同济大学概率论与数理统计习题课
- 格式:pptx
- 大小:367.27 KB
- 文档页数:31
概率统计同济课后习题答案在学习概率统计这门课程时,课后习题往往是巩固知识、检验理解的重要环节。
同济大学出版的概率统计教材以其严谨的体系和丰富的内容备受青睐,然而,课后习题的解答有时却让同学们感到困惑。
接下来,我将为大家详细呈现一些常见课后习题的答案及解题思路。
首先,我们来看一道关于随机事件概率的题目。
题目:假设在一个袋子中装有 5 个红球和 3 个白球,从中随机取出3 个球,求取出的球中至少有 1 个红球的概率。
解题思路:我们可以先求出取出的 3 个球中没有红球的概率,即从3 个白球中取出 3 个球的组合数除以从 8 个球中取出 3 个球的组合数。
然后用 1 减去这个概率,就得到至少有 1 个红球的概率。
具体计算过程如下:从 8 个球中取出 3 个球的组合数为:C(8, 3) = 56从 3 个白球中取出 3 个球的组合数为:C(3, 3) = 1所以取出的 3 个球中没有红球的概率为:1/56则至少有 1 个红球的概率为:1 1/56 = 55/56再来看一道关于随机变量分布的题目。
题目:已知随机变量 X 服从参数为λ 的泊松分布,且 P(X = 1) =P(X = 2),求λ 的值。
解题思路:根据泊松分布的概率质量函数 P(X = k) =(λ^k e^(λ))/ k! ,分别代入 k = 1 和 k = 2 ,然后根据已知条件 P(X = 1) = P(X = 2) 建立方程求解。
具体计算过程如下:P(X = 1) =(λ^1 e^(λ))/ 1! =λ e^(λ)P(X = 2) =(λ^2 e^(λ))/ 2! =(λ^2 e^(λ))/ 2因为 P(X = 1) = P(X = 2) ,所以λ e^(λ) =(λ^2 e^(λ))/ 2化简得到:λ = 2接下来是一道关于数学期望和方差的题目。
题目:设随机变量 X 的概率密度函数为 f(x) = 2x,0 < x < 1 ,求E(X) 和 D(X) 。
概率论与数理统计练习题系专业班姓名学号第一章随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件(B )必然事件(C )随机事件(D )样本事件2.下面各组事件中,互为对立事件的有 [ B ] (A )1A {抽到的三个产品全是合格品}2A {抽到的三个产品全是废品}(B )1B {抽到的三个产品全是合格品} 2B {抽到的三个产品中至少有一个废品}(C )1C {抽到的三个产品中合格品不少于2个} 2C {抽到的三个产品中废品不多于2个}(D )1D {抽到的三个产品中有2个合格品} 2D {抽到的三个产品中有2个废品}3.下列事件与事件A B 不等价的是[ C ](A )A AB (B )()A B B(C )A B(D )A B4.甲、乙两人进行射击,A、B 分别表示甲、乙射中目标,则A B 表示 [ C](A )二人都没射中(B )二人都射中(C )二人没有都射着(D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D](A )“甲种产品滞销,乙种产品畅销”;(B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”;(D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x Bx x ,则AB表示 [ A](A ){|01}xx (B ){|01}x x(C ){|12}x x(D ){|0}{|1}x xx x 7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为[ A](A )C A C B ;(B )C AB ;(C )CAB CB A BCA ;(D )A BC .8、设随机事件,A B 满足()0P AB ,则 [ D ](A ),A B 互为对立事件(B),A B 互不相容(C)AB 一定为不可能事件(D)AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB,则称A 与B互不相容或互斥。
