直流电机的换向
- 格式:ppt
- 大小:485.00 KB
- 文档页数:12
直流电动机的工作原理是通过直流电源供电,使电动机内的电刷和换向器协同工作,从而实现电动机的正常运转。
电刷和换向器在直流电动机中起着至关重要的作用,下面就让我们分别来了解它们的工作原理。
一、直流电动机电刷的工作原理1.电刷的作用电刷是直流电动机中用来与电机转子产生接触的部件,其主要作用是在电机转子旋转时,通过与转子接触,使电流得以传递,从而产生磁场,推动电机正常工作。
2.电刷的结构一般情况下,直流电动机电刷由导电材料制成,常见的有石墨和金属材料。
电刷通常呈方形或矩形,其一端与电极连接,另一端与转子接触,以便传递电流。
3.电刷的工作原理当直流电源导入电机时,电刷与转子发生接触,电流通过电刷进入转子,然后转子在磁场的作用下产生旋转力,带动电机正常工作。
二、直流电动机换向器的工作原理1.换向器的作用换向器是直流电动机中用来改变电流流向的部件,其主要作用是在电机转子旋转时,通过改变电流的方向,使得电机能够继续正常工作。
2.换向器的结构直流电机的换向器一般由固定的换向架和浮动的换向片组成。
换向片与电刷接触,用来改变电流的流向。
3.换向器的工作原理当电机转子旋转到一定位置时,换向器会自动改变电流的流向,以保持转子的正常运转。
换向器的工作原理是通过不断改变电流的方向,使得转子能够持续受到推动力,从而保持电机的正常工作。
直流电动机的电刷和换向器是电机正常运转的关键部件,它们通过与转子的接触和改变电流的流向,使得电机能够持续地产生磁场和旋转力,从而实现电机的正常工作。
在实际应用中,电刷和换向器的设计和选择对电机的性能和使用寿命都有着重要的影响,因此需要特别重视。
直流电动机作为一种常见的电动机类型,其工作原理和关键部件是非常重要的。
接下来我们将进一步探讨直流电动机的工作原理和关键部件在实际应用中的重要性。
让我们来进一步了解一下直流电动机的电刷。
电刷是直流电动机内与转子产生接触的关键部件,其主要作用是在电机转子旋转时,通过与转子接触,使电流得以传递,从而产生磁场,推动电机正常工作。
直流电机的电枢反响和换向直流电机运用的根柢理论中电枢反响和换向是个要害。
电枢是直流电机在作业中的首要构成有些。
(1)电枢反响。
直流电机负载作业时,主磁极和电枢磁场一同存在,电枢磁场对主磁场的影响叫电枢反响。
电枢反响的作用是构成磁场发作畸变,构成磁场不对称,给换向带来艰难,换向火花增大。
(2)换向。
直流电机作业进程中,电枢绕组元件通过电刷时,从一条支路进入另一条支路,电流方向发作改动,这个进程叫换向。
(3)因为电机转速很高,换向很快,所以会发作自感电动势,构成火花。
电枢反响和换向都会发作火花,为了减小火花,一般加装换向极和增大电刷电阻(电刷用石墨做,耐磨、电阻大)。
直流电机的运用是由其本身的各个组件的彼此协作下进行的,电枢是其间最首要的一有些。
运用直流电机的用户,为了便当对其运用,主张对其每个构成有些都要做好了解和研讨。
1。
实验一直流电机的启动、换向一、实验目的1、学习电机实验的基本要求与安全操作注意事项。
2、认识在在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。
3、熟悉他励电动机(即并励电动机按他励方式)的接线、启动、改变电机转向方法。
二、预习要点1、如何正确选择使用仪器仪表。
特别是电压表电流表的量程。
2、直流电动机启动时,为什么在电枢回路中需要串接起动变阻器?不串接会产生什么严重后果?3、直流电动机启动时,励磁回路串接的磁场变阻器应调至什么位置?为什么?若励磁回路断开造成失磁时,会产生什么严重后果?4、直流电动机改变转向的方法。
三、实验项目1、了解4-02电源控制屏中的电枢电源、励磁电源、校正过的直流电机、变阻器、直流电压表、电流表及直流电动机的使用方法。
