第三章多相流及其测量方法资料重点
- 格式:ppt
- 大小:11.76 MB
- 文档页数:166
多相流实验技术的使用方法多相流实验技术是研究物质在多相条件下流动特性的重要手段之一。
在石油、化工、环境工程等领域广泛应用。
今天,我们将来探讨一下多相流实验技术的使用方法。
首先,多相流实验之前需要做好准备工作。
准备工作包括仪器设备的选择、实验样品的制备以及实验环境的控制等。
在仪器设备的选择方面,根据实验需求选择合适的设备,如流速计、压力传感器以及相态变化探测仪等。
对于实验样品的制备,需要注意样品的配比、混合方式以及液相、气相的性质等。
此外,为了保证实验结果的准确性,还需要对实验环境进行严格控制,如温度、湿度和压力等。
其次,多相流实验中常用的技术包括流型观测和流动参数测量。
流型观测可以通过高速摄影技术来实现,利用高速相机记录下不同流型下物质的运动轨迹和相互作用情况。
这种观测方法可以直观地展现多相流的流动特性,如气泡运动、液滴形变等。
而流动参数的测量可以通过选择合适的传感器和测量装置来实现,如流速计、压力传感器和浊度计等。
这些传感器可以帮助我们获取多相流的流速、压力、浓度等关键参数,进而分析多相流的流动规律。
另外,多相流实验技术的使用方法还包括模型的选择和实验设计。
在进行多相流实验时,我们可以选择合适的流动模型进行研究。
流动模型的选择应根据实际需求和研究领域来确定,如泡状流、液滴流、雾化流等。
不同的流动模型有不同的特点和研究对象,选择合适的模型可以更好地反映实际情况。
而实验设计是多相流实验中的另一个重要环节。
在设计实验时,我们需要考虑实验参数的选择、实验过程的控制以及数据的采集等。
合理的实验设计可以提高实验的可靠性和可重复性,确保实验结果的准确性。
此外,多相流实验技术的使用方法还需要注意实验过程的安全性和实验结果的分析。
在进行多相流实验时,我们需要遵守实验操作规程,佩戴个人防护用具,并确保实验环境的安全和稳定。
对于实验结果的分析,我们需要采用合适的数据处理方法,如平均值求取、回归分析和相关性分析等。
这些分析方法可以帮助我们从海量的实验数据中提取有用的信息和规律,为进一步的研究提供支持。
两相流的概念及类型两相物质(至少一相为流体)所组成的流动系统。
若流动系统中物质的相态多于两个,则称为多相流,两相或多相流是化工生产中为完成相际传质和反应过程所涉及的最普遍的粘性流体流动。
通常根据构成系统的相态分为气液系、液液系、液固系、气固系等。
气相和液相可以以连续相形式出现,如气体-液膜系统;也可以以离散的形式出现,如气泡-液体系统,液滴-液体系统。
固相通常以颗粒或团块的形式处于两相流中。
两相流的流动形态有多种。
除了同单相流动那样区分为层流和湍流外,还可以依据两相相对含量(常称为相比)、相界面的分布特性、运动速度、流场几何条件(管内、多孔板上、沿壁面等)划分流动形态。
对于管内气液系统,随两相速度的变化,可产生气泡流、塞状流、层状流、波状流、冲击流、环状流、雾状流等形态;对于多孔板上气液系可以产生自由分散的气泡、蜂窝状泡沫、活动泡沫、喷雾等形态。
两相流研究的一个基本课题是判断流动形态及其相互转变。
流动形态不同,则热量传递和质量传递的机理和影响因素也不同。
例如多孔板上气液两相处于鼓泡状态时,正系统混合物(浓度增加时表面张力减低)的板效率(见级效率)高于负系统混合物(浓度增加时表面张力增加);而喷射状态下恰好相反。
两相流研究的另一个基本课题,是关于分散相在连续相中的运动规律及其对传递和反应过程的影响。
当分散相液滴或气泡时,有很多特点。
例如液滴和气泡在运动中会变形,在液滴或气泡内出现环流,界面上有波动,表面张力梯度会造成复杂的表面运动等。
这些都会影响传质通量,进而影响设备的性能。
两相流研究的课题,还有两相流系统的摩擦阻力,系统的振荡和稳定性等。
两相流研究模型两相流的理论分析比单相流困难得多,描述两相流的通用微分方程组至今尚未建立。
大量理论工作采用的是两类简化模型:①均相模型。
将两相介质看成是一种混合得非常均匀的混合物,假定处理单相流动的概念和方法仍然适用于两相流,但须对它的物理性质及传递性质作合理的假定;②分相模型。