概率论与数理统计_同济大学中国大学mooc课后章节答案期末考试题库2023年1.在正态总体中,样本均值是总体均值的极大似然估计量。
答案:正确2.样本方差是总体方差的矩估计。
答案:错误3.样本均值是总体均值的矩估计。
答案:正确4.设X是一个随机变量,称X的概率分布为总体分布。
答案:正确5.【图片】(结果保留三位小数)答案:0.1906.在问题1中,自由度是。
答案:17.X~Poisson(3), Y~Poisson(2), X与Y相互独立 , 则X+Y服从的分布为:答案:Poisson(5)8.(1)设两个离散型随机变量【图片】独立同分布,都仅取-1和1两个取值,且【图片】,则下列成立的是:答案:9.【图片】是某一连续型随机变量的概率密度函数的充要条件是【图片】.答案:错误10.从5双不同的鞋子当中任意取4只,4只鞋子中至少有2只鞋子配成一双的概率是________.(结果请用保留三位小数表示)答案:0.61911.若连续型随机变量的概率密度函数连续,则【图片】.答案:正确12.设【图片】的联合概率函数为【图片】,则概率值【图片】=___________.答案:113.【图片】当【图片】=______时,【图片】与【图片】相互独立?(结果请用小数表示)答案:0.514.两名水平相当的棋手弈棋三盘,设【图片】表示某名棋手获胜的盘数,【图片】表示他输赢盘数之差的绝对值.假定没有和棋,且每盘结果是相互独立的.则【图片】与【图片】的联合概率函数为:【图片】答案:正确15.某地有3000个人参加了人寿保险,每人交纳保险金10元,一年内死亡时家属可以从保险公司领取2000元,假定该地一年内人口死亡率为0.1%,且死亡是相互独立的.则保险公司一年内赢利不少于1万元的概率为______.(结果请保留四位小数)答案:0.999716.已知某商店每周销售的电视机台数【图片】服从参数为6的泊松分布.那么周初至少应该进货_____台,才能保证该周不脱销的概率不小于0.99.假定上周没有库存,且本周不再进货.答案:1217.某系统由4个电子元件构成,各个元件是否正常工作是相互独立的,该种产品的使用寿命达到1000小时以上的概率为0.3,求4个电子元件在使用了1000小时以后最多只有一个损坏的概率为__________.(结果请保留四位小数) 答案:0.083718.某人投篮命中率为40%,假定各次投篮是否命中相互独立.设【图片】表示他首次投中时累计已投篮的次数,则【图片】取值为奇数的概率是_______.(结果请用小数表示)答案:0.62519.【图片】(结果请用小数表示)答案:0.420.把一个表面涂有红色的立方体等分成1000个小立方体,从这些小立方体中随机抽取一个,它有【图片】个面涂有红色,那么【图片】的值为__________.(结果请保留三位小数)答案:0.10421.已知某个国家在飞行中失联的轻型飞机中有80%会被找到.在这些被找到的飞机中有60%的装有紧急定位仪,而没有找到的飞机中有90%未装紧急定位仪.假定,该国现有一架轻型飞机失联了,若它未装紧急定位仪,那么它会被找到的概率是_______.(结果请用小数表示)0.6422.某年级有甲、乙、丙三个班级,各班人数分别占年级总人数的1/4、1/3、5/12,已知甲、乙、丙三个班级中集邮人数分别占该班1/2、1/4、1/5,从该年级中随机地选取一个人,发现此人为集邮者,则此人属于乙班的概率为________.(结果请保留三位小数)答案:0.28623.5名篮球运动员独立地投篮,每个运动员投篮的命中率都是80%.他们各投一次,那么至少有4次命中的概率是__________.(结果请保留两位小数)答案:0.7424.(1)矩估计原理在于大数定理.答案:正确25.在置信水平相同的情况下,样本量越多,区间长度越窄.答案:正确26.矩估计利用样本矩替代总体矩,可以利用二阶矩甚至阶矩计算总体的未知参数.正确27.极大似然估计必须知道总体的概率函数或密度函数.答案:正确28.某商店出售晶体管,每盒装100只,且已知每盒混有4只不合格品.