活性炭制备技术及应用研究综述
- 格式:pdf
- 大小:3.07 MB
- 文档页数:13
活性炭改性方法及其在水处理中的应用一、本文概述活性炭,作为一种广泛应用的吸附剂,因其高比表面积、优良的吸附性能和化学稳定性,在水处理领域扮演着重要角色。
然而,原始的活性炭在某些特定应用场合下可能表现出吸附容量有限、选择性不高等不足,这就需要对活性炭进行改性,以提高其在水处理中的性能。
本文旨在探讨活性炭的改性方法,并分析改性活性炭在水处理中的应用及其效果。
我们将详细介绍活性炭的改性方法,包括物理改性、化学改性和生物改性等多种方法,并阐述其改性原理和效果。
接着,我们将通过案例分析,探讨改性活性炭在水处理中的实际应用,如去除重金属离子、有机物和色度等。
我们将对改性活性炭在水处理中的应用前景进行展望,以期为推动活性炭在水处理领域的应用和发展提供参考。
二、活性炭基础知识活性炭,作为一种多孔性的炭质材料,因其独特的物理和化学性质,被广泛应用于各种领域,尤其是水处理领域。
其基础知识的掌握对于理解活性炭的改性方法以及在水处理中的应用至关重要。
活性炭主要由碳、氢、氧、氮、硫和灰分组成,其中碳元素含量一般在80%以上。
活性炭的多孔结构赋予了其巨大的比表面积和优异的吸附性能。
活性炭的孔结构包括大孔、中孔和微孔,这些孔的存在使得活性炭能够吸附分子大小不同的各种物质。
活性炭的吸附性能主要取决于其表面化学性质和孔结构。
表面化学性质包括表面官能团的种类和数量,这些官能团可以影响活性炭与吸附质之间的相互作用力,从而影响吸附效果。
孔结构则决定了活性炭的吸附容量和吸附速率。
活性炭的制备方法多种多样,包括物理活化法、化学活化法和化学物理联合活化法等。
不同的制备方法可以得到不同性质的活性炭,从而满足不同应用场景的需求。
在水处理领域,活性炭主要用于去除水中的有机物、重金属离子、色度、异味等污染物。
其吸附过程包括物理吸附和化学吸附,通过这两种吸附方式的共同作用,活性炭可以有效地净化水质,提高水的饮用安全性。
活性炭的基础知识包括其组成、结构、性质、制备方法和应用等方面。
血液净化技术发展综述目录1 血液净化设备 (1)2 血液净化材料 (1)3新型血液透析方式 (2)3.1连续性血液净化(CBP) (2)3.2每日透析 (2)3.3杂合型血液透析 (3)3.4免疫吸附(IA) 技术 (3)3.5家庭血液透析 (4)4血液净化新理论 (4)4.1生物人工肾 (4)4.2干细胞治疗 (4)4.2.1内源性干细胞 (4)4.2.2外源性干细胞 (5)结语 (5)参考文献 (6)近年来,血液净化技术的应用越来越广泛,对肾脏疾病的治疗也令人瞩目。
目前,在血液透析、血液透析设备和血液透析方式的更新条件下,为血液净化技术奠定了坚实的基础,促进了血液净化技术的临床应用开发,透析效果越来越好。
血液净化技术的临床应用进展综述如下。
1 血液净化设备血液净化设备是血液净化工程技术的载体,我国正努力用自主创新技术解决临床应用需求问题。
整个设备的制造过程是稳定血液净化处理质量的保证,而设计技术的准确性是提高血液净化处理质量的重要因素。
人工肝支持治疗、器官功能、血液净化治疗生物材料进展、临床试验与示范基地建设创新血液净化系统基于时间表理论的重要支撑。
现有的血液净化理论可以解决临床实践中的一些基本问题,但并没有真正解决医学专家的期望问题。
根据净化功能的配置程度,将血液净化设备分为基本型、强化型和综合型血液净化设备。
在国内血液灌流机和单功能的血液透析机的血液净化设备的基本型为基础,通过整合与优化,提升能力和环境适应能力,大大降低了生产成本和处理成本,性价比高,易于操作和维修;增强血液净化设备在国内血液透析机CRRT机为主,加强过滤,基本功能超滤、透析、血和水的结构优化,提高电解液,超滤,肝素的作用,处理温度曲线,个别的治疗作用,增加血容量监测系统,去除毒素,ASSE评价系统,提高患者的舒适度和医务人员的操作;血液净化设备在国内多功能血液净化设备为主,血液灌流,血液透析、血液透析、过滤、吸附、超滤等功能的综合治疗模式,打破多功能血液净化设备供应的特殊和昂贵的供应现状,实现普遍,降低处理成本,提高采集、处理和监控设备的操作和处理动态信息的过程,提高智能设备的维护和操作的便利程度。
生物质的热化学转换生物质,这个看似普通的词,实则包含了丰富的内涵。
它代表了所有生命过程中产生的有机物质,这些物质源于植物、动物、微生物等生物体的生命活动。
而生物质的热化学转换,则是指利用热能将生物质转化为其他形式的能源或物质的化学过程。
在我们的日常生活中,生物质的热化学转换有着广泛的应用。
例如,我们熟知的生物质发电厂就是利用秸秆、木材、废弃物等生物质为原料,通过燃烧产生热能,再转化为电能。
这种方式不仅提供了可再生的能源,而且相较于燃烧化石燃料,生物质燃烧产生的二氧化碳和硫氧化物等污染物排放明显减少,对环境的影响较小。
然而,生物质的热化学转换并不仅仅局限于发电。
它也可以用于产生工业化学品,如氨、甲醛、乙酸等。
这些化学品在农业、建筑、医疗等领域有广泛的应用。
此外,生物质的热化学转换还可以用于生产生物燃料,如生物柴油和生物气体,这些燃料可以替代传统的化石燃料,对减少碳排放、推动可持续发展具有重要意义。
生物质的热化学转换过程可以实现能量的高效利用和物质的循环再生,这是符合绿色发展理念的重要技术。
然而,它也面临着一些挑战,如生物质资源的收集、储存和运输等问题,以及热化学转换技术的效率和环保性问题等。
未来,我们需要进一步研究和优化生物质的热化学转换技术,以提高其效率和环保性,降低成本,使其在更多的领域得到应用。
