北师大版八上《实数》单元教学设计
- 格式:doc
- 大小:152.89 KB
- 文档页数:8
《实数》教学设计 教学目标:(一)教学知识点1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式 );0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba . (二)能力训练要求 1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力. 2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.(三)情感与价值观要求通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。
教学重点:1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba .并能用规律进行计算. 教学难点1.类比的学习方法.2.发现规律的过程.教学方法:类比法.教学过程:Ⅰ.新课导入 上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.Ⅱ.新课讲解1.有理数的运算法则在实数范围内仍然适用.[师]大家先回忆一下我们在有理数范围内学过哪些法则和运算律.[生]加、减、乘、除运算法则,加法交换律,结合律,分配律.[师]好.下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了. 如:2332⋅=⋅,.252)32(2322,3)212(32123=+=+=⋅⋅=⋅⋅所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题. 计算:(1)1313+⋅; (2)77-;(3)(25)2;(4)2)212(+. 2.做一做填空:(1)94⨯=_________,94⨯=_________;(2)916⨯=_________,916⨯=_________;(3)94=_________,94=_________; (4)=2516_________,2516=_______ [师]通过上面计算的结果,大家认真总结找出规律.如果把具体的数字换成字母应怎样表示呢?b a b a ⋅=⋅(a ≥0,b ≥0);b a ba = (a ≥0,b >0) 并作一些练习. 化简:(1)326⨯; (2)327⨯-4;(3)(3-1)2;(4)326⨯;(5)546. 3.例题讲解[例题]化简:(1)5312-⨯;(2)236⨯;(3)(5+1)2;(4))12)(12(-+. Ⅲ.课堂练习(一)随堂练习 化简:(1)2095⨯;(2)8612⨯;(3)(1+3)(2-3);(4)(323-)2. (二)补充练习1.化简: (1)250580⨯-⨯;(2)(1+5)(5-2);(3))82(2+;(4)3721⨯; (5)2)313(-;(6)10405104+ 2.一个直角三角形的两条直角边长分别为5 cm 和45 cm ,求这个直角三角形的面积.解:S =45521⨯⨯ )cm (5.71521)35(214552122=⨯=⨯⨯=⨯⨯= 答:这个三角形的面积为7.5 cm 2.Ⅳ.课时小结本节课主要掌握以下内容.1.在实数范围内,有理数的运算法则、运算律仍然适用,并能正确运用.2.b a b a ⋅=⋅ (a ≥0,b ≥0);b a b a =(a ≥0,b >0)的推导及运用. Ⅴ.课后作业习题2.91.化简: (1)313⨯;(2)23;(3)23222+;(4)850⨯-21. Ⅵ.活动与探究下面的每个式子各等于什么数?2222222003,2002,2001,,4,3,2 .由此能得到一般的规律吗?对于一个实数a 、2a 一定等于a 吗?当a ≥0时,2a =a .当a <0时,有 .20032003)2003(,20022002)2002(,20012001)2001(,416)4(,39)3(,24)2(222222222==-==-==-==-==-==-所以当a <0时,有2a =-a .板书设计:§2.6.2 实数(二)一、有理数的运算法则在实数范围内仍然适用二、找规律b a b a ⋅=⋅(a ≥0,b ≥0);b a ba = (a ≥0,b >0) 三、例题讲解 四、课堂练习 五、课时小结 六、课后作业教学反思:这节内容是两个公式的推导与运用。
