镁合金化及其组织性能特征
- 格式:ppt
- 大小:2.25 MB
- 文档页数:51
镁合金材料镁合金是一种由镁为基础的金属材料,通过与其他合金元素的合金化处理而得到的。
镁合金具有低密度、高强度、耐热性好等特点,因此具有广泛的应用前景。
首先,镁合金具有极低的密度,大约是钢的2/3,铝的1/4。
这使得镁合金在制造航空航天器材、汽车零部件和电子设备中具有重要的地位。
它的低密度不仅能够减轻整个设备的重量,提高设备的使用寿命,还能降低能源消耗,提高燃油效率。
因此,镁合金是汽车和航空航天工业中的理想材料之一。
其次,镁合金具有优异的强度和刚度。
虽然镁合金的密度较低,但它的强度却相对较高,能够承受较大的载荷。
此外,镁合金还具有良好的抗腐蚀性能,能够抵抗氧化、酸、碱等环境的侵蚀,因此它具有很长的使用寿命。
镁合金的优异性能使得它在航天航空、交通运输、电子设备等领域都有广泛的应用。
另外,镁合金还具有良好的导热性和导电性。
由于镁合金具有较高的导热性能,可以快速散热,因此广泛应用于散热模块及其他热管理设备中。
而镁合金具有良好的导电性,使得它在电子设备中发挥重要作用。
它可以用于制造电池外壳、散热器、绝缘层等等,能够提高设备的稳定性和寿命。
然而,镁合金也存在一些缺点。
首先,镁合金易于燃烧,需要采取一定的措施来防止其在高温下燃烧。
其次,镁合金的加工性能较差,容易产生切削刀具的磨损和切屑的高温燃烧,增加了制造成本。
综上所述,镁合金作为一种轻质、高强度、耐热的金属材料,具有广泛的应用前景。
它在航空航天、汽车和电子设备等领域都有重要的应用,将为未来的高新技术产品提供重要的支持。
当然,为了克服其缺点,需要进一步开展研究,开发新的制造和加工技术,以满足各种应用的需求。
摘要挤压变形AZ31镁合金组织以绝热剪切条纹和细小的α再结晶等轴晶为基本特征。
挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能。
随挤压比的增大,晶粒细化程度增加,晶粒尺寸由铸态的d400μm减小到挤压态的d12μm(min);强度、硬度随挤压比的增大而增大,延伸率在挤压比大于16时呈单调减的趋势。
轧制变形使板材晶粒明显细化,硬度提高。
AZ31合金中添加Ce,其铸态组织中能够形成棒状Al4Ce相,并能改善合金退火态组织和力学性能;添加Ce可以改善AZ31的综合力学性能。
关键词:AZ31变形镁合金;强化机制;组织;性能绪论20世纪90年代以来,作为最轻金属结构材料的镁合金的用量急剧增长,在交通、计算机、通讯、消费类电子产品、国防军工等诸多领域的应用前景极为广阔,被誉为“21世纪绿色工程材料”,许多发达国家已将镁合金列为研究开发的重点。
大多数镁合金产品主要是通过铸造生产方式获得,变形镁合金产品则较少。
但与铸造镁合金产品相比,变形镁合金产品消除了铸造缺陷,组织细密,综合力学性能大大提高,同时生产成本更低,是未来空中运输、陆上交通和军工领域的重要结构材料。
目前,AZ31镁合金的应用十分广泛,尤其用于制作3C产品外壳、汽车车身外覆盖件等冲压产品的前景被看好,正成为结构镁合金材料领域的研究热点而受到广泛重视。
第1章挤压变形对AZ31镁合金组织和性能的影响1.1 挤压变形组织特征及挤压比的影响作用图1-1为动态挤压变形过程中的组织变化。
动态变形过程大致分为3个区域:初始区、变形区和稳态区,分别对应着不同的组织。
图1-1a为初始区挤压变形前的铸态棒料组织。
由粗大的α-Mg树枝晶和分布其间的α-Mg+Mg17Al12共晶体组成,枝晶形态十分发达,具有典型的铸造组织特征。
晶粒尺寸为112~400μm。
图1-1b为变形区近稳态区组织。
图中存在大量无序流线,流线弯曲度大、方向不定且长短不一,显然这种组织特征是在挤压力作用下破碎的树枝晶晶臂(α固溶体)发生滑移、转动的结果。
镁合金的微观组织与性能研究镁合金是一种重要的轻质结构材料,具有优异的轻量化、高比强度和良好的机械性能等特点,被广泛应用于汽车、航空、航天等领域。