我们也需要加强政策引导,推动生物质资源的合理利用,促进清洁能源的发展,为构建美好的生态环境做出贡献。
总的来说,生物质的热化学转换是一种具有巨大潜力的技术。
它不仅能帮助我们更好地利用生物质资源,还能推动能源结构的优化和环境保护。
让我们期待它在未来的表现和应用,共同见证这一领域的发展和进步。
生物质热化学转化行为特性和工程化研究引言随着全球能源需求的不断增长,生物质能源作为一种可再生、低碳、环保的能源形式,逐渐受到人们的。
生物质热化学转化是生物质能源利用的重要途径之一,通过将生物质转化为燃料或化学品,可以满足人类对能源的需求,同时降低对环境的影响。
活性炭制备技术及应用研究综述摘要:从活性炭的制备技术和活性炭的应用两方面综述了国内外活性发近20年的研究进展。
总结了活性炭的化学活化法和物理活化法的发展状况,对制备技术中的最新突破—物理法-化学法活性炭一体化生产工艺进行了介绍,并且简述了活性炭工业生产中无公害化、低消耗、预处理的生产技术,以及吸附达饱和活性炭的再生生产技术,同时总结了活性炭在气相吸附、液相吸附和作为催化剂载体等方面的应用进展。
提出了目前活性炭生产应用技木存在的问题,明确了活性炭产业发展的出路与对策,指明了活性炭未来的研究方向。
关键词:活性炭:制备:应用;发展趋势活性炭是由木质、煤质和石油焦等含碳的原料经热解、活化加工制备而成,具有发达的孔隙结构、较大的比表面积和丰富的表面化学基团,特异性吸附能力较强的炭材料的统称。
活性炭在石油化工、食品、医药乃至航空航天等领域均有广泛应用,已成为国民经济发展和国防建设的重要功能材料。
近年来,随着环保、新能源等行业的快速发展,功能型活性炭的市场需求激增,我国活性炭的生产量和出口量均已达到世界第一。
同时,生物质热解固炭技术也是公认的解决气候变化问题的有效措施之一。
因此,针对活性炭科学研究与产业化开发存在的问题,本论文综述了活性炭制备与应用技术研究现状及发展1.国内外活性炭制备技术进展1.1化学活化法化学活化法就是通过将各种含碳原料与化学药品均匀地混合后,一定温度下,经历炭化、活化、回收化学药品、漂洗、烘干等过程制备活性炭。
磷酸、氯化锌氢氧化钾、氢氧化钠?、硫酸、碳酸钾、多聚磷酸和磷酸酯等都可作为活化试剂,尽管发生的化学反应不同,有些对原料有侵蚀、水解或脱水作用,有些起氧化作用,但这些化学药品都可对原料的活化有一定的促进作用,其中最常用的活化剂为磷酸、氯化锌和氢氧化钾。
化学活化法的活化原理目前还不十分清楚,一般认为化學活化剂具有侵蚀溶解纤维素的作用,并且能够使原料中的碳氢化合物所含有的氢和氧分解脱离,以H2O、CH4等小分子形式逸出,从而产生大量孔隙。
活性炭材料在废气净化中的应用研究引言随着工业的快速发展,大量的排放物质已经给环境带来了不可忽视的影响。
因此,通过技术手段减少空气污染已经成为了一项重要的任务。
活性炭材料凭借着其优秀的吸附性能和多样的制备方法,在废气净化中有着广泛的应用前景。
本文将综述目前活性炭材料在废气净化中的应用研究现状及未来发展方向。
一、活性炭材料的吸附性能活性炭材料以其优秀的吸附性能对空气中的有害物质进行去除,针对各种废气中污染物的特性,优化活性炭材料制备方法和配方可提高其吸附性能:1. 孔径和比表面积:活性炭的吸附性能主要在于孔径和比表面积。
微孔结构可提高吸附剂的比表面积和孔径分布、降低吸附剂呈现迁移现象和维持吸附剂的活性。
2. 处理方法:化学活化法可以最大化活化炭的孔径和比表面积。
催化剂也常用于提高吸附剂的性能。
二、活性炭材料在废气净化中的应用现状活性炭材料在废气净化中的应用已经有了一定的发展,应用有以下几方面:1. 对有机废气的净化:某些活性炭材料对苯酚、氯苯甲烷等有机物质有良好的吸附效果。
2. 对冬季的采暖系统中的空气中的VOCs的去除:活性炭被用于清除VOCs,通常是通过将空气通过吸附剂进行处理,再排出。
3. 对水处理的应用:活性炭材料还可以用于水的处理。
活性炭能够吸附化学反应工程中的有机物质,味道和可溶性的化学品。
三、活性炭材料在废气净化中的应用前景1. 更好的孔径和比表面积:通过研究活性炭材料制备技术方法,可以更好地控制其孔径和比表面积,从而提高其吸附性能。
2. 更多的负载材料:负载活性炭材料中加入小颗粒的调节剂可以实现吸附组分的高效分离和净化。
3. 更好的制备方法:随着人们对活性炭材料制备方法的不断研究,将会有更多的制备方式可以研制出更优质的活性炭材料。
在未来,活性炭材料将更广泛地应用于空气和水的净化中。
同时,活性炭材料与其他材料的复合,如纳米材料、有机/无机杂化材料、现代聚合物材料等都将推动活性炭材料的发展。
超级电容器复合电极材料制备及电化学性能研究1. 本文概述随着现代科技的发展,能源存储技术正面临着前所未有的挑战和机遇。
超级电容器作为一种重要的能源存储设备,因其高功率密度、快速充放电能力、长寿命周期和环境友好性而受到广泛关注。
在超级电容器的构造中,复合电极材料的研发尤为关键,其直接决定了超级电容器的电化学性能和整体效能。
本文旨在探讨超级电容器复合电极材料的制备方法及其电化学性能。
本文将对目前广泛研究的几种复合电极材料,如碳材料、金属氧化物、导电聚合物等,进行系统的综述。
这些材料在超级电容器中的应用优势和面临的挑战将被详细讨论。
接着,本文将重点介绍几种创新的复合电极材料制备技术,包括化学气相沉积、水热合成、溶胶凝胶法等。
这些方法在制备过程中对材料结构和形貌的控制,以及对电化学性能的影响将被深入分析。
本文将通过实验数据,评估所制备的复合电极材料在超级电容器中的实际应用性能,包括比电容、能量密度、循环稳定性等关键指标。
通过这些研究,本文旨在为超级电容器复合电极材料的发展提供新的视角和技术路径,推动能源存储技术的进步。
