y=x^2-4x+3的顶点坐标是多少?A. (2, -1)B. (-2, -1)C. (2, 1)D. (-2, 1)答案:A10. 一个矩形的长是10cm,宽是5cm,那么它的面积是多少?A. 25cm²B. 50cm²C. 100cm²D. 200cm²答案:B二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个数的绝对值是8,那么这个数可能是________或________。
答案:8 或 -813. 一个数的平方根是4,那么这个数是________。
答案:1614. 如果一个角的补角是120°,那么这个角的大小是________。
答案:60°15. 一个数的立方根是2,那么这个数是________。
文件清单:2017年黑龙江省佳木斯市中考数学试卷(含答案)2017年黑龙江省哈尔滨市中考数学试题(含答案)2017年黑龙江省鹤岗市中考数学试卷(农垦、森工用)(含答案)2017年黑龙江省齐齐哈尔市中考数学试题(含答案)黑龙江省绥化市2017年中考数学试题(含答案)黑龙江省龙东地区2017年中考数学试卷及答案(含答案)2017年黑龙江省佳木斯市中考数学试卷一、填空题(每题3分,满分30分)1.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为吨.2.在函数y=中,自变量x的取值范围是.3.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.4.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球个.5.若关于x的一元一次不等式组无解,则a的取值范围是.6.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费元.7.如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则图中阴影部分的面积为.8.圆锥的底面半径为2cm,圆锥高为3cm,则此圆锥侧面展开图的周长为cm.9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.10.如图,四条直线l 1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,过点A1作A1A2⊥x轴,交l1于点A2,再过点A1作A1A2⊥l1交l2于点A2,再过点A2作A2A3⊥l3交y轴于点A3…,则点A2017坐标为.二、选择题(每题3分,满分30分)11.下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2 12.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.13.如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或714.某市4月份日平均气温统计图情况如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.13,13 B.13,13.5 C.13,14 D.16,1315.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.16.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y217.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤118.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD 上,则PE+PD的最小值是()A.2 B.2C.4 D.19.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种 C.6种 D.7种20.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5三、解答题(满分60分)21.先化简,再求值:÷﹣,其中a=1+2cos60°.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.23.如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线y=﹣x2+bx+c经过B、D两点.(1)求二次函数的解析式;(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.24.我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?.25.在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?26.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.27.为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?28.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y 轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D 处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.2017年黑龙江省佳木斯市中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为8×1010吨.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:800亿=8×1010.故答案为:8×1010.2.在函数y=中,自变量x的取值范围是x≠1.【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.3.如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF 或AD=BE(只需添加一个即可),使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).4.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球5个.【考点】X4:概率公式.【分析】设这个袋子中有红球x个,根据已知条件列方程即可得到结论.【解答】解:设这个袋子中有红球x个,∵摸到红球的概率是,∴=,∴x=5,故答案为:5.5.若关于x的一元一次不等式组无解,则a的取值范围是a≥2.【考点】CB:解一元一次不等式组.