2、直流他励电动机的启动、改变转向。
四、实验设备1、型号4-14的导轨、测速发电机及转速2、型号4-15的直流他励电动机表3、型号4-09的直流数字电压表4、型号4-10的直流数字电流表5、型号4-04的三相可调电阻器6、型号4-05的三相可调电阻器五、实验内容及操作步骤1、由实验指导人员介绍ZX-TIA481型电机与变压器综合实验装置型电机及电气技术实验装置各面板布置及使用方法,讲解电机实验的基本要求,安全操作和注意事项。
2、 用伏安法测电枢的直流图2-1测电枢绕组直流电阻接线图(1) 按图2-1接线,电阻R 用4-05上1800Ω和4-04上180Ω。
串联共1980Ω阻值并调至最大。
A 表选用4-09直流电流表,开关S 选用4-13开关模块。
(2) 经检査无误后接通电枢电源,并调至220V o 调节R 使电枢电流达到0.2A (如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行;如果此时电流太小,可能由于接触电阻产生较大的误差),迅速测取电机电枢两端电压U 和电流I 。
将电机分别旋转三分之一和三分之二周,同样测取U 、I 三组数据列于表2-1中。
解决电动车直流电机换向问题的操作规程摘要:换向问题是影响直流电机质量的主要问题之一。
本文介绍了如何评价换向合格的指标;论述了影响换向的原因包括电磁、机械、电化学等方面;提出了改善换向的方法和措施:一是调节电刷位置,二是要重视换向器的质量,三是重视电刷的选择,四是优化刷盒尺寸和弹簧压力,五是电刷的磨合非常重要,最后要进行严格准确的寿命测试。
一、影响换向的原因:直流电机换向过程中为什么会产生火花呢?根据理论和实践分析,影响换向的原因很多,有电磁的、机械的、电化学的等等,并且它们之间又相互影响,十分复杂。
这里不准备在理论上作过多的分析,只针对电动自行车用直流电机为改善换向在中应注意的问题做一些分析,或许会对生产起到一定的指导作用。
1、电磁原因:在换向时,换向元件中会产生电抗电势和换向电势,这些电势之和一般大于零,称延迟换向。
当换向时,后刷边离开一个换向片转向另一个相邻换向片时,换向电流不为零,有电磁能量储存在换向元件内,在前个换向片离开电刷时,换向回路被突然切断,换向元件中的电磁能量就只有击穿空气而释放,从而产生火花。
2、机械原因:对生产而言,由于机械原因而导致换向不良是一个重要方面。
机械方面的原因很多,例如:平面换向器外表的平整度、粗糙度及装配时换向器外表与电机轴线的垂直度;换向器片间绝缘突出或换向片突出;电刷接触面研磨不好,电刷与换向器外表只有局部接触;电刷上弹簧压力大小不适宜;电刷在刷盒里太松或太紧;各个刷杆之间距离不相等,致使有些电刷所短路的换向元件不在几何中心线上;换向器外表不洁等。
3、电化学原因:正常运行的电机,换向器外表会产生很薄的一层褐色氧化亚铜薄膜。
实践说明,氧化亚铜薄膜的存在,是电机良好换向的必要条件。
这是因为氧化亚铜薄膜本身不仅具有较高的电阻,且其外表还常吸附着薄层水份、氧气和石墨粉末,具有良好的润滑作用,有利于减少电刷和换向器的磨损。
二、改善换向的方法和措施:为改善换向应该针对影响换向的原因在生产中采取一些必要的方法和措施。
直流电机原理以及换向工作介绍直流电机换向器的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
电刷上不加直流电压,用原动机拖动电枢使之逆时针方向恒速转动,线圈两边就分别切割不同极性磁极下的磁力线,而在其中感应产生电动势,电动势方向按右手定则确定。
这种电磁情况表示在图上。
由于电枢连续地旋转,,因此,必须使载流导体在磁场中所受到线圈边ab和cd交替地切割N极和S极下的磁力线,虽然每个线圈边和整个线圈中的感应电动势的方向是交变的.线圈内的感应电动势是一种交变电动势,而在电刷A,B端的电动势却为直流电动势(说得确切一些,是一种方向不变的脉振电动势)。
