多相流测量技术发展概况
- 格式:pdf
- 大小:196.59 KB
- 文档页数:2
多相流性能测试技术的研究及其应用多相流是指两种或两种以上的不同物质同时存在于同一空间中,并且彼此之间的相互作用使它们不呈现出单一的运动状态。
通常可以分为气-液、固-液、液-液和气-固-液等情况。
在许多工业和科学领域,多相流的运动及其特性是十分重要的,因此研究多相流性能测试技术是十分必要的。
一、多相流性能测试技术研究的现状多相流性能测试技术是一个相对较新的领域,目前国内外关注度高,相关研究成果得到了很好的实践应用和推广。
可以确定的是,多相流的监测和测量技术模型的研究是一个充满挑战和机遇的领域,许多科学家已经开展了许多研究性工作,如多相流的流体力学分析、数据采集及分析、测量技术、控制技术的研究等。
当前,国内外多相流性能测试技术主要集中在以下几个方面:1. 传统测试方法:传统的测试方法通常通过试验的物理实验室进行,例如研究人员使用实验室内的流动管道来模拟不同介质之间的传输和反应等。
这种方法的测试成本相对较低,测试准确度也高。
但是,受制于实验室能力和成本因素,其测试范围相对较窄。
2. 光学测试方法:光学测试技术意味着使用光学仪器,如激光测速仪、高速摄像机等来监测多相流动态变化过程。
由于光学测试具有在线、无损、非侵入性等特点,能够实时获取目标物质多个维度、高精度、大范围的数据,其应用前景非常广阔。
但是,相较于传统测试方法,光学测试设备的费用显然更高。
3. 数值模拟方法:数值计算方法可以为多相流研究提供一个全面的理论基础。
利用计算机模拟多相流,可以预测流量、压力分布、速度分布、液膜厚度和空气剪切层等多相流参数分布以及相互作用等数量性和质量性的信息。
但是,其可靠性和精度方面存在一定的误差,需要不断优化。
二、多相流性能测试技术的应用在工业生产和科学研究等领域,多相流性能测试技术具有广泛的应用前景,其中最主要的应用领域包括石油化工、核污染监测、环保工业、冶金矿业、水利水电工程等。
1. 石油化工:石油化工工业中的制造过程中,大量的多相流现象常常会发生,例如气液、固液和液液混合物,因此多相流性能测试技术可以用于流量和质量分析。
多相流技术的发展现状物质一般可分为气体、液体和固体三种相态。
气体和液体不能承受拉力和切力,没有一定的形状,具有流动性,因此统称为流体。
在流体中如有固体颗粒存在,则当流体速度相当高时,这种固体颗粒就具有与一般流体相类似的性质而可看作拟流体。
这样,在一定的条件下,就可以处理气体、液体、固体三种相态的流动问题。
经典流体力学所处理的只是一种相态的均质流体,即气体或液体的流动问题。
但是在许多工程问题以及自然界的流动中,必须处理许多不同相态的物质混合流动的问题。
通常把这种流动体系称为多相体系,称相应的流动为多相流。
最普通的多相流由两个相组成,称为二相流。
不同相态物质的物性有很大的差别,通常根据物质的相态,把二相流分为气液二相流,气固二相流,液固二相流等。
气液二相流在核电站反应堆及蒸汽发生器、火力发电厂锅炉、汽轮机及凝汽器、炼油厂分馏塔中蒸发和凝结过程以及在化工、天然气液化、海水淡化及制冷系统中的蒸发器、重沸器、冷凝器等方面均有广泛的应用。
在内燃机和燃油炉的液体燃料燃烧过程中也很重要。
近20多年来随着原子能电站的建立、高温高压火电机组的出现以及大型石油化工企业的建设,气液二相流及其传热性能在设备设计与安全运行中显得越来越重要。
气固二相流在煤粉燃烧、气力输送与分离、流化床燃烧及反应器、除尘器以及在最近发展的煤的液化和气化技术中十分重要。
火箭发动机排气中固体微粒的运动以及地球物理和天体物理中的尘埃流动也都涉及固体微粒的流动。
液固二相流在水利工程中泥沙的沉积、化学工程中流化床反应器、液体的渗流及泥浆流动等方面均很重要。
总之,多相流是一门在许多工程领域中有广泛应用的重要学科,在最近20多年中得到了迅速的发展,国际学术活动也相应增加。
多相流体力学研究的根本出发点是建立多相流模型和基本方程组。