【分析】先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【解答】解:由x﹣a>0得,x>a;由1﹣x>x﹣1得,x<2,∵此不等式组的解集是空集,∴a≥2.故答案为:a≥2.6.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费39.5元.【考点】1G:有理数的混合运算.【分析】先根据单价×数量=总价求出10吨的水费,再根据单价×数量=总价加上超过10吨的部分的水费,再把它们相加即可解答.【解答】解:2.2×10+(2.2+1.3)×(15﹣10)=22+3.5×5=22+17.5=39.5(元).答:应交水费39.5元.故答案为:39.5.7.如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则图中阴影部分的面积为.【考点】MC:切线的性质;MO:扇形面积的计算.【分析】由条件可求得∠COA的度数,过O作OE⊥CA于点E,则可求得OE的长和CA的长,再利用S阴影=S扇形COA﹣S△COA可求得答案.【解答】解:如图,过O作OE⊥CA于点E,∵DB为⊙O的切线,∴∠DBA=90°,∵∠D=30°,∴∠BOC=60°,∴∠COA=120°,∵OC=OA=4,∴∠OAE=30°,∴OE=2,CA=2AE=4∴S阴影=S扇形COA﹣S△COA=﹣×2×4=π﹣4,故答案为:π﹣4.8.圆锥的底面半径为2cm,圆锥高为3cm,则此圆锥侧面展开图的周长为(2+4π)cm.【考点】MP:圆锥的计算.【分析】利用勾股定理易得圆锥的母线长,圆锥周长=弧长+2母线长.【解答】解:∵圆锥的底面半径是2,高是3,∴圆锥的母线长为: =,∴这个圆锥的侧面展开图的周长=2×+2π×2=2+4π.故答案为2+4π.9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为4或4或4.【考点】KQ:勾股定理;KH:等腰三角形的性质.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【解答】解:如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM==4;如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM==4,∴Rt△ABM中,AM==4,综上所述,当△ABM为直角三角形时,AM的长为4或4或4.故答案为:4或4或4.10.如图,四条直线l 1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,过点A1作A1A2⊥x轴,交l1于点A2,再过点A1作A1A2⊥l1交l2于点A2,再过点A2作A2A3⊥l3交y轴于点A3…,则点A2017坐标为[()2015,()2016].【考点】D2:规律型:点的坐标.【分析】先利用各直线的解析式得到x轴、l1、l2、y轴、l3、l4依次相交为30的角,各点的位置是每12个一循环,由于2017=168×12+1,则可判定点A2016在x轴的正半轴上,再规律得到OA2016=()2015,然后表示出点A2017坐标.【解答】解:∵y 1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,∴x轴、l1、l2、y轴、l3、l4依次相交为30的角,∵2017=168×12+1,∴点A2016在x轴的正半轴上,∵OA2==,OA3=()2,OA4=()3,…OA2016=()2015,∴点A2017坐标为[()2015,()2016].故答案为[()2015,()2016].二、选择题(每题3分,满分30分)11.下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6b3,不符合题意;B、原式=27a6,符合题意;C、原式=x4,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选B12.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】利用中心对称图形与轴对称图形性质判断即可.【解答】解:既是轴对称图形又是中心对称图形的是,故选A13.如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.14.某市4月份日平均气温统计图情况如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.13,13 B.13,13.5 C.13,14 D.16,13【考点】W5:众数;W4:中位数.【分析】根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解.【解答】解:这组数据中,13出现了10次,出现次数最多,所以众数为13,第15个数和第16个数都是14,所以中位数是14.故选C.15.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.【考点】E6:函数的图象.【分析】根据特殊点的实际意义即可求出答案.【解答】解:先注甲时水未达连接地方是,乙水池中的水面高度没变化;当甲池中水到达连接的地方,乙水池中水面上升比较快;当两水池水面不持平时,乙水池的水面持续增长较慢,最后两池水面持平后继续快速上升,故选:D.16.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y2【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据x1<x2<0<x3即可得出结论.【解答】解:∵反比例函数y=中,k=3>0,∴此函数图象的两个分支分别位于第一三象限,且在每一象限内y随x的增大而减小.∵x1<x2<0<x3,∴(x1,y1)、(x2,y2)在第三象限,(x3,y3)在第一象限,∴y2<y1<0<y3.故选B.17.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】根据分式方程的解法即可求出a的取值范围;【解答】解:3(3x﹣a)=x﹣3,9x﹣3a=x﹣3,8x=3a﹣3∴x=,由于该分式方程有解,令x=代入x﹣3≠0,∴a≠9,∵该方程的解是非负数解,∴≥0,∴a≥1,∴a的范围为:a≥1且a≠9,故选(C)18.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD 上,则PE+PD的最小值是()A.2 B.2C.4 D.【考点】PA:轴对称﹣最短路线问题;LB:矩形的性质.【分析】作D关于直线AC的对称点D′,过D′作D′E⊥AD于E,则D′E=PE+PD的最小值,解直角三角形得到即可得到结论.