2. 文献综述超级电容器,也称为电化学电容器,是一种介于传统电容器和电池之间的能量存储设备。
它们的主要特点是具有高功率密度、长循环寿命和快速充放电能力。
超级电容器的储能机制主要是双电层电容,涉及电极材料与电解质之间的电荷分离。
这一领域的研究起始于20世纪50年代,随着材料科学和电化学技术的进步,超级电容器在能量存储领域的重要性日益凸显。
超级电容器的性能在很大程度上取决于电极材料的性质。
近年来,研究者们广泛关注复合电极材料,因其能够结合不同材料的优点,从而提高超级电容器的整体性能。
常见的复合电极材料包括碳基材料、金属氧化物、导电聚合物等。
这些材料通过不同的复合策略(如物理混合、化学接枝、层层自组装等)进行组合,旨在提高比电容、能量密度和循环稳定性。
电化学性能是评估超级电容器电极材料的关键指标。
我国煤基活性炭生产技术现状及发展趋势蒋煜;刘德钱;解强【摘要】Activated carbon has been widely used in the field of environmental protection,especially the coal-based activated carbon used in watcr treatment has become the main product of activated carbons.A critical review on status of technology and equipment for coal-based activated carbon production was presented.In addition,the approaches to regulating pore structure of coal-based activated carbon were summarized.Finally,the development trend of coal-based activated carbon industry was briefly analyzed.The results show that with the popularization of the preparation technology of activated carbon by briquetting method and application of multiple hearth furnace,production of coal-based activated carbon on large scale becomes a reality and it is possible to prepare diversified and specialized coal-based activated carbon by coal blending,introducing additives in raw coal and optimizing carbonization and activation process parameters.%活性炭在环保领域得到日益广泛的应用,尤其是水处理用煤基活性炭已成为活性炭的主流产品.综述性评价了煤基活性炭主要生产技术及设备的现状,总结了煤基活性炭孔结构调控的方法,分析了煤基活性炭产业的发展趋势.结果表明,压块活性炭生产技术的推广和多膛炉的应用使得煤基活性炭生产规模大型化成为现实,通过配煤、添加剂和优化炭化、活化工艺参数可以制备出多样化和专用化的煤基活性炭.【期刊名称】《洁净煤技术》【年(卷),期】2018(024)001【总页数】7页(P26-32)【关键词】煤基活性炭;水处理;生产工艺;孔结构调控【作者】蒋煜;刘德钱;解强【作者单位】中国矿业大学(北京)化学与环境工程学院,北京100083;大同煤矿集团有限责任公司,山西大同037003;中国矿业大学(北京)化学与环境工程学院,北京100083;中国矿业大学(北京)化学与环境工程学院,北京100083【正文语种】中文【中图分类】TQ424.10 引言活性炭是一种通过对含碳材料进行加工制得的具有发达孔隙结构和巨大比表面积的炭质多孔材料,具有优异吸附性能、良好化学稳定性等优点,广泛应用于食品、制药、医药卫生及环保等领域[1-2]。
化工中级职称答辩自述各位教师,上午好!我叫XX,是XX级XX班的学生,我的论文题目是《高比外表积成型活性炭的制备及其性能研究》。
论文是在周颖导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位教师不辞辛苦参加我的论文辩论表示衷心的感谢,并对三年来我有时机聆听教诲的各位教师表示由衷的敬意。
下面我将本论文设计的目的和主要内容向各位教师作一汇报,恳请各位教师批评指导。
首先,我想谈谈这个毕业论文设计的目的和意义。
成型活性炭以其优良的性能和广阔的应用前景,正在吸引越来越多研究者的关注。
制备高性能的成型活性炭,现有的研究结果并不理想,所制备的成型活性炭仍然难以同时具有高吸附性能和较好的机械强度。
成型活性炭制备过程中影响因素较多,粘结剂的种类和用量、粉末活性炭的孔构造和外表化学性质、添加剂和成型工艺都会影响成型活性炭的构造和性能。
因此,如何通过对制备方法的选择以及成型工艺的优化,制备出高综合性能的成型活性炭,以满足不同应用领域的各种需求,仍然需要进展深化研究。
在现有的文献报道中,研究者更多的关心各种因素对成型活性炭吸附性能的影响,对成型过程粘结剂和粉末活性炭之间的作用机理却少有报道。