教案:八年级数学上册实数教案北师大版一、教学目标1. 知识与技能:(1)理解实数的定义及分类;(2)掌握实数的性质,如整数、分数、有理数和无理数之间的关系;(3)能够运用实数的性质进行简单的运算和问题解决。
2. 过程与方法:(1)通过实例和问题,引导学生认识实数并进行分类;(2)利用数轴和符号表示实数,帮助学生理解实数的概念和性质;(3)通过小组讨论和探究活动,培养学生的合作能力和问题解决能力。
3. 情感态度与价值观:(1)培养学生的数学思维和逻辑推理能力;(2)激发学生对数学的兴趣和好奇心;(3)培养学生勇于探索和坚持真理的精神。
二、教学重点与难点1. 教学重点:(1)实数的定义和分类;(2)实数的性质和运算;(3)实数在数轴上的表示方法。
2. 教学难点:(1)实数的无理数和无限不循环小数的概念;(2)实数的乘法和除法运算规则;(3)实数在实际问题中的应用。
三、教学准备1. 教师准备:(1)教材和相关参考资料;(2)多媒体教具和教学软件;(3)实数的相关例题和练习题。
2. 学生准备:(1)掌握前置知识,如分数、整数等;(2)准备笔记本和文具;(3)积极参与课堂讨论和实践活动。
四、教学过程1. 导入新课:(1)引导学生回顾前置知识,如分数、整数等;(2)提出问题,引发学生思考:是否存在一种数,它既不是整数也不是分数?(3)引入实数的概念,激发学生的好奇心。
2. 自主学习:(1)学生自主阅读教材,了解实数的定义和分类;(2)学生通过数轴和实例,理解实数的概念和性质;(3)学生完成相关的练习题,巩固所学知识。
3. 课堂讲解:(1)教师讲解实数的定义和分类,如整数、分数、有理数和无理数;(2)教师讲解实数的性质,如加法、减法、乘法和除法运算规则;(3)教师通过实例和问题,引导学生理解和运用实数的性质。
4. 课堂练习:(1)学生完成教材中的练习题,巩固所学知识;(2)学生进行小组讨论和探究活动,解决实际问题;(3)教师给予评价和指导,帮助学生提高解题能力。
八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。
2.无理数是_________的小数,如_________,_________,_________等都是无理数。
3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。
二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。
师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。
即有理数和无理数统称为实数。
生:也就是说实数可分为有理数和无理数。
师:对!你说的太对啦!实数从定义可分为有理数和无理数。
无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。
师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。
师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。
互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。
师:同学们回答的非常好,-2的倒数是什么?生:是-。
师:的倒数是什么?生:思考回答。
师:实数a的倒数是什么?生:是。
师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。
是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。
通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。
但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。
同时,实数的分类和性质也需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。
2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。
3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。
四. 教学重难点1.实数的概念和分类。
2.实数的性质。
五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。