【解答】解:作D关于直线AC的对称点D′,过D′作D′E⊥AD于E,则D′E=PE+PD的最小值,∵四边形ABCD是矩形,∴∠ADC=90°,∵AD=4,∠DAC=30°,∴CD=,∵DD′⊥AC,∴∠CDD′=30°,∴∠ADD′=60°,∴DD′=4,∴D′E=2,故选B.19.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种 C.6种 D.7种【考点】95:二元一次方程的应用.【分析】设购买80元的商品数量为x,购买120元的商品数量为y,根据总费用是1000元列出方程,求得正整数x、y的值即可.【解答】解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:80x+120y=1000,整理,得y=.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故选:A.20.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG :S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG :S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH 最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.三、解答题(满分60分)21.先化简,再求值:÷﹣,其中a=1+2cos60°.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:÷﹣===,当a=1+2cos60°=1+2×=1+1=2时,原式=.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.【考点】R8:作图﹣旋转变换;P7:作图﹣轴对称变换.【分析】根据题意画出相应的三角形,确定出所求点坐标即可.【解答】解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线y=﹣x2+bx+c经过B、D两点.(1)求二次函数的解析式;(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.【考点】H8:待定系数法求二次函数解析式;H5:二次函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【分析】(1)由旋转性质可得CD=AB=1、OA=OC=2,从而得出点B、D坐标,代入解析式即可得出答案;(2)由直线OP把△BOD的周长分成相等的两部分且OB=OD,知DQ=BQ,即点Q为BD的中点,从而得出点Q坐标,求得直线OP解析式,代入抛物线解析式可得点P坐标.【解答】解:(1)∵Rt△AOB绕点O逆时针旋转90°得到Rt△COD,∴CD=AB=1、OA=OC=2,则点B(2,1)、D(﹣1,2),代入解析式,得:,解得:,∴二次函数的解析式为y=﹣x2+x+;(2)如图,∵直线OP把△BOD的周长分成相等的两部分,且OB=OD,∴DQ=BQ,即点Q为BD的中点,∴点Q坐标为(,),设直线OP解析式为y=kx,将点Q坐标代入,得: k=,解得:k=3,∴直线OP的解析式为y=3x,代入y=﹣x2+x+,得:﹣ x2+x+=3x,解得:x=1或x=﹣4(舍),当x=1时,y=3,∴点P坐标为(1,3).24.我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了200名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是36度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)求得喜爱《挑战不可能》节目的人数,将条形统计图补充完整即可;(3)用360°×喜爱《地理中国》节目的人数占总人数的百分数即可得到结论;(4)直接利用样本估计总体的方法求解即可求得答案.【解答】解:(1)30÷15%=200名,答:本次调查中共抽取了200名学生;故答案为:200;(2)喜爱《挑战不可能》节目的人数=200﹣20﹣60﹣40﹣30=50名,补全条形统计图如图所示;(3)喜爱《地理中国》节目的人数所在的扇形的圆心角是360°×=36度;故答案为:36;(4)2000×=600名,答:该学校喜欢《最强大脑》节目的学生人数是600人.25.在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距480千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?【考点】FH:一次函数的应用.。
2017年黑龙江省绥化市中考数学模拟试卷(三)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001242.(3分)下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1 B.2 C.3 D.43.(3分)沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()A.B.C.D.4.(3分)下列四个函数图象中,当x<0时,y随x的增大而减小的是()A.B.C.D.5.(3分)如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A.B. C. D.6.(3分)如图,海关缉私艇在A处接到情报,在A的北偏西60°方向的B处发现一艘可疑船只正以24海里/时的速度向正东方向航行,于是该艇立即沿北偏西45°的方向前进,经过1小时航行,恰好在C处截住可疑船只,则缉私艇的速度为()A.(12+12)海里/时B.(12+12)海里/时C.(12+12)海里/时D.(8+8)海里/时7.(3分)在函数y=中,自变量x的取值范围是()A.x<5且x≠2 B.x≥5 C.x≤5且x≠﹣2 D.x≠﹣28.(3分)某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元 B.875元C.550元D.750元9.(3分)化简+的结果是()A.m﹣3 B.m+3 C. D.10.(3分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A.4 B.4 C.2 D.2二、填空题(每小题3分,共33分)11.(3分)﹣的绝对值的相反数是.12.(3分)今年某校约有2000名学生参加中考,为了解这2000名学生的数学成绩,准备从中随机抽取200名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为.13.(3分)如图,直线a∥b,∠1=70°,∠2=35°,则∠3的度数是.14.