因为,电枢在转动过程中,无论电枢转到什么位置,由于换向器配合电刷的换向作用,电刷A通过换向片所引出的电动势始终是切割N极磁力线的线圈边中的电动势,因此,电刷A始终有正极性。
同样道理,电刷B始终有负极性,所以电刷端能引出方向不变的但大小变化的脉振电动势。
如每极下的线圈数增多,可使脉振程度减小,就可获得直流电动势。
这就是直流发电机的工作原理。
同时也说明子直流发电机实质上是带有换向器的交流发电机。
从基本电磁情况来看,一台直流电机原则上既可工作为电动机运行,也可以作为发电机运行,只是约束的条件不同而已。
在直流电机的两电刷端上,加上直流电压,将电能输入电枢,机械能从电机轴上输出,拖动生产机械,将电能转换成机械能而成为电动机,如用原动机拖动直流电机的电枢,而电刷上不加直流电压,则电刷端可以引出直流电动势作为直流电源,可输出电能,电机将机械能转换成电能而成为发电机。
同一台电机,能作电动机或作发电机运行的这种原理.在电机理论中称为可逆原理。
直流电机换向方法
直流电机换向通常使用两种方法:
1. 机械换向:机械换向是通过改变直流电机电枢绕组中电流的方向,使它们与磁场的方向相反,从而改变电机的转动方向。
机械换向通常使用多个电刷和集电环来实现,当电机转子旋转一定角度时,电刷与集电环之间的电路会自动切换,从而改变电流的方向。
2. 电子换向:电子换向是使用电子电路来控制电机转子的方向。
电子换向通常使用电机驱动器来实现,将直流电源转换为变频交流电源,然后通过变频器控制交流电源的频率和相位,从而改变电机的转动方向。
电子换向通常比机械换向更可靠,效率更高,同时也可以实现更精确的速度和位置控制。
直流电动机电流换向时产生火花的原因有哪些?减小换向火花应采取哪些措施?
直流电动机旋转时,电枢绕组元件从一个支路经过电刷转换到另一个支路时,元件中的电流转变一次方向,这就叫换向。
换向不良时将会消失剧烈的火花。
产生火花的缘由主要有以下几方面。
(1)电磁方面。
主要因素为:1)电枢反应,几何中性线处磁通密度不为零,元件经过此处产生电动势,此元件被电刷短路,就在元件与电刷间形成环流,当元件所接的换向片与电刷脱离接触时,元件中的磁能要释放出来而产生火花。
2)自感电动势的影响。
(2)机械方面。
主要有电刷的弹簧压力不当、换向器的云母片凸出、换向器表面不光滑等缘由造成的电刷与换向器接触不良而产生火花。
(3)工作环境方面。
空气中的尘埃、盐雾、化学、电离等各种因素的影响,都会产生火花。
改善换向减小火花应实行的措施为:一般应选用合适的电刷,适当移动电刷的位置。
1。
直流无刷电机六步换向输出的波形没有相位差的原因
直流无刷电机的六步换向输出波形没有相位差的原因主要有以下几点:
1. 六步换向控制:直流无刷电机的六步换向控制是一种通过电子开关对电机的相对位置进行控制的方式。
在六步换向中,电机的六个相电流依次打开、关闭,使得电机中的磁场方向随之改变。
由于六步换向是通过分时控制六个电子开关的开关状态,因此各相电流的开关状态保持一致,相位差为0。
2. 磁场转子结构:直流无刷电机的转子由永磁体组成,其磁场分布均匀且与转子轴向一致。
换向时,控制器改变各相电流的方向,从而改变电机中磁场方向的旋转。
由于转子上的磁场是均匀的,不会出现相位差。
3. 无刷电机工作方式:无刷电机通过电子开关控制电流方向,使得电机中的磁场旋转。
在六步换向控制下,电机的磁场方向会周期性地变化。
由于电机的永磁体磁场分布均匀,且控制器控制各相电流的切换时间是相等的,因此换向过程中不会出现相位差。
因此,直流无刷电机的六步换向输出波形没有相位差,主要是由于六步换向控制、磁场转子结构和无刷电机工作方式相互作用的结果。
这也是无刷电机可以实现高效、稳定、可靠的运行的重要原因之一。