在此基础上分析各相的压强、速度、温度、表观密度和体积分数、气泡或颗粒尺寸分布、相间相互作用(如气泡或颗粒的阻力与传热传质)、颗粒湍流扩散、流型、压力降(两相流通过管道时引起的压差)、截面含气率、流动稳定性、流动的临界态等。
多相流测量技术的研究及其应用前景曹艳强 曹岩西安石油大学石油工程学院 陕西 西安 710065摘要:多相流广泛存在于石油工业中,因此对于多相流的测量就具有非常重要的意义。
然而,由于多相流在流动过程中流型复杂,成分多变。
到目前为止,多相流的测量仍然是石油行业中的一个难题,但同时多相流技术的应用潜力还是被大家非常看好的。
关键词:多相流 压降 分相含率 空隙率 速度 流量1多相流简介在大自然中,物质可以分成气相、液相和固相三相[]1。
顾名思义多相流就是指同时存在两种或两种以上不同相混合物质的流动。
在日常生活中常见的多相流有气固两相流、气液两相流、液固两相流、液液两相流以及气液液、气液固多相流等等。
在多相流的研究中,通常将在同一自然相中存在明确界面的不同物质当作不同相进行研究,如在油水混合物中,由于油和水互不相溶,那么就会在两者之间存在明显的相界面,这样就称为油水两相流。
多相流在石油化工行业中是一种十分普遍的现象。
在石油开采过程中,从采出到运输都会存在油、气、水三相混输,这是一种很典型的多相流,甚至还存在油、气、水、沙四相流。
多相流是在流体力学,物理化学,传热传质学,燃烧学等学科的基础上发展起来的一门新兴学科,对国民经济的发展有着十分重要的作用,它广泛存在于能源、动力、石油化工、核反应堆、制冷、低温、环境保护及航天技术等许多工业部门。
因此,虽然多相流的发展历史只有短暂的几十年,但由于油气水多相流检测技术的研究具有重要的理论和工程意义,发展脚步很快。
尤其是在20世纪50年代以来,由于石油化工行业中高参数的引人,以及对环境保护的日益重视,在一定程度上大大地促进了多相流研究及其应用的发展[]2。
2多相流的测量参数[]3在多相流的流动过程中,由于相与相之间的作用,就会有分布和形状在空间和时间里都是可以随时变化的相界面,而相与相之间又会存在不同的速度,导致通过管道的不同相的流量比和其所占的管截面比并不相等。
因此,根据多相流的这些特点,描述其流动的参数就要比单相的参数要复杂。
工 业 技 术113科技资讯 SCIENCE & TECHNOLOGY INFORMATIONDOI:10.16661/ki.1672-3791.2017.27.113多相流检测研究进展邢天阳(东南大学吴健雄学院 江苏南京 211189)摘 要:流体的多相流动广泛存在于多个领域,如动力、石油、化工等。
多相流检测一直是流体测量领域的一个难点。
本文分析了多相流体的流动特征,说明工业检测多相流的困难所在。
本文介绍了现阶段多相流流体检测现状,详细介绍现阶段较为成熟的工业多相流检测手段、说明其检测原理并分析各自的优缺点。
主要介绍过程层析成像技术理论以及过程层析多相流基本原理以及结构组成。
由此分析并提出多相流检测今后可能的发展方向。
关键词:多相流 过程层析成像 发展趋势中图分类号:TP3 文献标识码:A 文章编号:1672-3791(2017)09(c)-0113-02现阶段,多相流检测技术需求最大的石油工业。
国内外是由工业经过几十年的发展,现阶段的研究重点转移到了研究高含水率的油、气、水多相流量计。
但是目前,世界大部分油井尚未到达高含水率开采阶段。
不可否认,高含水率多项流量计是未来的发展趋势,具有重大的研究价值。
本文所研究的多相流检测技术以油、气、水多相流的流量测量为主要研究对象。
1 多相流的特征多相流是指含有两项及两项以上的物质或者相的流动,多项流动的主要特征有以下几个方面,第一,不均匀速度,相间速度不均匀;第二,相不稳定,多相流的相界面的时空不稳定;第三,特性复杂,多相流的特征参数比单项流动要多。
多项流动检测困难之处体现在:第一,非均匀混合,各相有趋向分离的趋势;第二,不稳定流动,相间存在相对速度,相界时空不稳定;第三,不规则混合,混合结果没有规律性。
第四,各相之间存在相互作用。
例如气体在液相中被吸收等。
第五,流动形态较为复杂,表征多相流的特征参数较多。