然而,压缩成型过程颗粒之间的互相作用,热处理过程粘结剂和粉末活性炭的外表界面作用,都对成型活性炭的构造和性能有着重要影响。
因此,详细考察成型过程并提出相应的成型机理对成型活性炭的研究有着指导性的意义。
本文工作是国家重点根底开展规划工程/XXX方案工程、国家自然科学基金工程以及国家高技术研究开展方案XXX工程资助课题的部分工作。
在综述了成型活性炭的制备方法以及对其性能的影响因素的研究成果的根底上,选用适宜的粘结剂和制备方法对高比外表积粉末活性炭成型的可行性和普适性进展了深化研究。
本文的详细研究内容主要包括以下几个方面:以商业高比外表积成型活性炭为原料,分别选用Bl和BZ作粘结剂,制备成型活性炭,考察粘结剂和成型过程工艺参数对产品性能的影响;在此根底上,选用综合性能较好的成型活性炭,初步考察其在挥发性有机气体苯吸附中的应用;在课题组前人工作的根底上,以煤炭直接液化残渣为原料,制备粉状活性炭,添加BZ作粘结剂,制备煤液化残渣基成型活性炭;对成型过程进展相关表征,讨论粘结剂和粉末活性炭的作用机理。
超级电容器用活性炭电极材料的研究进展*邢宝林,谌伦建,张传祥,黄光许,朱孔远(河南理工大学材料科学与工程学院,焦作454003)摘要 活性炭因具有制备简单、成本低、比表面积大、导电性好以及化学稳定性高等特点,作为超级电容器电极材料已得到广泛应用。
论述了活性炭电极超级电容器的工作原理及活性炭物化性质对超级电容器电化学性能的影响,介绍了活性炭电极材料的最新研究进展,展望了其应用前景,指出寻找新炭源及活化技术、探索活性炭孔结构和表面性质的有效控制手段、开发活性炭复合材料等是该领域今后研究的重点方向。
关键词 活性炭 电极材料 超级电容器 电化学性能中图分类号:TQ424.1;T M 53 文献标识码:AResearch Progress of Activated Carbon Electrode Material for SupercapacitorXING Baolin,CHEN Lunjian,ZHAN G Chuanxiang,H U ANG Guangxu,ZHU Kongyuan(Institute of M ater ials Science and Eng ineering ,H enan Po ly technic U niver sity,Jiaozuo 454003)Abstract A ct ivated car bo n has been used w idely as the supercapacit or elect rode mat erial for its easy av ailabil-i ty,lo w cost,high specific sur face ar ea,excellent elect rical co nductivit y and chemical st abilit y.T he w orking pr inciple of super ca pacito r w ith activ ated carbon as electro de and effect of phy sicochemica l propert ies o f activated carbon on electro chemical perfor mance of supercapacit or ar e discussed,recent r esear ch adv ances and a pplicat ion pr ospect of act-i vated car bon electro de mater ial ar e highlighted.T he fo cus of fut ur e r esear ch such as search for new r aw materials and activat ion technolog y for activat ed carbon,ex plo ring an effectiv e method to contro l t he por e structur e and surface propert ies o f activat ed carbon and develo pment of activated car bo n co mpo site are also po inted o ut.Key words activated car bo n,electr ode mater ial,super capacito r,electro chemical per formance*河南理工大学学位论文创新基金资助(2009-D -01);河南理工大学博士基金资助(648216)邢宝林:男,1982年生,博士研究生,主要从事洁净煤技术及炭材料方面的研究 E -mail:baolinx ing @ 谌伦建:通讯作者,男,1959年生,博士,教授,博士生导师,主要从事矿产资源利用及炭材料方面的教学和研究工作 E -mail:lunjianc@0 引言超级电容器(Supercapacitor)又称电化学电容器(Elec -t rochem ical capacitor),是一种介于普通电容器与电池之间的新型储能元件,兼有普通电容器功率密度大和二次电池能量密度高的优点,且充电速度快,循环寿命长,对环境无污染,广泛应用于各种电子产品的备用电源及混合动力汽车的辅助电源[1,2]。