但受到其自身的缺陷限制,如低的耐腐蚀性、易燃性等,镁合金的应用仍面临一些挑战。
因此,研究镁合金的微观组织与性能,对于进一步推广其应用具有重要意义。
镁合金的微观组织镁合金的织构镁合金的织构对其力学性能具有重要影响。
研究表明,在拉伸过程中,镁合金的晶粒会发生变形和旋转,从而形成某种织构。
基于织构的种类和大小,可以将镁合金分为不同的等级。
目前,常见的镁合金织构主要有蜡板织构、镇静轧制织构、晶粒外倾织构等。
镁合金的晶粒大小晶粒的大小也是影响镁合金力学性能的重要因素。
通常情况下,晶粒越小,组织缺陷越少,材料的塑性、韧性和强度都会得到改善。
对于镁合金的制备工艺而言,影响晶粒大小的因素主要有铸造温度、速度、冷却率等。
此外,合金化元素的添加也可以改变晶粒的大小和分布。
镁合金的传统凝固组织镁合金的传统凝固组织主要包括铸态组织和热处理组织。
铸态组织通常指在常温下通过铸造等方式形成的组织,包括粗大的单相镁晶粒以及含有比较多的亚晶粒和间晶。
热处理组织通常指在高温下进行加热处理后形成的组织,如时效组织、淬火组织等。
镁合金的协同凝固组织近期的研究表明,通过采用协同凝固方法,可以制备出更为理想的镁合金微观组织。
协同凝固是一种将铸造技术与变形加工技术进行结合的新型材料制备方法。
在这种方法下,可以通过控制加工参数和公差尺寸等,来控制晶粒大小和织构等微观组织结构。
镁合金的力学性能镁合金由于其较为独特的化学和物理结构,具有一定特殊的力学性能。
镁合金的拉伸性能镁合金的拉伸性能通常以它的拉伸强度、屈服强度、断裂延伸率等指标来衡量。
研究表明,镁合金在加工过程中,晶粒细化和织构会显著提高其拉伸强度和屈服强度,其断裂延伸率也会得到明显提升。
镁合金的耐疲劳性能镁合金的耐疲劳性能也是比较重要的力学性能指标之一。
化学物理性能以镁为基加入其他元素组成的合金。
其特点是:密度小(1.8g/cm3左右),比强度高,弹性模量大,消震性好,承受冲击载荷能力比铝合金大,耐有机物和碱的腐蚀性能好。
主要合金元素有铝、锌、锰、铈、钍以及少量锆或镉等。
目前使用最广的是镁铝合金,其次是镁锰合金和镁锌锆合金。
主要用于航空、航天、运输、化工、火箭等工业部门。
在实用金属中是最轻的金属,镁的比重大约是铝的2/3,是铁的1/4。
它是实用金属中的最轻的金属,高强度、高刚性。
[编辑本段]镁合金的特点其加工过程及腐蚀和力学性能有许多特点:质量轻、刚性好、具有一定的耐蚀性和尺寸稳定性、抗冲击、耐磨、衰减性能好及易于回收;另外还有高的导热和导电性能、无磁性、屏蔽性好和无毒的特点。
应用范围:镁合金广泛用于携带式的器械和汽车行业中,达到轻量化的目的。
镁合金的比重虽然比塑料重,但是,单位重量的强度和弹性率比塑料高,所以,在同样的强度零部件的情况下,镁合金的零部件能做得比塑料的薄而且轻。
另外,由于镁合金的比强度也比铝合金和铁高,因此,在不减少零部件的强度下,可减轻铝或铁的零部件的重量。
镁合金相对比强度(强度与质量之比)最高。
比刚度(刚度与质量之比)接近铝合金和钢,远高于工程塑料。
在弹性范围内,镁合金受到冲击载荷时,吸收的能量比铝合金件大一半,所以镁合金具有良好的抗震减噪性能。
镁合金熔点比铝合金熔点低,压铸成型性能好。
镁合金铸件抗拉强度与铝合金铸件相当,一般可达250MPA,最高可达600多Mpa。
屈服强度,延伸率与铝合金也相差不大。
镁合金还个有良好的耐腐蚀性能,电磁屏蔽性能,防辐射性能,可做到100%回收再利用。
镁合金件稳定性较高压铸件的铸造行加工尺寸精度高,可进行高精度机械加工。
镁合金具有良好的压铸成型性能,压铸件壁厚最小可达0.5mm。
适应制造汽车各类压铸件。
[编辑本段]镁合金应用镁合金是航空器、航天器和火箭导弹制造工业中使用的最轻金属结构材料。
镁的重量比铝轻,比重为1.8,强度也较低,只有200~300兆帕(20~30公斤/毫米2),主要用于制造低承力的零件。