(3分)在一次数学测验中,随机抽取了8份试卷,其得分如下表:则这8名考生得分的中位数是分.15.(3分)计算:|﹣2|+(﹣2)0+2sin30°﹣()﹣2=.16.(3分)把抛物线C先向左平移1个单位长度,再向上平移3个单位长度,所得新抛物线的解析式为y=﹣x2,则抛物线C的解析式为.17.(3分)在直径为150cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度DC为30cm,那么油面宽度AB是cm.18.(3分)圆锥的轴截面是一个边长为6cm的等边三角形,则这个圆锥的侧面积是.19.(3分)如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为.20.(3分)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).21.(3分)如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三、解答题(满分57分)22.(5分)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)23.(7分)已知关于x的一元二次方程x2+(2m﹣1)x+m2+3=0(1)若方程有两个实数根,求m的取值范围;(2)若方程有两个实数根x1,x2,且x12+x22=25,求m的值.24.(7分)在农村的“村村通”的道路改键工程中,某路段长4000米,由甲、乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人,设甲、乙两个工程队的工人全部参与生产,且甲、乙两个工程队每天各自的工作量相同,甲工程队1天,乙工程队2天共修路200米,甲工程队2天,乙工程队3天共修路350米.(1)求甲、乙两个工程队每天分别修路多少米?(2)甲、乙两个工程队施工10天后,由于工作需要,需从甲队抽调m人去学校新技术,总部要求在规定时间内完成,求甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,则甲、乙两个工程队各做多少天?最低费用为多少?25.(8分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD 延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.26.(9分)一列快车从甲地驶往乙地,一列慢车沿同一条公路从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(单位:h),两车之间的距离为y(单位:km),图中的折线表示y与x之间的函数关系.根据图象解答下列问题:(1)甲、乙两地之间的距离为km;(2)请解释图中点B的实际意义;(3)求慢车和快车的速度(4)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇30min后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时?27.(10分)如图,已知矩形,在BC上取两点E,F(E在F 左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.(1)求△PEF的边长;(2)求证:;(3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系?并证明你猜想的结论.28.(11分)抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C,已知抛物线的对称轴为x=1,点B的坐标为(3,0),点C的坐标为(0,﹣3)(1)求抛物线的解析式;(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;(3)平行于x轴的一条直线交抛物线于M、N两点,(点M在点N左侧),若以MN为直径的圆恰好与x轴相切,求此圆的半径.2017年黑龙江省绥化市中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.2.(3分)下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1 B.2 C.3 D.4【解答】解:第一个图形是中心对称图形,第二个图形、第三个图形既是中心对称图形,又是轴对称图形,第四个图形是轴对称图形,共2个,故选:B.3.(3分)沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()A.B.C.D.【解答】解:从上面看依然可得到两个半圆的组合图形,故选:D.4.(3分)下列四个函数图象中,当x<0时,y随x的增大而减小的是()A.B.C.D.【解答】解:当x<0时,y随x的增大而减小的是,故选C.5.(3分)如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A.B. C. D.【解答】解:∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选:D.6.(3分)如图,海关缉私艇在A处接到情报,在A的北偏西60°方向的B处发现一艘可疑船只正以24海里/时的速度向正东方向航行,于是该艇立即沿北偏西45°的方向前进,经过1小时航行,恰好在C处截住可疑船只,则缉私艇的速度为()A.(12+12)海里/时B.(12+12)海里/时C.(12+12)海里/时D.(8+8)海里/时【解答】解:由题意得,BC=24海里,设AD=x海里,在Rt△ABD中,BD==x,在Rt△ACD中,∠ACD=45°,∴CD=AD=x,则x﹣x=24,解得,x=12+12,∴AC=x=12+12,∴缉私艇的速度为(12+12)海里/时,故选:A.7.(3分)在函数y=中,自变量x的取值范围是()A.x<5且x≠2 B.x≥5 C.x≤5且x≠﹣2 D.x≠﹣2【解答】解:由题意得,5﹣x≥0且x+2≠0,解得x≤5且x≠﹣2.故选C.8.(3分)某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元 B.875元C.550元D.750元【解答】解:设该商品的进价为x元,标价为y元,由题意得,解得:x=2500,y=3750.则3750×0.9﹣2500=875(元).故选:B9.(3分)化简+的结果是()A.m﹣3 B.m+3 C. D.【解答】解:+=﹣==m+3.故选:B.10.(3分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A.4 B.4 C.2 D.2【解答】解:在菱形ABCD中,∵∠ABC=120°,∴∠ABE=60°,AC⊥BD,∵菱形ABCD的周长为16,∴AB=4,在RT△ABE中,AE=ABsin∠ABE=4×=2,故可得AC=2AE=4.