第21卷 第2期V ol 121 N o 12材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering总第82期Apr.2003文章编号:10042793X (2003)022*******收稿日期:2002208211;修订日期:2002210223作者简介:程祥珍(1977-),女,国防科技大学航天与材料工程学院博士生,现从事高性能S iC 纤维研究.活性炭纤维研究与应用进展程祥珍,肖加余,谢征芳,宋永才(国防科技大学航天与材料工程学院CFC 重点实验室,湖南长沙 410073) 【摘 要】 活性炭纤维(ACF )是由有机纤维先驱体制得的一种理想的高效吸附材料。
ACF 以其特殊的表面化学结构和物理吸附特性广泛应用于环境保护、电子工业、化工、医疗卫生、低成本S iC 纤维制备等领域。
本文就ACF 的结构与吸附特性、制备与应用等做了较系统的综述,并对其发展趋势做出了展望。
【关键词】 活性炭纤维;制备;结构;吸附特性;应用中图分类号:T Q342+174 文献标识码:AR esearch and Application Progress of Activated C arbon FiberCHENG Xiang 2zhen ,XIAO Jia 2yu ,XIE Zheng 2fang ,SONG Yong 2cai(College of Aerosp ace &Materials E ngineering ,N ational U niversity of Defense T echnology ,Ch angsh a 410073,China)【Abstract 】 As high effective ideal ads orbents ,activated carbon fibers (ACF )are prepared from the precurs ors of s ome organicfibers.Due to the special sur face structure and ads orption properties ,ACF are widely used in the fields such as environmental protection ,electronic industry ,medical treatment ,chemical engineering ,and low 2cost S iC fiber.The microstructures ,ads orptionproperties ,preparation methods ,and applications of activated carbon fibers are briefly reviewed.Meanwhile ,the next research objective is prospected.【K ey w ords 】 activated carbon fiber ;preparation ;structure ;ads orption properties ;application1 前 言活性炭纤维(Activated Carbon Fiber ,ACF )作为一种理想的高效吸附材料,是在碳纤维技术和活性炭技术相结合的基础上发展起来的,是继粉状和粒状活性炭(G ranularActivated Carbon ,G AC )之后的第三代活性炭产品[1~4],并以其特殊的表面化学结构和物理吸附特性广泛应用于环保、电子、医用卫生、化工等领域。
活性炭吸附技术对VOCs净化处理的研究进展*余倩,邓欣,李俊,李聪,余林,王运佳,沈丽斯【摘要】介绍了VOCs的概况,简述了各种治理方法,包括热破坏法、吸附法、吸收法、光催化降解法、冷凝法和生物控制法.在此基础上,以活性炭吸附为重点,探究了活性炭吸附技术的应用和发展现状.【期刊名称】材料研究与应用【年(卷),期】2010(004)004【总页数】4【关键词】挥发性有机废气;活性炭;吸附【文献来源】https:///academic-journal-cn_materials-research-application_thesis/0201221535744.html挥发性有机废气(Volatile Organic Compounds,VOCs)是指空气中存在的,在室温下蒸汽压大于70.91 Pa,沸点低于260℃的挥发性有机物质.包括烷烃、VOCs芳香烃、烯烃、醇类、醛类、酮类、卤代烃.VOCs具有毒性、致癌性危害人体健康,而且还能通过光化学反应产生光化学烟雾,是空气污染的主要污染物之一[1].1 VOCs的净化处理技术目前,对VOCs的治理方法主要有热破坏法、吸附法、吸收法、光催化剂降解法、冷凝法和生物控制等方法.1.1 热破坏法热破坏法分为直接火焰燃烧法和催化燃烧法.虽然直接火焰燃烧法对VOCs的去除率可达99%,但由于在大多数情况下,VOCs的浓度较低,通量较大,在没有辅助燃料时不足以燃烧,实用意义不大.催化燃烧法适合处理量大、浓度低的有机废气.催化燃烧能耗低、效率高,转化率在95%以上,不易生成高温下的二次污染物如二噁英、氮氧化物等[2].催化燃烧的关键是研发起燃点低、催化活性高、稳定价廉的催化剂.目前,国内外已有不少学者对它展开了研究工作[3-5].Kim 等人研究了Pt,Pd的原子比例对Pt-Pd/γ-Al2 O3 催化剂活性和稳定性的影响,发现恰当的Pt-Pd原子比例可以促进Pt和Pd的协同作用,提高催化剂的活性和稳定性.国内学者余凤江等人采用共沉淀法制备了Cu-Mn-Ce-Zr复合氧化物催化剂,考察了对苯燃烧的催化活性,结果表明,该催化剂具有优良的催化活性,完全转化温度只有182℃.1.2 吸附法吸附法具有效率高、净化彻底、易于推广实用、环境效益和经济效益良好等优点.