镁及镁合金的主要物化性能铸造镁合金比变形镁合金使用的更多。
铸造镁合金是航空工业中应用最广泛的一种轻合金。
用镁合金铸件代替铝合金铸件,在强度相等的条件下,可以使工件重量减轻百分之二十五到百分之三十。
镁合金和铝合金一样,根据加工方法可以分为变形(压力加工)镁合金和铸造镁合金两大类。
这些年来,随着压铸技术的发展,压铸镁合金已成为镁合金应用的主要领域。
此外,镁合金作为牺牲阳极其用途也有了很大的发展。
镁属于轻金属,纯金属镁为银白色,在空气中极易被氧化,形成一层薄氧化膜,可以防止其进一步氧化。
镁化学活性很高,在自然界中很难遇到纯镁矿。
在海水中以氯化物存在,约含百分之零点一四,在地壳中以光卤石、菱镁矿、白云石和一些其他化合物形式存在,含量达到百分之二点三五。
制取镁的方法方法有:第一种,熔融氯化镁电解法,它是主要的制镁法;第二种,用硅铁还原氧化镁的硅热法;第三种,用碳还原氧化镁的碳热法。
镁及镁合金的主要物化性能:(1)密度,20摄氏度金属镁的密度是1.738g/cm3,650摄氏度熔化温度下密度约为1.65g/cm3,液态镁密度为1.58g/cm3;(2)凝固体积收缩率为4.2%,相应线收缩率为1.5%;原子叙述12,原子价+2,相对原子质量24.30。
热性能:熔点,在标准大气压下,金属镁的熔点是650℃±1℃。
沸点在标准大气压下,金属镁的沸点是1107℃±3℃。
再结晶温度金属镁的再结晶温度最低位150℃。
再膨胀金属镁固体体积膨胀系数二十摄氏度到一百摄氏度之间为26.1*10-6,液体体积膨胀系数温度在六百五十一摄氏度到八百摄氏度之间为380*10-6。
热导率镁在二十摄氏度的热导率为154.5W/(mk)。
比热容(C)温度在二十摄氏度的时候镁的比热容是1.025kj。
气化潜热金属镁的汽化潜热是5150到5400kJ。
熔化潜热金属镁的熔化潜热是360~377KJ。
升华潜热金属镁的升华潜热是6113到6238KJ。
镁合金的组织与性能特征研究随着科技的不断发展以及社会的不断进步,人们对于材料的需求也越来越高。
镁合金是一种轻质高强度的金属材料,因其具有良好的加工性能和比强度高的特点,而被广泛应用于航空、汽车、电子等领域。
本文将围绕镁合金的组织与性能特征展开探讨。
一、镁合金的组织特征镁合金的组织特征主要包括晶粒大小、相组成和缺陷等。
晶粒大小是指镁合金中晶粒的平均直径大小,它与材料的性能以及加工性能密切相关。
一般来说,晶粒尺寸越小,材料的强度和塑性就会越高。
而相组成则是指镁合金中存在的不同相的种类及其相对比例,不同的相组成会影响材料的机械性能、耐腐蚀性能等。
镁合金中常见的相包括α-Mg、β-Mg17Al12、MgZn2等。
最后,缺陷也是影响镁合金性能的一个因素,如夹杂物、氧化物等缺陷都会降低材料的性能和可靠性。
二、镁合金的机械性能特征机械性能是衡量材料的重要指标之一,它包括强度、塑性、韧性等多个方面。
镁合金的强度相对较高,但其塑性比较差,易于产生裂纹和断裂。
为了提高镁合金的塑性和韧性,通常采用热加工和热处理工艺。
热处理工艺可以改变镁合金的相组成和晶粒尺寸,从而提高材料的塑性和韧性。
此外,镁合金的抗腐蚀性也是其应用的重要性能之一,其抗腐蚀性受到其相组成和表面状态的影响。
三、镁合金的应用前景随着人们对于环保、节能的要求越来越高,镁合金作为一种轻质高强度的金属材料,具有广泛的应用前景。
在航空、航天、汽车、电子等领域,镁合金已经成为重要的材料之一。
比如,在汽车领域,镁合金可用于制造车架、发动机壳体等部件,可以减轻车重,提高汽车的燃油效率和行驶性能。
在电子行业,镁合金也可用作电子设备外壳、散热器等部件,以提高设备的性能和可靠性。
总之,镁合金作为一种重要的轻质高强度材料,其组织与性能特征对于材料的应用具有重要的影响。
未来,随着科技的不断发展和应用环境的不断提高,镁合金的应用前景也将越来越广阔。