222 第三章 流体密度及持水率测量流体密度及持水率测量主要用于确定多相流体中油、气、水的含量及沿井筒的分布规律。
流体密度仪包括放射性密度仪和压差式密度仪两种;持水率仪根据测量原理可分为电容持水率计、低能放射性持水率计、微波持水率计等。
本章主要介绍这些仪器的测量原理及资料处理方法。
第一节 放射性流体密度计放射性密度计结构如图3-1所示,由伽马源、采样道和计数器三部分组成。
当取样道图3-1 流体密度测井示意图内的流体密度发生变化时,计数器的响应就发生变化,地面设备测井曲线就记录了取样通道中的流体密度。
放射性密度计采用C s 137作伽马源,发射的光子能量为0.661百万电子伏特,在这一能量级下,不会发生电子对效应,同时将测量门槛值调到0.1~0.2百万电子伏特,避免光电效应的影响,只记录发生康谱顿散射的光子。
因此,伽马源发出的伽马射线经采样通道到达探测器的射线强度为:LeI I μρ-=0 (3-1)式中, 0I ——伽马源处的伽马射线强度; I ——计数器处的伽马射线强度;μ——康普顿吸收系数,厘米2/克; ρ——流体密度,克/厘米3; L ——取样室长度, 10~40cm 。
对上式两边取对数,经整理后得:LIK L I L I μμμρln ln ln 0-=-=(3-2)223取μ=0.152cm 2/g ,L =6.58cm ,则II 0ln=ρ。
式中K =lnLI μ0,L 为已知,0I 可以测出;μ主要与元素荷质比A/Z 有关(Z 为原子序数,A 为原子量),对于低原子序数元素,Z/A ≈0.5,即氢、氧、碳、钠等元素的康普顿吸收系数相差较小,即油、气、水和盐水的康普顿吸收系数基本相等。
因此在半对数坐标上ρ与I呈线性关系。
图3-2是在一口生产井中由放射性密度测井所得到的曲线,图中第二道中实线是密度测井结果,虚线是流量测井结果。
流体密度测井显示井底有底水存在,且密度值略大于 1.0g/cm 3,说明井底沉有微砂粒或其它较重的悬浮物,或者是地底水的矿化度较高。
【精选】多相流计量及多相流量计简介R1 多相计量技术Multiphase metering technology概述许多新开发的油田属于经济型边际油田,这种油田不能承担传统分离技术所引发的高昂的费用。
而多相流量计可以节省很多费用,因为使用它就不需要安装分离器,或者几个油田共用处理装置。
在油井管理方面:多相流量计可以提供持续的数据输出,给出油井动态的有价值信息,这样可以及时地发现油井产生的问题或变化,以便尽早地做出决定,而采用传统的处理技术却要慢一些。
中国船级社(CCS)要求参照《海上移动平台入级规范》第1篇第3章附录1 平台入级产品持证要求一览表:5.3:?级管系以及除5.1以外的阀和附件证件类型:制造厂证明(?级管系应提供工厂认可证书,除5.1以外的阀和附件应提供型式认可证书)认可模式:型式认可B(可选项:型式认可A)1. 在线多相流量计在线多相流量计依据对流体特性的一些测量得到油、气、水三相的各自流量。
现在有许多这样的计量技术,可大致分为两大类:速度或总流量测量和相分率测量。
速度或流量测量通常是通过压差计量或一个特殊信号的互相关,即压力或导电率来获得。
许多流量计也采用滑动模块,这说明了气体通常比液体流速快的事实。
在垂直管道上安装的一些在线多相流量计一般通过在其上游装一个盲三通来减少水的紊动,以此最大限度地减少滑动。
相分率可以通过测量三相混合物的物性来获得,据此推算出三相各自的流量。
伽马射线能量衰减法是一种常用的方法,它的原理是油、气、水不等同地削弱伽马射线的能量。
伽马射线能量在两个能量级放射高能量级对气/液比更敏感,而低能量级对液相中的水/油比较敏感。
可以用这两个能量衰减量来确定三相混合液的相分率。
第三个能量级也可以用来确定水相的含盐量。
电容和电导技术可以用来确定液相中的含水量。
电容传感器用于测量连续油流的介电常数并确定含水量,电导传感器用于连续水流的测量。
这种方法适于气体体积分数大环境,但缺点是:如果流体在水连续流和油连续流之间不停转换,那么流量计就很难跟踪到这个变化。