目前最成熟的吸附系统是1977~1979年在日本开发成功的蜂窝轮吸附.经过多年的改善,蜂窝状吸附轮的性能得到了不断的提高.Mitsuma Y等人提出的制造蜂窝轮新方法[6],能够使VOCs的去除率高达90%~95%.吸附法处理废气的关键是吸附剂.常用的有活性炭、活性氧化铝、硅胶、人工沸石等.另外,据张洪林等人的研究,炉灰渣也可以作为吸附材料[7].由于吸附剂容易失效,频繁更换所导致的高额费用是限制吸附法推广应用的瓶颈.1.3 吸收法采用吸收法治理气态污染物在无机污染物治理中得到了广泛的应用.但对于有机废气,由于其水溶性一般不好,因而应用不太普遍.目前吸收有机气体的主要吸收剂是油类物质,但也有人另辟新径.日本的上殊勇等人根据环糊精对有机卤化物亲合性极强的特性,以环糊精的水溶液作为吸收剂对含有机卤化物的有机废气进行吸收.这种吸收剂具有无毒不污染,捕集后解吸率高,可反复使用的优点.1.4 光催化降解法1972年日本的Fujishima和Hondal发现TiO2单晶电极分解水,标志着纳米半导体多相光催化新时代的开始.国外通常采用TiO2粉末作为光催化剂降解苯系物.美国KSE公司开发出一种专利催化吸附剂,通过光催化氧化处理VOCs.刘亚兰等人将纳米TiO2与活性炭纤维复合,用来降解甲醛,进一步提高了净化效率[8].利用TiO2作为光催化剂净化空气的技术在国外已逐渐成熟,但国内的研究较少,近几年在做初步实验研究和动力学探讨.1.5 冷凝法利用VOCs在不同温度和压力下具有不同的饱和蒸气压的性质,采用降低系统温度或提高压力,使VOCs从废气中分离.实验表明,冷凝法对沸点在60℃以下的VOCs的去除率为80%~90%.此法适用于VOCs浓度大于5%的情况,对VOCs浓度太低的废气处理效果不理想.1.6 生物控制法生物控制法是近年来发展起来的空气污染控制技术,其实质是附着在生物填料介质上的微生物在适宜的环境条件下,利用废气中的污染物作为碳源和能源,维持其生命活动,并将它们分解为CO2和H 2 O等无害无机物的过程,目前在发达国家已是成熟的工艺,是处理含VOCs废气的首选技术.在国内,生物控制法的优越性也日益被人们所认识.浙江大学采用自主研制的新型复合生物滤塔,耦合净化处理某制药厂含H 2 S(166.0~891.5 mg/m3)和挥发性VOCs (100.0~1051.1 mg/m3)的混合废气[9].由于复合生物滤塔同时具备了生物滴滤塔(BTF)和生物过滤塔(BF)的优点,在处理含H 2 S和VOCs混合废气时具有高效、节能、低耗等明显优势.2 活性炭吸附VOCs活性炭的炭粒中有细小的孔——毛细管.这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,所以能与气体充分接触,当这些气体进入毛细管就很容易被吸附,起净化气体作用.活性炭吸附多为物理吸附,过程可逆.当吸附达到饱和后可用热空气或水蒸气脱附,实现活性炭的循环使用.在实际应用中需根据被吸附分子的大小选择不同孔径的活性炭.吸附过程常采用两个吸附器,当一个进行吸附时,另一个进行脱附,以保证吸附过程的连续[10].活性炭吸附法最适合处理浓度为(300~5000)×10-6的有机废气,但是也有一定的使用限制.部分含酮、醛、脂等高活性物质会与活性炭反应,使得活性炭炭孔堵塞而无法使用.此外,活性炭容易饱和,导致吸附效率低,频繁更换导致的费用增加也限制了它的推广应用.为了克服上述缺点,人们正在寻找行之有效的活性炭表面改性方法.2.1 改性活性炭常用的改性方法有氧化、还原及负载杂原子和化合物等.氧化改性法使用 HNO3,H 2 SO4,HCl,HClO,HF,H 2 O2和O3等强氧化剂处理活性炭表面,提高酸性基团的含量.华东理工大学研究所对蜂窝状活性炭的吸附性能进行了改性研究.研究结果表明,活性炭经盐酸处理后可以提高活性,延长穿透时间.这是因为酸可以去除活性炭中无吸附能力的灰分.但酸的浓度不能太高,否则会破坏活性炭的部分微孔结构,造成吸附性能下降[11].Chiang等人对活性炭进行臭氧氧化后,测定活性炭的比表面积从(783±51)m2/g增加到(851±25)m2/g.还原改性是对活性炭用H 2和N2进行高温处理或氨水浸渍,提高活性炭表面碱性基团的含量.如高尚愚采用还原法对活性炭进行改性,增强了其对苯酚的吸附能力.负载杂原子及化合物则是通过液相沉积的方法在活性炭表面引入特定杂原子和化合物,增强活性炭的吸附性能.Chiang采用Mg(NO3)2和Ba(NO3)2处理活性炭,增加了活性炭对醋酸的吸附容量.为了达到特定的吸附目的,人们还研究出了其它的改性方法.如针对高湿度应用条件,可将活性炭改性为表面疏水.日本的Nakanishi Yoichiro将活性炭用三甲基氯硅烷汽化处理一定时间后,再撤离气氛,然后在真空下加热活性炭,就可制得表面疏水的活性炭.名古屋大学的KATANI MASANOBU等人为了提高活性炭在低温条件下的化学活性,在678~873 K的温度下,加入NaOH和KOH (与活性炭的重量比为1~4),然后再用浓度为1~13 mol/L的硝酸处理12~24 h,最后用水清洗、干燥,获得了在低温条件下具有较高活性的活性炭.为了提高对SO2的吸附容量,大连理工大学对活性炭进行了改性制备.首先对活性炭进行预处理:将杏仁壳活性炭用蒸馏水煮沸1 h,再于90℃下真空干燥3 h.按照等体积浸渍法(1 m L的溶液对应1 g活性炭)将一定量的质量分数分别为2%,5%,8%,10%和12%的改性试剂担载到活性炭上,在110℃下烘4 h.结果表明,将 Na2 CO3,Na HCO3,NaOH 和K2 CO3担载到活性炭上均能有效地提高活性炭的硫容量,其中w(Na2 CO3)=10%的改性活性炭的硫容量最大.