2 多相流检测现状从检测模式分类,现阶段检测多相流方法主要有分离式检测法、部分分离式和不分离式检测法。
技术创新41多相流益测技术进展◊西南石油大学石油与天然气工程学院张小弩流动结构特征是多相流流动 分析的基础,其中波浪形态和分 散液滴尺寸的测量准确测量对于 持液率、摩阻参数的计算具有重 要意义。
本文详细介绍了目前广 泛应用的探针法、高速成像法、超声波衰减法、光衍射法、库尔 特法的测量原理及适用条件。
未 来多相流监测技术将应当融合人 工智能、机器学习等最新科技成 果,同时基于大数据分析,以实 现对不同场合多相流波形结构以 及液滴和气泡分布的高效准确监 测。
1引言多相流系统广泛存在于化工、石油、能源、航天、冶金等各个工ik领域。
多相 流流动中相界面在空间和时间上的分布特 征,称为流型,或者流态。
流型是多相流 各种流动中最本质的特征,其他的各种流 动特性,流动参数等往往都受到流型的影 响。
多相流流型复杂多变,受到流童、分相含率、容寸、壁面材料、讓角度以及流体物性参数等各种因素的影 响,其准确测童对于流动分析具有重要意 义。
早期的油水两相流研究中的流型识别 中主要采用目测法,目测法识别能力差,难以对多相流分布进棟化分析。
随着科 学技术的发展,新的测量技术不断浦现。
本文介绍了现阶段国内外采用的主要液液 两相流监测技术。
2多相流监测技术2.1探针法探针法是利用电极传感器对多相混合 物的局部电导率进行测量。
图1和图2展示 了用于测量管道多相流的电导探针构成。
利用电导探针测置气泡直径比较准确,应 用比广泛。
用于测量油水两相分散流的液 滴,当油品粘度不大、液滴密度较小时,测置比较准确;当油品粘度较大时,油相 ^«1十头^^上部,导财相经过时无法识别。
因此,双头电导探针 用于测置油水两相分散流液滴时存在一定 的局限。
此外,电导探针测试属介入式测 量,会干扰流体的流动而引起测量误皆|。
图1电导探针局部高速成像种传统的流动_测童手段,它主要利用照相机、髙速摄像机、内窺齡照相设备,采用取样觀显微镜等辅助手段来采集液滴和波形照片,并用图像处理软件对液滴和波形成像进機计处理,从而得到粒径尺寸,職和分布情况。
国内外多相流计量技术的发展摘要伴随着石油工业的不断发展,石油的开发已由较容易开发的内陆地区向深海及沙漠地区发展,并孕育出了管道多相流的输送技术.本文就今年来多相流计量技术的发展作了简单的归纳.关键词多相流;计量技术;流量计60年代开始人们就对多种存在形式的流体在同一输送管中的输送状态作了研究,由于当时工业水平的限制,多相流输送技术一直存在缺陷,其中最为核心的是多相流的计量技术。
近年来,随着计算机技术的快速发展,以油气水混输技术为代表的多相混输技术不断发展,多相流的相关测量技术得到了极大的进步,因而可以使该技术能够在目前的生产中应用。
加之目前油田开发逐步进入海洋,又使得该技术有了更为广阔的应用空间,同时也促进了该技术的发展。
国内外公司相继投入大量的资金研发多相流计量计,并广泛的实验与应用。
多相流的技术发展,实现了进口原油的多相流计量,与传统的分离计量相比,有了极大的提高。
这一技术实现了油田井口计量技术里程碑式的改进。
传统分离计量设备需要极大的投资,通过改进后的技术,可以实现设备的小投入,带来了可观的经济效益。
在沙漠和深海的油田开发中,由于其具有工艺简单,计量精确的特点,更容易产生经济效益,故而应用也更为广泛,所以本文在这里简要介绍了国内外多相流计量技术的发展历程,并就现在多相流测量技术的发展作了简要的介绍。
1多相流计量技术现状多相流的测量技术在开发上面也有很多的技术难题,不少的研究机构和厂家在研究整个测量流程的时候都或多或少的遇到了各种各样的难题,但每个厂家均在其自己研究的产品上获得了突破,解决了相应的技术难题。
比如利用小型取样分离技术的多相计量系统,在测量的过程中就会遇到原油起泡的问题,如果分离器内的气液分离效果不好,含水量的测量值就会不精确,甚至出现较大的偏差,多相流计量机的性能也会受到影响。
而采用微波、电感和电容技术实现多相流测量的流量计,它又只有满足在油连续相乳化液的流型的条件下才能使用,假如流体中的必要的特征出现变化或是不存在,往往会影响测量的精度出现大幅度的改变。