故选A.二、填空题(每小题3分,共33分)11.(3分)﹣的绝对值的相反数是﹣.【解答】解:﹣的绝对值的相反数是﹣|﹣|=﹣,故答案为:﹣.12.(3分)今年某校约有2000名学生参加中考,为了解这2000名学生的数学成绩,准备从中随机抽取200名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为.【解答】解:∵为了了解这2000名学生的数学成绩,准备从中随机抽取200名学生的数学成绩进行统计分析,∴数学成绩被抽中的概率为:=.故答案为:.13.(3分)如图,直线a∥b,∠1=70°,∠2=35°,则∠3的度数是35°.【解答】解:∵直线a∥b,∠1=70°,∴∠4=∠1=70°,∵∠2+∠3=∠4,∴∠3=∠4﹣∠2=70°﹣35°=35°.故答案为:35°.14.(3分)在一次数学测验中,随机抽取了8份试卷,其得分如下表:则这8名考生得分的中位数是86分.【解答】解:这8名考生得分的中位数是=86(分),故答案为:86.15.(3分)计算:|﹣2|+(﹣2)0+2sin30°﹣()﹣2=0.【解答】解:|﹣2|+(﹣2)0+2sin30°﹣()﹣2=2+1+2×﹣4=3+1﹣4=0故答案为:0.16.(3分)把抛物线C先向左平移1个单位长度,再向上平移3个单位长度,所得新抛物线的解析式为y=﹣x2,则抛物线C的解析式为y=﹣(x﹣1)2﹣3.【解答】解:将抛物线y=﹣x2向下平移3个单位长度,再向右平移1个单位长度,所得抛物线的函数解析式为y=﹣(x﹣1)2﹣3,故答案是:y=﹣(x﹣1)2﹣3.17.(3分)在直径为150cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度DC为30cm,那么油面宽度AB是120cm.【解答】解:则OC⊥AB于点D,OC=OB=×150=75cm,OD=OC﹣CD=75﹣30=45cm.在直角△OBD中,BD===60(cm),则AB=2BD=120cm.故答案是:120.18.(3分)圆锥的轴截面是一个边长为6cm的等边三角形,则这个圆锥的侧面积是18πcm2.【解答】解:∵圆锥的轴截面是一个边长为6的等边三角形,∴底面半径=3,底面周长=6π,∴圆锥的侧面积=×6π×6=18πcm2.故答案为:18πcm2.19.(3分)如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为.【解答】解:∵∠AOB=90°,AO=3,BO=6,∴AB===3,∵△AOB绕顶点O逆时针旋转到△A′OB′处,∴AO=A′O=3,A′B′=AB=3,∵点E为BO的中点,∴OE=BO=×6=3,∴OE=A′O,过点O作OF⊥A′B′于F,S△A′OB′=×3•OF=×3×6,解得OF=,在Rt△EOF中,EF===,∵OE=A′O,OF⊥A′B′,∴A′E=2EF=2×=(等腰三角形三线合一),∴B′E=A′B′﹣A′E=3﹣=.故答案为:.20.(3分)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为3n+1(用含n的式子表示).【解答】解:观察可知,第1个图案由4个基础图形组成,4=3+1第2个图案由7个基础图形组成,7=3×2+1,第3个图案由10个基础图形组成,10=3×3+1,…,第n个图案中基础图形有:3n+1,故答案为:3n+1.21.(3分)如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于1或2cm.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE==2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PFA=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.三、解答题(满分57分)22.(5分)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)【解答】解:(1)作出线段AB的垂直平分线;(2)作出角的平分线;它们的交点即为所求作的点C(2个).23.(7分)已知关于x的一元二次方程x2+(2m﹣1)x+m2+3=0(1)若方程有两个实数根,求m的取值范围;(2)若方程有两个实数根x1,x2,且x12+x22=25,求m的值.【解答】解:(1)∵关于x的一元二次方程x2+(2m﹣1)x+m2+3=0有两个实数根,∴△=(2m﹣1)2﹣4×1×(m2+3)=﹣4m﹣11≥0,解得:m≤﹣.∴m的取值范围为m≤﹣.(2)∵方程x2+(2m﹣1)x+m2+3=0的实数根为x1,x2,∴x1+x2=﹣(2m﹣1),x1•x2=m2+3.又∵x12+x22=(x1+x2)2﹣2x1•x2=25,∴[﹣(2m﹣1)]2﹣2(m2+3)=25,解得:m1=﹣3,m2=5.∴m的值为﹣3.24.(7分)在农村的“村村通”的道路改键工程中,某路段长4000米,由甲、乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人,设甲、乙两个工程队的工人全部参与生产,且甲、乙两个工程队每天各自的工作量相同,甲工程队1天,乙工程队2天共修路200米,甲工程队2天,乙工程队3天共修路350米.(1)求甲、乙两个工程队每天分别修路多少米?(2)甲、乙两个工程队施工10天后,由于工作需要,需从甲队抽调m人去学校新技术,总部要求在规定时间内完成,求甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,则甲、乙两个工程队各做多少天?最低费用为多少?【解答】解:(1)设甲队每天修路x米,乙队每天修路y米,依题意得,解得.答:甲工程队每天修路100米,乙工程队每天修路50米;(2)依题意得,10×100+20××100+30×50≥4000,解得m≤,∵0<m<10,∴0<m≤,∵m为正整数,∴m=1或2,∴甲队可以抽调1人或2人;(3)设甲工程队修a天,乙工程队修b天,依题意得,100a+50b=4000,所以,b=80﹣2a,∴0≤80﹣2a≤30,解得25≤a≤40,又∵0≤a≤30,∴25≤a≤30,设总费用为W元,依题意得,W=0.6a+0.35b,=0.6a+0.35(80﹣2a),=﹣0.1a+28,∵﹣0.1<0,=﹣0.1×30+28=25(万元),∴当a=30时,W最小此时b=80﹣2a=80﹣2×30=20(天).答:甲工程队需做30天,乙工程队需做20天,最低费用为25万元.25.(8分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD 延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.26.