扶江、张远等人采用浸渍改性活性炭对SO2废气脱硫进行实验研究,结果表明:分别经过KI,Zn(NO3)2,HNO3 改性的活性炭的吸附效果较好[12].荣海琴等人认为热处理可以脱除活性炭表面的杂原子而在表面留下许多活性位,从而提高吸附容量,实验结果表明,适合的热处理温度为500℃.2.2 活性炭纤维活性炭纤维是20世纪70年代发展起来的一种新型、高效、多功能的纤维状吸附材料[13],它具有大量分布的狭窄和均匀的微孔及巨大的比表面积,对有机物的吸附容量大,吸附效率高,且吸脱附速度快,再生容易,并耐热、耐酸、耐碱,适应性强,导电性和化学稳定性好,且可加工成任何形状,具有广阔的应用前景[14].纤维状活性炭是由各种高分子纤维,如纤维素系、丙烯晴系、酚醛系纤维、沥青系、聚乙烯醇系经碳化、赋活处理而制成.所得活性炭纤维的比表面积为1000~3000 m2/g,单位质量所含细孔体积为0.6~1.9 cm3/g,孔径均一,大部分为适合气体吸附的0.002μm的小孔,因此具有更有效的比表面.活性炭纤维的孔道比普通活性炭的短,使吸附脱附的速率提高[15].据文献记载,活性炭纤维的吸附脱附能力为一般粒状、粉末状活性炭的400倍以上.许多工程实践都证明,活性炭纤维对有机废气的吸附可达92%~98%,而且使用寿命长,在同等条件下,其寿命是普通颗粒活性炭的3~4倍,使设备的年均使用费用大大降低.日本在1993年就申请了合成纤维状活性炭的专利,其中酚醛系活性炭纤维制法是:将酚类和醛类化合物在酸性催化剂作用下反应生成可溶可熔酚醛树脂,纺丝制成尚未硬化的酚醛树脂纤维,在酸性催化剂作用下与甲醛作硬化处理,然后在1100~1200℃下炭化、活化即可制成高性能活性碳纤维.其中炭化条件直接影响到产品的产率和性能,随炭化温度的升高,表面积增大而平均孔径则有所下降.活化反应是使活性碳纤维生成丰富的微孔及形成含氧官能团的主要过程,活化温度对活性炭纤维的性能影响较大,可通过选择合适的前驱体、活化剂、反应条件等来调整孔的结构和比表面的大小.P Navarri等人利用碳纤维材料对二甲苯和乙酸乙酯进行吸附处理,着重研究了不同碳纤维、纤维层数、不同气体以及气体浓度间的关系对吸附效果的影响,取得了一定的成果.孙彤等人用活性炭纤维作为吸附材料,以恒温恒压的空气作载气,考察了温度、气体流速、气体浓度3个因素对吸附量的影响.结果表明,温度对活性炭纤维的平衡吸附量的影响最大,随着温度的升高,活性炭纤维对醋酸丁酯的平衡吸附量下降.对活性炭纤维进行改性,可满足对特定物质的高效吸附转化[8].由于炭的表面原子呈不饱和结构,有其独特的表面化学性能.活性炭纤维在微晶状态下,当温度一定时易于发生氧化反应,使得表面结合羧基、卤素、氮元素等.为了克服高湿度天气的影响,可以通过900℃高温处理来减少活性炭纤维表面的亲水基,提高吸附VOCs的能力.目前,活性炭纤维虽然价格较高,制备工艺还不成熟,但随着研究的深入,活性炭纤维的工艺条件可以得到进一步的完善,从而使它发挥更大的作用.3 结语挥发性有机废气已经越来越严重地影响着人类的生存环境,废气治理的问题已经刻不容缓.相信经过人们的不断努力,日后将会研究出更加先进合理的治理方法.正如美国国家环境保护署(EPA)所指出的,活性炭吸附是去除VOCs“可采用的最好技术”.活性炭作为一种具有强大潜力的吸附剂,经过人们的深入研究,必将在VOCs治理方面发挥更大的作用.参考文献:[1]黎维彬,龚浩.催化燃烧去除VOCs污染物的最新进展[J].物理化学学报.2010(4):885-894.[2]KITTRELL J R,QUINLAN C W,ELDRIDGE J W,et al.Direct catalytic oxidation of halogenated hydrocarbons[J]. Waste Manage Ass-Soc,1991,41(8):1129-1133.[3]岳雷,赵雷洪,滕波涛,等.Pd/Ce0.8Zr0.15La0.05Oδ整体催化剂甲苯催化燃烧性能的研究[J].中国稀土学报.2009(3):327-333.[4]BARBERO B P,COSTA-ALMEIDA L,SANZ O,et al.Washcoating of metallic monoliths with a MnCu catalyst for catalytic combustion of volatile organic compounds[J].Chemical Engineering Journal.2008,139(2):430-435.[5]MORALES M A R,BARBERO B P,LOPEZ T,et al.Evaluation and characterization of Mn-Cu mixed oxide catalysts supported on TiO2 and Zr O2 for ethanol total oxidation[J].Fuel,2009,88(11):2122-2129.[6]MITSUMA Y,KUMA T,YAMAUCHI H,et al.Advanced honeycomb adsorbent and scaling-up technique for thermal swing adsorptive VOC concentrators[J].Kagaku Kogaku Ronbunshu,1998,24(2):248-253.[7]吴德礼,朱申红.新型吸附剂的发展与应用[J].矿产综合利用,2002(1):36-40.