多相流量计的研究始于上世纪六十年代,从80年代至今,国内外多相流量计量技术的开发和应用取得了重要进展。
20世纪80年代,第一台商业多相流量计( MPFM) 在挪威的北海油田投入使用。
多相流量计的优点主要有:(1)对油气进行连续、在线、自动测量,可实现无人值守。
多相流量计可测出日产油、水、气的量以及井口压力、温度数据,并把它们显示、打印出来。
如果与多路阀结合使用,可实现单井无人计量。
(2)系统质量轻,结构紧凑,占地面积小。
(3)无任何可动部件,几乎不需要维护。
多相流量计基本上由传感器和探测器组成,没有可动部件,不需要维护;而常规计量分离器有液面控制器、流量计、孔板、调节阀等,需要定期维护、更换和标定。
(4)被计量原油不用加热,节省成本。
多相流量计对被测介质温度无要求,只要介质能够流动就可以进行计量,仅需要用220V电源,功率为200W左右;而采用计量分离器,当井温较低时,产出液加热后才能进行有效的分离,如果是气泡原油,还要加消泡剂。
(5)投资少,操作费用低。
考虑到日常维护费用、占用平台面积等间接因素,选用多相流量计将会带来更大的经济效益。
多相流量计测量的基本原理1、流量测量基本方程多相流量计:能够同时获得被测管道气液各相流量的装置。
质量流量=面积(Si)*密度(ρi)*速度(Vi)其中:Si—各相在管道截面上所占据的面积Vi 各相沿管道轴线的流速2、相分率测量技术(1)射线吸收测量相分率技术射线穿过多相流体时受到流体吸收,吸收的程度与多相流的密度有关。
根据射线的吸收程度,可得出流体混合物的密度,进而计算出多相流的各相分率。
(2)电法测量相分率技术根据气液相混合物中两相介质的介电常数和电导率差别,测量出混合物中的气液相分率。
可分为电容法和电导法。
(3)微波衰减法测量微波衰减法主要用于测量含水体积分数,因为某一固定频率的微波经过不同含水体积分数的液相,可以产生不同的衰减,亦即衰减幅度与含水体积分数有关。
多相流技术的发展现状多相流技术的发展现状物质⼀般可分为⽓体、液体和固体三种相态。
⽓体和液体不能承受拉⼒和切⼒,没有⼀定的形状,具有流动性,因此统称为流体。
在流体中如有固体颗粒存在,则当流体速度相当⾼时,这种固体颗粒就具有与⼀般流体相类似的性质⽽可看作拟流体。
这样,在⼀定的条件下,就可以处理⽓体、液体、固体三种相态的流动问题。
经典流体⼒学所处理的只是⼀种相态的均质流体,即⽓体或液体的流动问题。
但是在许多⼯程问题以及⾃然界的流动中,必须处理许多不同相态的物质混合流动的问题。
通常把这种流动体系称为多相体系,称相应的流动为多相流。
最普通的多相流由两个相组成,称为⼆相流。
不同相态物质的物性有很⼤的差别,通常根据物质的相态,把⼆相流分为⽓液⼆相流,⽓固⼆相流,液固⼆相流等。
⽓液⼆相流在核电站反应堆及蒸汽发⽣器、⽕⼒发电⼚锅炉、汽轮机及凝汽器、炼油⼚分馏塔中蒸发和凝结过程以及在化⼯、天然⽓液化、海⽔淡化及制冷系统中的蒸发器、重沸器、冷凝器等⽅⾯均有⼴泛的应⽤。
在内燃机和燃油炉的液体燃料燃烧过程中也很重要。
近20多年来随着原⼦能电站的建⽴、⾼温⾼压⽕电机组的出现以及⼤型⽯油化⼯企业的建设,⽓液⼆相流及其传热性能在设备设计与安全运⾏中显得越来越重要。
⽓固⼆相流在煤粉燃烧、⽓⼒输送与分离、流化床燃烧及反应器、除尘器以及在最近发展的煤的液化和⽓化技术中⼗分重要。
⽕箭发动机排⽓中固体微粒的运动以及地球物理和天体物理中的尘埃流动也都涉及固体微粒的流动。
液固⼆相流在⽔利⼯程中泥沙的沉积、化学⼯程中流化床反应器、液体的渗流及泥浆流动等⽅⾯均很重要。
总之,多相流是⼀门在许多⼯程领域中有⼴泛应⽤的重要学科,在最近20多年中得到了迅速的发展,国际学术活动也相应增加。
多相流体⼒学研究的根本出发点是建⽴多相流模型和基本⽅程组。
在此基础上分析各相的压强、速度、温度、表观密度和体积分数、⽓泡或颗粒尺⼨分布、相间相互作⽤(如⽓泡或颗粒的阻⼒与传热传质)、颗粒湍流扩散、流型、压⼒降(两相流通过管道时引起的压差)、截⾯含⽓率、流动稳定性、流动的临界态等。