通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。
六. 教学准备3.练习题。
七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。
呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。
2.引导学生通过观察和思考,总结实数的性质。
操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。
2.每组选一名代表进行汇报,其他组进行评价和补充。
巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。
2.教师选取部分学生的作业进行点评,指出错误并进行讲解。
拓展(10分钟)1.让学生思考:实数和数轴之间的关系。
2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。
小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。
2.学生分享学习收获和感受。
家庭作业(5分钟)1.完成课后练习题。
6 实数-北师大版八年级数学上册教案一、知识点本章主要涉及以下知识点:1.实数的概念及分类2.实数的四则运算3.实数的比较大小及绝对值二、教学目标1.理解实数的概念及分类2.掌握实数的四则运算方法3.能够比较实数的大小和求出实数的绝对值三、教学重点1.实数的四则运算2.实数的比较大小及绝对值四、教学难点1.实数的概念及分类2.实数的绝对值五、教学过程1. 实数的概念及分类•实数的定义:所有有理数和无理数的并称为实数。
•实数的分类:–有理数:可以表示为两个整数的商的数,包括正有理数、负有理数、零;–无理数:不能表示为两个整数的商的数,包括无限不循环小数和无限循环小数。
2. 实数的四则运算•加法运算:–同号相加,取同号,将绝对值相加,结果的符号不变;–异号相加,取绝对值较大的数的符号,绝对值相减。
•减法运算:变成加法运算。
•乘法运算:–两数符号相同,结果为正,绝对值相乘;–两数符号不同,结果为负,绝对值相乘。
•除法运算:两数相除,商的符号与被除数、除数的符号相同,商的绝对值为两数绝对值的比值。
3. 实数的比较大小及绝对值•比较大小:–同号比大小,绝对值比较大小;–异号比大小,负数小于正数。
•求绝对值:数的绝对值是这个数到原点的距离,非负数的绝对值等于这个数本身,负数的绝对值等于其相反数。
六、教学反思本节课主要讲解了实数的概念、分类、四则运算和比较大小及绝对值等知识点。
针对实数概念分类比较抽象,需要同学们理解,并且注意与有理数、无理数的区别。
四则运算和大小比较以及绝对值的计算需要结合具体的例子,加深同学们的印象。
通过本篇教案的详细讲解,希望同学们可以掌握并应用实数相关的知识点。
北师大版八年级数学上册第二章实数教学设计一. 教材分析北师大版八年级数学上册第二章实数,主要介绍了实数的概念、分类和运算。
本章内容是初中数学的重要基础,对于学生理解和掌握数学知识体系具有重要意义。
教材内容安排合理,既有理论知识的讲解,又有实际例子的演示,使学生能够更好地理解和运用实数知识。
二. 学情分析八年级的学生已经掌握了初步的数学知识,对于实数的概念和运算有一定的了解。
但学生在实数的分类和运算方面存在一定的困难,需要通过本章的学习进一步巩固和提高。
同时,学生对于数学知识的理解和运用能力各有差异,需要在教学过程中关注学生的个体差异,因材施教。
三. 教学目标1.理解实数的概念,掌握实数的分类。
2.熟练掌握实数的运算方法,能够运用实数知识解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.实数的分类:有理数、无理数、整数、分数、正数、负数等。
2.实数的运算:加法、减法、乘法、除法、乘方等。
五. 教学方法1.讲授法:讲解实数的概念、分类和运算方法。
2.案例分析法:分析实际例子,让学生更好地理解和运用实数知识。
3.讨论法:分组讨论,培养学生的合作意识和解决问题的能力。
4.练习法:布置适量作业,巩固所学知识。
六. 教学准备1.教材:北师大版八年级数学上册。
2.教案:实数教学设计。
3.PPT:实数相关知识点和案例分析。
4.作业:适量实数运算练习题。
七. 教学过程1.导入(5分钟)利用PPT展示实数的应用场景,引导学生思考实数的概念和分类。
2.呈现(10分钟)讲解实数的概念、分类和运算方法,通过PPT展示相关知识点,让学生更好地理解和掌握。