[8]刘亚兰,潘珠玉.纳米TiO2与活性炭纤维复合降解空气中甲醛[J].林业科技,2009,134(11):42-45.[9]於建明,沙昊雷.复合生物滤塔耦合处理含 H 2 S和VOCs废气研究[J].浙江工业大学学报,2008,36(3):254-259.[10]闫勇.有机废气中挥发性有机物的净化回收技术[J].化工进展,1996(5):26-28.[11]李婕,羌宁.挥发性有机物(VOCs)活性炭吸附回收技术综述[J].四川环境,2007,126(16):101-105.[12]扶江,张远.改性活性炭吸附SO2的试验研究[J].贵阳学院学报,2008,3(1):35-38.[13]徐越群,赵巧丽.活性炭吸附技术及其在水处理中的应用[J].石家庄铁路职业技术学院学报,2010,9(1):48-50.[14]李守信,金平,张文智,等.采用活性炭纤维吸附装置回收VOC的优点分析[J].化工环保,2004,24:274-276.[15]杨芬,刘品华.活性炭纤维在挥发性有机废气处理中的应用[J].曲靖师范学院学报,2003,22(6):43-46.*基金项目:广东省自然科学基金重点项目(10251009001000003);中法“蔡元培”交流合作项目(留金欧2010-6050);广州市科技项目(2010Z1-E061)【文献来源】https:///academic-journal-cn_materials-research-application_thesis/0201221535744.html。
生物炭应用技术研究随着科学技术的发展,生物炭作为一种新型材料,其独特的性质和广泛的应用逐渐受到人们的。
生物炭是由生物质经过热解或气化制得的炭素材料,具有多孔性、高比表面积和良好的吸附性能。
本文将详细探讨生物炭的应用技术研究,希望为相关领域的研究和实践提供有益的参考。
1、生物炭的概念和特点生物炭是以生物质为原料制备的一种炭素材料,其制备过程主要涉及热解或气化。
生物炭具有发达的孔隙结构和较高的比表面积,这使得它具有优异的吸附性能和反应活性。
此外,生物炭还具有来源广泛、可再生、可生物降解等优点,使其在多个领域具有广泛的应用前景。
2、生物炭在环保领域的应用生物炭在环保领域具有重要作用。
作为一种高效的吸附剂,生物炭可用于水中重金属离子和有机污染物的去除。
同时,生物炭还可以用于土壤修复,改善土壤环境,提高土壤肥力。
研究表明,生物炭可以提高土壤中微生物的活性,促进土壤营养元素的循环利用。
3、生物炭在医学领域的应用生物炭在医学领域也有着广泛的应用。
生物炭具有优异的生物相容性和生物可降解性,可用于药物载体、组织工程和再生医学等领域。
以生物炭为载体的药物制剂,可以提高药物的生物利用度和疗效,降低不良反应。
同时,生物炭在肿瘤治疗、伤口愈合和骨组织工程等方面也有着重要的应用。
4、生物炭在工业领域的应用在工业领域,生物炭也具有广泛的应用。
由于生物炭具有较好的吸附性能和反应活性,可作为一种高性能的吸附剂和催化剂。
在化工、能源、水处理等领域,生物炭可用于有毒有害物质的去除、废水处理、能源生产等方面。
同时,生物炭还可用于制备高分子材料、纳米材料等领域。
5、生物炭与其他相关技术的比较与其他相关技术相比,生物炭具有其独特的优势。
例如,与活性炭相比,生物炭具有更高的比表面积和孔隙结构,吸附性能更为出色。
同时,生物炭的制备成本低廉,可再生,具有更好的环境友好性。
与合成炭相比,生物炭具有更好的生物相容性和生物可降解性,更适用于医疗、环保等领域。
污泥活性炭的热解制备及应用研究进展污泥活性炭的热解制备及应用研究进展引言污泥是城市生活废水处理的产物,含有大量的有机物质和重金属离子等污染物。
传统的处理方法往往无法彻底去除污泥中的这些有害物质,会造成二次污染的隐患。
活性炭作为一种能够吸附有机物质和重金属离子的有效材料,逐渐受到人们的关注。
本文将对污泥活性炭的热解制备及应用进行综述。
一、污泥活性炭的制备方法1. 物理热解法物理热解法是将污泥样品通过高温处理,使其转化为活性炭。
常用的物理热解方法有高温燃烧、高温蒸汽处理等。
这些方法能够有效去除污泥中的有机物质和水分,使得污泥得到破坏和膨胀,生成具有活性的炭材料。
2. 化学热解法化学热解法是在物理热解的基础上,引入化学物质进行处理。
常见的化学热解方法有碱熔法、酸处理法等。
这些方法能够在高温条件下,促使污泥中的有机物质和重金属离子转化为可吸附的物质,并且能够调控活性炭的孔径和孔隙结构,提高其吸附性能。
二、污泥活性炭的应用1. 水处理污泥活性炭广泛应用于水处理领域,主要用于去除水中的有机物质、异味物质和重金属离子等。
由于其具有较大的比表面积和孔隙结构,能够有效吸附污染物质,使得水质得到净化和提升。
2. 空气净化污泥活性炭还可以用于空气净化领域。
它能够吸附空气中的有害气体和异味物质,如二氧化硫、甲醛等。
通过调节活性炭的孔径和孔隙结构,可以提高其去除空气中有害物质的效果。
3. 废气处理在工业生产中,常常会产生大量的有害气体和污染物。
污泥活性炭可以作为吸附剂,用于废气处理领域。
它能够快速吸附废气中的有机物质和重金属离子,达到净化废气的目的。
4. 能源回收污泥活性炭在热解制备过程中,产生的热能可以被回收利用。
通过高温燃烧,可以将污泥转化为炭燃料,进一步提高资源利用效率。
结论污泥活性炭作为一种有效的吸附材料,已经广泛应用于水处理、空气净化、废气处理等领域。
不同的制备方法和处理条件会对活性炭的吸附性能产生影响。
因此,在进一步的研究中,需要探索更为高效的制备方法,并且优化其吸附性能,以满足不同领域的需求5. 土壤修复污泥活性炭在土壤修复中也有广泛的应用。