(9分)一列快车从甲地驶往乙地,一列慢车沿同一条公路从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(单位:h),两车之间的距离为y(单位:km),图中的折线表示y与x之间的函数关系.根据图象解答下列问题:(1)甲、乙两地之间的距离为900km;(2)请解释图中点B的实际意义;(3)求慢车和快车的速度(4)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇30min后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时?【解答】解:(1)∵当x=0时,y=900,∴甲、乙两地之间的距离为900千米.故答案为:900.(2)图中点B的实际意义是当两车出发4小时时,慢车和快车相遇.(3)慢车的速度为900÷12=75(千米/小时),快车的速度为900÷4﹣75=150(千米/小时).(4)设第二列快车比第一列快车晚出发m小时,则第二列快车与慢车相遇时,慢车行驶了4.5小时、第二列快车行驶了(4.5﹣m)小时,根据题意得:75×4.5+150×(4.5﹣m)=900,解得:m=0.75.答:第二列快车比第一列快车晚出发0.75小时.27.(10分)如图,已知矩形,在BC上取两点E,F(E在F 左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.(1)求△PEF的边长;(2)求证:;(3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系?并证明你猜想的结论.【解答】解:(1)过P作PQ⊥BC于Q(1分)∵四边形ABCD为矩形,∴∠B=90°,即AB⊥BC,又AD∥BC,∴,∵△PEF是等边三角形,∴∠PEQ=60°,在Rt△PEQ中,,(2分)∴PE=2,∴△PEF的边长为2.(1分)(2)在Rt△ABC中,∵tan∠ACB=,∴∠ACB=30°(1分)∵∠PEQ=60°,∴∠EGC=90°,∠PGH=90°,(1分)又∵△PEF是等边三角形,∴∠GEC=∠GPH,∴cot∠GEC=cot∠GPH,(2分)∴,(1分)(3)猜想:PH与BE的数量关系是:PH﹣BE=1(1分)证法1:如图,由(2),知∠1=30°∵△PEF是等边三角形∴∠PFE=60°,PF=EF=2,∵∠PFE=∠FHC+∠FCH,在直角三角形ABC中,∠EGC=90°,∠EPF=60°,∴∠FHC=30°(1分)∴∠FHC=∠FCH,∴FC=FH(1分)∵PH+FH=2,BE+EF+FC=3(2分)∴PH﹣BE=1证法2:由(2),知∠FCH=30°,∠EGC=90°,∴在Rt△CEG中,,即(2分)∵在Rt△PGH中,∠7=30°∴∴(2分)∴PH﹣BE=1证法3:可证:∠PEF=∠EPF=60°∠EGC=∠PGC=90°,∴△EGC∽△PGH∴∴①(2分)∵∠ACB=∠ACB,∠B=∠EGC=90°,∴△CEG∽△CAB,∴,即,∴②(2分)把②代入①得,,∴PH﹣BE=1.28.(11分)抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C,已知抛物线的对称轴为x=1,点B的坐标为(3,0),点C的坐标为(0,﹣3)(1)求抛物线的解析式;(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;(3)平行于x轴的一条直线交抛物线于M、N两点,(点M在点N左侧),若以MN为直径的圆恰好与x轴相切,求此圆的半径.【解答】解:(1)∵y=ax2+bx+c交x轴于A,B两点,交y轴于点C,抛物线的对称轴为x=1,点B的坐标为(3,0),点C的坐标为(0,﹣3),∴,∴,∴抛物线的解析式为:y=x2﹣2x﹣3;(2)存在,如图,连接AC并延长交对称轴于P,则点P即为P到B、C两点距离之差最大的点,∵抛物线的对称轴为x=1,点B的坐标为(3,0),∴A(﹣1,0),∵点C的坐标为(0,﹣3),∴直线AC的解析式为:y=﹣3x﹣3,∵P在对称轴上,∴P(1.﹣6);(3)设M(x1,y),N(x2,y),圆的半径为:r,则x2﹣x1=2r,①∵对称轴为x=1,∴x1+x2=2,②由①,②得,x2=r+1,将N(r+1,y)代入y=x2﹣2x﹣3得,y=r2﹣4,∵r=|y|,∴当y>0时,r2﹣r﹣4=0,∴r1=,r2=(舍去),当y<0时,r2+r﹣4﹣0,∴r3=,r4=(舍去),∴圆的半径为:或.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
[2017中考真题数学]2017中考真题以及答案-一、选择题1. (2017湖北宜昌,第2题3分)在﹣2,0,3,A.﹣2 0B. 3C. 这四个数中,最大的数是( )D.2. (__?湖北宜昌,第14题3分)如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是( )A.m+n0B. ﹣m﹣nC. |m|﹣|n|0D. 2+m2+n3. (2017?湖南永州,第5题3分)若用湘教版初中数学教材上使用的某种计算器进行计算,则按键的结果为( )4. (2017河北,第5题2分)a,b是两个连续整数,若a5.(2014?陕西,第1题3分)4的算术平方根是( )A.﹣2B. 2C. ±2D. 166.(2017重庆A,第1题4分)实数﹣17的相反数是( )A.17B.C. ﹣17D. ﹣7.(2017湖北黄冈,第1题3分)﹣8的立方根是( )8. (2014?湖北荆门,第2题3分)下列运算正确的是( )A.31=﹣3 ﹣B. =±3C. (ab2)3=a3b6D. a6÷a2=a39.(2017莱芜,第1题3分)下列四个实数中,是无理数的为()10. (2017青岛,第1题3分)﹣7的绝对值是()11. (2017乐山,第1题3分)﹣2的绝对值是()12. (2017攀枝花,第1题3分)2的绝对值是( )内容需要下载文档才能查看13.(2017广西来宾,第2题3分)去年我市参加中考人数约__人,这个数用科学记数法表示是( )14.(2017黔南州,第1题4分)在﹣2,﹣3,0.1四个数中,最小的实数是( )A.﹣3B. ﹣2 0C. 1D.15.(2014年广西钦州,第3题3分)我市2014年参加中考的考生人数约为__人,将__用科学记数法表示为( )A.434×102B. 43.4×103C. 4.34×104D. 0.434×10516.(2017年广西南宁,第3题3分)南宁东高铁火车站位于南宁青秀区凤岭北路,火车站总建筑面积约为__平方米,其中数据__用科学记数法表示为( )A.26.7×104B.2.67×104 C. 2.67×105 D. 0.267×10617.(2017年贵州安顺,第2题3分)地球上的陆地而积约为__0km2.