3.操练(10分钟)分组讨论实数的运算方法,让学生动手实践,相互交流,巩固所学知识。
4.巩固(10分钟)布置适量作业,让学生独立完成,检查对实数知识的掌握情况。
5.拓展(10分钟)分析实际例子,让学生运用实数知识解决实际问题,提高学生的应用能力。
第1篇教学目标1. 知识与技能目标:使学生理解实数的概念,掌握实数的分类,能够熟练进行实数的运算。
2. 过程与方法目标:通过小组合作、探究活动,培养学生的观察、分析、归纳能力,提高学生解决实际问题的能力。
3. 情感与价值观目标:让学生体会数学与生活的联系,激发学生学习数学的兴趣,培养严谨求实的科学态度。
教学重点1. 实数的概念及分类。
2. 实数的运算。
教学难点1. 实数的概念理解。
2. 实数运算的灵活运用。
教学准备1. 教材:北师大版八年级数学上册2. 课件、投影仪、电脑3. 实物教具:数轴、正方形纸片教学过程第一环节:复习导入(5分钟)1. 复习有理数的分类,引导学生回顾有理数和无理数的概念。
2. 提问:为什么需要引入实数?实数与数轴有什么关系?第二环节:新课讲授(20分钟)1. 实数的概念:- 通过数轴展示实数的概念,引导学生观察数轴上的点与实数之间的关系。
- 举例说明实数的分类:有理数、无理数。
- 讲解无理数的产生背景,如勾股定理、圆周率等。
2. 实数的运算:- 介绍实数的加、减、乘、除运算规则。
- 通过例题展示实数运算的步骤和方法。
- 强调运算过程中的符号运算和绝对值运算。
第三环节:小组合作探究(15分钟)1. 将学生分成小组,每组发放数轴、正方形纸片等教具。
2. 小组合作完成以下任务:- 利用数轴展示实数的分类。
- 通过拼图活动,探究无理数的性质。
- 比较有理数和无理数的运算特点。
第四环节:课堂小结(5分钟)1. 教师总结本节课的主要内容,强调实数的概念、分类和运算。
2. 学生回顾本节课所学知识,提出疑问。
第五环节:作业布置(5分钟)1. 完成课后练习题,巩固所学知识。
2. 搜集生活中与实数相关的实例,进行实际应用。
教学反思本节课通过引导学生观察、探究、合作,使学生理解实数的概念、分类和运算。
在教学过程中,注重培养学生的动手能力和合作意识,提高学生解决实际问题的能力。
在今后的教学中,应继续关注学生的个体差异,针对不同学生的学习需求,调整教学策略,提高教学质量。
实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。
“实数”单元教学设计教材版本:北师大版数学教科书教学年级:八年级(上册)一.教材分析本章内容包括算术平方根、平方根和立方根,并通过开平方和开立方运算认识一些不同于有理数的数,在此基础上引入无理数,使数的范围由有理数扩充到实数。
随着数的范围的扩充,数的运算也有了新的发展。
在实数范围内,不仅能进行加、减、乘、除四则运算,而且对0和任意正数能进行开平方运算,对任意实数能进行开立方运算。
在平方根、立方根、算术平方根、实数的概念的基础上,建立了完整的实数体系。
本章教材在初中数学中具有重要的地位,是进行其他内容学习的理论基础和运算基础(如一元二次方程、解直角三角形、函数、二次根式等)。
同时,在理论的运算中也常用开方运算,故务必要学好。
二.学情分析本章包括平方根、算术平方根、立方根、用计算器求算术平方根、无理数、实数等内容。
在此之前学生已学习了加、减、乘、除、乘方五种运算,学习了有理数的概念,具备了学习数的开方和学习无理数的条件,大部分学生对后继知识的学习有较强的欲望,但也有个别学生由于对有理数的概念理解不透,对无理数的学习信心不足,产生畏难和厌学情绪,教学中要注意及时引导。
三.教学目标(一)知识与技能1.理解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根;2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求算术平方根和立方根;3.了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系,了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化,并会进行简单的实数运算。
4.能用有理数估计一个无理数的大致范围。
(二)过程与方法通过学习算术平方根、平方根、立方根,建立初步的数感和符号感,发展抽象思维。
用类比的方法探寻出平方根与立方根的运算及表示方法,并能自己总结出算术平方根与平方根,平方根与立方根的异同。