如何提高镁合金的耐高温性能?镁合金在汽车制造、航空工业等方面的应用要求具有一定的高温性能和抗蠕变性能,稀土镁合金(AE系列)能提高合金的高温强度和蠕变强度。
研究表明,加入一定量的锡可改善合金的高温强度;加人硅可改善合金的蟠变强度;加人鳃可提高合金的高温(超过300℃)性能;加入银可提高合金的高温强度和蠕变强度。
在Mg-5Al-1 Zn-1 Si合金中加人0.5%(质量分数)的锑,使合金在150℃时的强度从168 MPa上升到178MPa,屈服强度也从81 MP。
上升到90MPa,抗冲击韧性值从21J上升到30J。
稀土会使镁合金的室温性能变差,为此,加人一些短纤维、晶须、颗粒等复合材料,以改善合金的室温和高温性能。
在Mg-/Li合金中加人一定的Mg0/Mg2Si颗粒,使合金的高温抗蠕变。
性能在温度达210℃前得到显著改善,而且随着温度的升高,改善效果更为明显。
笔记本电脑和手机外壳等在一定的工作温度范围内,要求其尺寸稳定性(抗蠕变性能)要好。
与现有的工程塑料相比,不会因环境改变而改变的镁基耐高温复合材料的性能优势可得到充分施展。
镁基复合材料的制备方法主要有真空(或保护性气氛)浸渗法、粉末冶金法、薄膜冶金法、搅拌铸造法。
提高镁合金材料使用寿命有何技术措施?镁是活泼的金属元素,标准电极电位为负值,且绝对值很大,导致镁及镁合金的耐腐蚀性很差,这阻碍了镁合金产品在应用中发挥优势,限制了其应用范围。
镁合金腐蚀的直接原因是合金元素及杂质元素的引入导致镁合金中出现第二相。
镁合金的腐蚀形态有:电偶腐蚀、点蚀、应力腐蚀开裂、晶间腐蚀和丝状腐蚀以及高温氧化。
镁合金发生电化学腐蚀与溶液的pH值、溶液的性质、合金的成分及所处的环境有关。
为提高镁合金材料的使用寿命,应控制冶金因素以提高镁合金的耐腐蚀性,具体包括合金元素、杂质元素、相组成和微结构。
表面处理技术的研究,如镁合金的化学转化处理、阳极氧化、等离子微弧阳极氧化、金属镀层和物理气相沉积涂层技术等,为等离子技术提高镁合金的耐腐蚀性带来了新的生机。
不同压力下AZ31镁合金的凝固组织及性能变化我国的镁矿资源丰富,是原镁生产大国,但在镁资源利用上依然停留在原镁生产阶段,对于高质量镁合金制备等深加工方面,我国依然显著落后于世界先进水平,我国镁行业迫切需要提高自己的实力。
标签:压力;镁合金;组织;性能0 引言本文选用AZ31镁合金作为课题研究对象,基于加压凝固基础理论及影响机制,分析研究了加压对镁合金凝固组织变化特征以及性能的影响,其不仅对控制镁合金凝固组织进而改善性能具有积极意义,而且对进一步丰富镁合金凝固理论都也具有一定影响。
1 实验条件和方法本实验选用AZ31镁合金,主要化学成分(质量百分比)见表1。
采用一端封闭的不锈钢管作为浇铸的模型,本实验采用的压力条件分别是常压,静压,离心压力。
选用高纯石墨坩埚作为AZ31合金熔炼容器,设定熔炼温度为720℃。
合金熔炼过程中使用2#溶剂进行熔体的保护和除渣处理。
待合金完全熔化后浇注入预热的管子中,浇注时采用氩气保护,浇铸温度670℃~685℃。
静压力是通过管式加热炉的加热区域控制镁合金熔体的施加静压的高度,通过熔体自重来补缩,获得在不同熔体深度下具有不同的静压头作用的凝固组织。
离心压力凝固是将浇注冷却的管子封闭后加热至合金融化,放入转速为1400r/min的离心设备上进行离心加压使得合金完全凝固。
注意,管子在放入井式加热炉之前要用石棉布包裹,确保管子拿出井式炉未开始离心凝固之前管子内的合金处于液态。
为了明显的对比两种工艺的优缺点,静压力凝固的铸件取样沿重力方向的底部位置,离心压力凝固的铸件取离旋转中心远的边部位置。
试样磨制,抛光和腐蚀后,在奥林巴斯金相显微镜和日产S-3400N型的扫描电镜下观察显微组织,利用型号为D/max2200PC的XRD衍射仪对不同凝固条件制备成的金相试样进行相成分测试,确定相组成。
使用型号HX-1000TM的显微硬度计进行硬度测试。
在型号Instron8801的拉伸机上测试力学性能。