将__0用科学记数法表示为( )A.1.49×106二、填空题1. (2014?随州,第11题3分)计算:|﹣3|++(﹣1)0= B.1.49×107 C. 1.49×108 D. 1.49×1092.(2017江西,第7题3_______3.(2017陕西,第14题3分)用科学计算器计算:4.(2014?四川成都,第11题4分)计算:|﹣5.(2017黑龙江牡丹江, 第11题3分)计算|1﹣6. (2017湖北黄石,第17题7分)计算:|+3tan56°≈(结果精确到0.01) |=. |+(﹣1)0﹣()1= ﹣﹣﹣5|+2cos30°()1+(9﹣﹣)0+. 7. (2017年湖北荆门) (2014?湖北荆门,第13题3分)若﹣2xmny2与3x4y2m+n是同类项,则m﹣3n的立方根是 .8.(2017莱芜,第14题4分)计算:三、解答题1. (2017黑龙江绥化,第19题5分)计算:2. (2017湖北宜昌,第16题6分)计算:+|﹣2|+(﹣6)×(﹣). . =.3. (2017湖南永州,第17题6分)计算:﹣4cos30°+(π﹣3.14)0+4. (2017无锡,第19题8分)(1)(2)(x+1)(x﹣1)﹣(x﹣2)2.5.(2017宁夏,第17题6分)计算:(﹣)2+﹣. ﹣|﹣2|+(﹣2)0; ﹣2sin45°﹣|1﹣﹣5)0﹣﹣4sin45°﹣|. cos30°. +.﹣2|. . 6.(2017四川广安,第17题5分)+(﹣)1+(﹣7.(2014?浙江绍兴,第17题4分)(1)计算:8.(2017重庆A,第19题7分)计算:+(﹣3)2﹣__×|﹣4|+﹣9.(2017贵州黔西南州, 第21题6分)(1)计算:()2+(π﹣2014)0+sin60°+|10.(2017山西,第17题(1)5分)计算:(﹣2)2?sin60°﹣()1×﹣;11. (2017乐山,第17题9分)计算:+(﹣2014)0﹣2cos30°﹣()﹣1.)0+. 12. (2017攀枝花,第17题6分)计算:(﹣1)2014+()﹣1+(13. (2017丽水,第17题6分)计算:(﹣)2+|﹣4|×21﹣(﹣﹣1)0.|+﹣(﹣π)0; 14.(2017广西来宾,第19题12分)(1)计算:(﹣1)2014﹣|﹣(2)先化简,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.15.(2017年广西南宁,第19题6分)计算:(﹣1)2﹣4sin45°+|﹣3|+16.(2017年广西钦州,第19题5分)计算:(﹣2)2+(﹣3)×2﹣17.(2017年贵州安顺,第19题8分)计算:(18.1. (2017海南,第19题10分)计算:(1)12×(﹣)+8×22﹣(﹣1)2 ﹣﹣. . ﹣| ﹣2)0+()1+4cos30°﹣|。
2017年黑龙江省绥化市中考数学真题试题 一、单项选择题(本题共10个小题,每小题3分,共30分) 1.如图,直线,ABCD被直线EF所截,155,下列条件中能判定//ABCD的是( )
A.235 B.245 C.255 D.2125 【答案】C 【解析】
考点:平行线的判定. 2.某企业的年收入约为700000元,数据“700000”用科学记数法可表示为( )
A.60.710 B.5710 C.4710 D.47010 【答案】B 【解析】
试题分析:700000=7×105.故选B. 考点:科学记数法—表示较大的数. 3.下列运算正确的是( ) A.2325aaa B.333abab C.2222abcabcabc D.523aaa 【答案】C 【解析】
考点:合并同类项. 4.正方形的正投影不可能...是( )
A.线段 B.矩形 C.正方形 D.梯形 【答案】D 【解析】
试题分析:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形或线段. 故正方形纸板ABCD的正投影不可能是梯形, 故选D. 考点:平行投影.
5.不等式组1313xx的解集是( ) A.4x B.24x C. 24x D.2x 【答案】B 【解析】
试题分析:解不等式x﹣1≤3,得:x≤4, 解不等式x+1>3,得:x>2, ∴不等式组的解集为2<x≤4, 故选B. 考点:解一元一次不等式组. 6.如图, ABC是ABC在点O为位似中心经过位似变换得到的,若ABC的面积与ABC的面积比是4:9,则:OBOB为( ) A.2:3 B.3:2 C. 4:5 D.4:9 【答案】A 【解析】
故选A. 考点:位似变换. 7.从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是( ) A.154 B.1354 C. 113 D.14 【答案】B 【解析】
试题分析:∵一副扑克牌共54张,其中红桃13张,∴随机抽出一张牌得到红桃的概率是1354 .
故选B. 考点:概率公式. 8.在同一平面直角坐标系中,直线41yx与直线yxb的交点不可能...在( )
A.第一象限 B.第二象限 C. 第三象限 D.第四象限 【答案】D 【解析】
试题分析:直线y=4x+1过一、二、三象限; 当b>0时,直线y=﹣x+b过一、二、四象限, 两直线交点可能在一或二象限; 当b<0时,直线y=﹣x+b过二、三、四象限, 两直线交点可能在二或三象限; 综上所述,直线y=4x+1与直线y=﹣x+b的交点不可能在第四象限, 故选D. 考点:两条直线相交或平行问题.
9.某楼梯的侧面如图所示,已测得BC的长约为3.5米, BCA约为29,则该楼梯的高度AB可表示为( )
A.3.5sin29米 B.3.5cos29米 C.3.5tan29米 D.3.5cos29米 【答案】A 【解析】
试题分析:在Rt△ABC中,∵sin∠ACB=ABBC ,∴AB=BCsin∠ACB=3.5sin29°, 故选A. 考点:解直角三角形的应用﹣坡度坡角问题. 10.如图,在ABCD中, ,ACBD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知4AEFS,则下列结论:
①12AFFD,②36BCES,③12ABES,④AFE∽ACD,其中正确的是( )
A.①②③④ B.①④ C. ②③④ D.①②③ 【答案】D 【解析】
试题分析:∵在▱ABCD中,AO=12AC, ∵点E是OA的中点,∴AE=13 CE,∵AD∥BC,∴△AFE∽△CBE,∴AFAEBCCE=13, ∵AD=BC,∴AF=13AD,∴AFFD=12;故①正确;
考点:1.相似三角形的判定与性质;2.平行四边形的性质. 二、填空题(本题共11个小题,每小题3分,共33分) 11.15的绝对值是 . 【答案】15 【解析】 试题分析:根据负数的绝对值等于它的相反数,得|-15|=15. 考点:绝对值. 12.函数2yx中,自变量x的取值范围是 . 【答案】x≤2. 【解析】 试题分析:根据题意得:2﹣x≥0,解得:x≤2.