用数形结合的方法理解实数与数轴上的点的一一对应关系,实数的绝对值,相反数的意义。
(三)情感与态度1.通过解决实际生活中的问题,让学生体验数学与生活实际是紧密联系着的。
2.通过对平方根的学习,培养学生从多方面、多角度分析问题,解决问题的思想意识,养成全面分析问题的习惯。
3.通过探究活动培养学生动手能力,锻炼学生克服困难的意志,建立自信心,激发学习兴趣,提高学习热情。
四.重点、难点(一)教学重点:1.平方根和算术平方根的概念。
平方根是开方运算基础,是引入无理数的准备知识。
平方根概念的正确理解有助于用符号表示的理解,是正确求平方根运算的前提。
算术平方根概念的正确理解直接影响到二次根式的学习。
算术平方根的教学不但是本章教学的重点,也是今后数学学习的重点。
在后面学习的根式运算中,归根结底是算术根的运算。
2.立方根的概念与性质及求法。
立方根是奇次方根的典型类型,掌握立方根是理解的n次方根的基础。
学习了平方根的概念的基础上学习立方根的概念,学生比较容易接受,但平方根和立方根的性质区别较大,性质掌握的好坏决定了求解立方根的能力,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上。
3.无理数和实数的概念。
引入无理数使数的范围扩大到实数,初中的所有数的运算均在实数范围内进行的。
无理数概念的理解决定实数概念的理解,有利于实数分类和运算的掌握。
要让学生掌握关于有理数的运算律和运算性质在实数范围内仍成立,这是中学数学的基础。
(二)教学难点:1.平方根与算术平方根的区别与联系。
这两个概念学生容易混淆,而且各自的符号表示的意义学生不是很容易区分,教学中要抓住算术平方根为平方根中正的那个,讲清各自符号的意义,区分两种表示方法。
对于平方根的运算,不仅被开方数有限制,而且正数有两个平方根,这与以前学过的数的运算有很大的区别,要让学生真正理解有一定的困难。
2.立方根的唯一性及负数立方根的意义。
由于平方根的学习,学生容易错误的得出立方根与平方根的结论相似,因此要进行对比:对于任何一个数都有唯一的立方根,而且学生难于理解负数立方根的意义,应注意从立方与开立方互为逆运算的角度分析。
3.无理数和实数的理解。
无理数和实数比较抽象,借助实数和数轴上的点的一一对应关系,通过具体数加以解释。
有理数和无理数统称实数,学生对实数意义有所了解就可以了。
五.教学方法1.平方根与算术平方根:①要引导学生通过计算两个不为零的相反数的平方是同一个正数,总结出“一个正数有两个平方根,他们互为相反数”的性质,加深感性认识。
②要引导学生正确认识算术平方根的两个非负性,一是被开方数的非负性,二是算术平方根本身的非负性,即一个非负数的算术平方根是一个非负数。
③通过题组训练,引导学生总结平方根与算术平方根的区别和联系,使学生正确理解正数的平方根有两个,它们互为相反数;正数的算术平方根只有一个,是平方根中为正的那一个。
2.立方根:①应引导学生类比平方根来学习立方根的概念、性质、求法,并启发学生与平方根的相应结论进行联系、比较,弄清两者的区别与联系,并适当分析结论不同的原因。
②要引导学生将求负数的立方根问题转化为求正数的立方根问题。
3.无理数与实数:①首先要引导学生复习有关有理数的知识,让学生了解有理数包括有限小数和无限循环小数,为学习无理数做好准备。
②要引导学生分清“无限不循环小数”与“无限循环小数”的区别,使学生理解无限循环小数可以化成分数,它是有理数;无限不循环小数不能化成分数,它是无理数,从而启发学生总结有理数与无理数的区别,真正能分清楚有理数与无理数。
③要引导学生用数轴上的点来表示无理数和有理数,将所学知识联系起来,使学生了解无理数的存在性;并理解实数与数轴上的点的一一对应关系。
④利用数轴说明相反数、绝对值的定义和性质同样适用于实数;引导学生明确有理数的运算法则,运算律同样适用于实数,使学生能够按照有理数的运算法则,运算律进行实数的运算。
六.教学流程1.单元教学阶段规划分三阶段进行:平方根部分为第一阶段,立方根部分为第二阶段,实数部分为第三阶段。
2.课时分配2.1 认识无理数 1课时2.2 平方根 2课时(算术平方根1课时,平方根1课时)2.3 立方根 1课时2.4 估算 1课时2.5 用计算器开方 1课时2.6 实 数 1课时2.7 二次根式 3课时3.知识结构图4.算术平方根教学设计案例2.2算术平方根 第1课时一、教学目标(一)知识与技能1.经历算术平方根概念的形成过程,了解算术平方根的概念。
2.会求某些正数(完全平方数)的算术平方根并会用符号表示。