考点:函数自变量的取值范围. 13.一个多边形的内角和等于900,则这个多边形是 边形. 【答案】七 【解析】 试题分析:设多边形为n边形,由题意,得 (n﹣2)•180°=900, 解得n=7, 故答案为:七. 考点:多边形内角与外角.
14.因式分解:29x . 【答案】(x+3)(x﹣3). 【解析】
试题分析:原式=(x+3)(x﹣3). 考点:因式分解﹣运用公式法. 15.计算:2()2abaababab . 【答案】aab 【解析】 试题分析:原式=22abaabab =aab . 考点:分式的混合运算. 16.一个扇形的半径为3cm,弧长为2cm,则此扇形的面积为 2cm.(用含的式子表示) 【答案】3π. 【解析】
试题分析:根据题意得:S=12rl=12×2π×3=3π,则此扇形的面积为3πcm2. 考点:1.扇形面积的计算;2.弧长的计算. 17.在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9.则这位选手五次射击环数的方差为 . 【答案】2. 【解析】 考点:方差. 18.半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为 . 【答案】1:2:3. 【解析】 试题分析:由题意可得, 正三角形的边心距是:2×sin30°=2×12 =1,
正四边形的边心距是:2×sin45°=2×22=2,
正六边形的边心距是:2×sin60°=2×32=3, ∴半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为:1:2:3. 考点:正多边形和圆. 19.已知反比例函数6yx,当3x时,y的取值范围是 . 【答案】0<y<2. 【解析】
试题分析:∵y=6x,6>0, ∴当x>0时,y随x的增大而减小,当x=3时,y=2, ∴当x>3时,y的取值范围是0<y<2.
考点:反比例函数的性质. 20.在等腰ABC中,ADBC交直线BC于点D,若12ADBC,则ABC的顶角的度数为 . 【答案】30°或150°或90°. 【解析】 ∴顶角∠BAC=90°, 综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.
考点:1.含30度角的直角三角形;2.等腰三角形的性质. 21.如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为 .
【答案】2n-112 【解析】 ∴sn=2n12•s=2n12•12•2•2=2n-112. 考点:1.三角形中位线定理;2.等腰直角三角形.
三、解答题 (本题共8小题,共57分) 22.如图,,,ABC为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离.请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)
【答案】作图见解析. 【解析】
考点:作图—应用与设计作图. 23.某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图. 请你根据图中提供的信息解答下列问题:
(1)请直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数; (2)求本次抽查中学生每天参加户外活动的平均时间. 【答案】(1)a=20%.本次抽查中学生每天参加活动时间的中位数是1; (2)本次抽查中学生每天参加户外活动的平均时间是1.175小时. 【解析】
试题分析:(1)用1减去其它组的百分比即可求得a的值,然后求得各组的人数,根据中位数定义求得中位数; (2)利用加权平均数公式即可求解.
考点:1.扇形统计图;2.加权平均数;3.中位数. 24.已知关于x的一元二次方程22(21)40xmxm. (1)当m为何值时,方程有两个不相等的实数根? (2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值. 【答案】(1)当m>﹣174时,方程有两个不相等的实数根;(2)m的值为﹣4. 【解析】 试题分析:(1)根据方程的系数结合根的判别式,即可得出△=4m+17>0,解之即可得出结论; (2)设方程的两根分别为a、b,根据根与系数的关系结合菱形的性质,即可得出关于m的一元二次方程,解之即可得出m的值,再根据a+b=﹣2m﹣1>0,即可确定m的值. 试题解析:(1)∵方程x2+(2m+1)x+m2﹣4=0有两个不相等的实数根, ∴△=(2m+1)2﹣4(m2﹣4)=4m+17>0, 解得:m>﹣174 . ∴当m>﹣174时,方程有两个不相等的实数根. (2)设方程的两根分别为a、b, 根据题意得:a+b=﹣2m﹣1,ab=m2﹣4. ∵2a、2b为边长为5的菱形的两条对角线的长, ∴a2+b2=(a+b)2﹣2ab=(﹣2m﹣1)2﹣2(m2﹣4)=2m2+4m+9=52=25, 解得:m=﹣4或m=2. ∵a>0,b>0, ∴a+b=﹣2m﹣1>0, ∴m=﹣4. 若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m的值为﹣4.
考点:1.根的判别式;2.根与系数的关系;3.菱形的性质. 25.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍. (1)求甲、乙两个工程队每天各修路多少千米? (2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天? 【答案】(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天. 【解析】