(二)过程与方法通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。
(三)情感、态度与价值观通过探究活动培养学生动手能力,锻炼学生克服困难的意志,建立自信心,激发学习兴趣,提高学习热情。
二、重点和难点1.重点:算术平方根的概念.2.难点:根据算术平方根的概念正确求出非负数的算术平方根。
三、教学过程(一)创设情境,引入新课(设计意图:通过实际问题中的实物演示,直观的把实际问题抽象为数学问题,为学习算术平方根提供背景和素材,进而引入算术平方根的概念。
同时让学生感受数学与生活的联系,体验学习数学的乐趣。
)1.请看下面的例子.学校要举行美术作品比赛,小欧很高兴。
他想裁出一块面积为252dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?(教师演示一张面积为252dm的纸)谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?答:因为52=25(板书:因为52=25),所以这个正方形画布的边长应取5dm(板书:所以边长=5dm)。
2. (完成下表)上面实例中的问题、填表中的问题实际上是一个问题,它们都是已知正方形面积,求边长的问题。
通过解决这个问题,我们就有了算术平方根的概念。
正数3的平方等于9,我们把正数3叫做9的算术平方根。
正数4的平方等于16,我们把正数4叫做16的算术平方根。
说说6和36这两个数?……(多让几位同学说,学生说得不正确的地方教师随即纠正)说说1和1这两个数?同桌之间互相说一说5和25这两个数。
(同桌互相说)(二)自主探究,合作交流(设计意图:给学生充足的时间和空间,让学生理解和感知算术平方根的概念,通过小组间的讨论、交流,释疑解难,使学生的自主性和合作性得到充分的发展,教学目标能得到很好的落实。
)同学们大概已经知道了算术平方根的意思,那么什么是算术平方根呢?还是先在小组里讨论讨论,说说自己的看法。
(三)师生互动,归纳新知(设计意图:通过三个问题的设置,加深对算术平方根定义及其非负性的理解,进一步提高语言表达的准确性和书写的规范性。
)什么是算术平方根呢?如果一个正数的平方等于a,那么这个正数叫做a的算术平方根(经过讨论,学生发表自己的见解并互相纠错、补充)-4有算术平方根吗?什么数才有算术平方根?(小组合作讨论交流,达成共识) 请大家把算术平方根概念读两遍。
(生集体读)师:-4有算术平方根吗?什么数才有算术平方根?(小组合作讨论交流,达成共识:负数没有算术平方根,正数和0才有算术平方根)师:同学们把11至25的整数的平方算出来并记一记。
(学生独立完成)如果一个正数的平方等于a,那么这个正数叫做a的算术平方根.为了书写方便,我们把aa的算术平方根记作。
规定:0的算术平方根是0.师:(指准上图)看到没有?这根钓鱼杆似的符号叫做根号,a叫做被开方数,a的算术平方根。
其中a(四)巩固练习,加深理解(设计意图:学生独立思考并完成,然后予以展示。
教师通过学生展示情况及时进行评价和纠错,以便学生及时纠正新知学习过程中产生的误解。
)1.填空:(1)因为_____2 =64,所以64的算术平方根是______=______;根号被开方数a(2)因为_____2 =0.25,所以0.25的算术平方根是____________;(3)因为_ __2 =1649,所以1649的算术平方根是____________. 2.求下列各数的算术平方根:(1)4964; (2)0.0001. 3.下列各式中无意义的是( )A .B .7 C. D4.求下列各式的值:=______; =______; =______;______; =______; ______. 5.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:_______, _______, =_______,=_______,_______, _______,_______,_______, _______. 6.已知233+-+-=x x y ,求x +y 的值。
7.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?(五)课堂小结非负数a a 叫做被开方数负数没有算术平方根0的算数平方根是0(六)作业教材习题2.3第1,2,3题教学反思本章的学习内容中,每部分都与实际生活联系紧密,教学时尽可能的联系实际,既能让学生清楚地理解基本概念,又能让学生体验到数学与实际生活的密切联系,激发学生的学习兴趣和学习欲望。