商店采用“缺一赔十”的销售方式:顾客买一盒晶体管,如果随机地取1只发现是不合格品,商店要立刻把10只合格品的晶体管放在盒子中,不合格的那只晶体管不再放回.顾客在一个盒子中随机地先后取3只进行测试,那么他发现全是不合格品的概率为____________.(结果请保留五位小数)答案:0.0000229.甲、乙两人各自独立作同种试验,已知甲、乙两人试验成功的概率分别为0.6、0.8. 已知甲乙两人中至少有一人试验成功的情况下,甲成功但乙未成功的概率是_________.(结果请保留两位小数)答案:0.1330.甲、乙两人各自独立作同种试验,已知甲、乙两人试验成功的概率分别为0.6、0.8.那么两人中只有一人试验成功的概率是_________.(结果请用小数表示)答案:0.4431.设两个事件A和B互不相容,已知【图片】,则条件概率【图片】是_______.(结果请用小数表示)答案:0.2532.向平面区域【图片】内等可能的投点,则点落入直线【图片】与【图片】之间的概率为________(结果请保留两位小数).答案:0.4133.在长度为20分钟的时间段内,有两个长短不等的信号随机地进入接收机,长信号持续时间为4分钟,短信号持续时间为2分钟.那么这两个信号互不干扰的概率为__________(结果请用小数表示).答案:0.72534.在样本量相同的情况下,置信水平越高,区间长度越窄.答案:错误35.为了保证一定的置信水平,又要使得区间的长度不大于某一常数,只有增加样本的容量n,通过掌握更多的信息来实现.答案:正确36.极大似然估计法借助样本观测值,取使得样本观测值达到概率最大时的未知参数取值.答案:正确37.二阶样本中心距是总体方差的无偏估计量.答案:错误38.假设检验依据的原理是“小概率原理”,即发生概率很小的随机事件在一次试验中是几乎不可能发生的.答案:正确39.可以找到一个拒绝域,同时使得在降低第一类错误概率的同时也能降低第二类错误概率。
概率统计同济课后习题答案在学习概率统计这门课程时,课后习题往往是巩固知识、检验理解程度的重要环节。
对于同济大学出版的概率统计教材,课后习题的答案更是备受关注。
下面,我将为大家详细解析一些常见的课后习题,希望能对大家的学习有所帮助。
首先,让我们来看一道关于随机事件概率的题目。
题目:在一个装有 5 个红球和 3 个白球的盒子中,随机取出 3 个球,求取出的球中恰好有 2 个红球的概率。
解题思路:我们可以先计算从 8 个球中取出 3 个球的总组合数,然后计算取出恰好 2 个红球的组合数。
总组合数为 C(8, 3) = 56。
取出恰好 2 个红球的组合数为 C(5, 2) × C(3, 1) = 30。
所以,取出的球中恰好有 2 个红球的概率为 30/56 = 15/28。
接下来,看一道关于随机变量分布的题目。
题目:已知随机变量 X 服从参数为λ 的泊松分布,且 P(X = 1) =P(X = 2),求λ 的值。
解题思路:因为随机变量 X 服从参数为λ 的泊松分布,所以 P(X =k) =(λ^k / k!) × e^(λ)。
由 P(X = 1) = P(X = 2)可得:λ × e^(λ) =(λ^2 / 2) × e^(λ),解方程可得λ = 2。
再看一道关于数学期望和方差的题目。
题目:设随机变量 X 的概率密度函数为 f(x) = 2x,0 < x < 1,求E(X) 和 D(X)。
解题思路:首先计算 E(X),E(X) =∫(0 到 1) x × 2x dx = 2/3。
然后计算 E(X^2) =∫(0 到 1) x^2 × 2x dx = 1/2。
所以 D(X) = E(X^2) E(X)^2 = 1/2 (2/3)^2 = 1/18。
下面是一道关于大数定律的题目。
题目:设 X1, X2,, Xn 是相互独立同分布的随机变量,且 E(Xi) =μ,D(Xi) =σ^2,证明:当 n 充分大时,样本均值X近似服从正态分布N(μ, σ^2 / n)。
概率论与数理统计-朱开永--同济大学出版社习题一答案2习 题 一1.下列随机试验各包含几个基本事件? (1)将有记号b a ,的两只球随机放入编号为Ⅰ,Ⅱ,Ⅲ 的盒子里(每个盒子可容纳两个球) 解:用乘法原理,三个盒子编号为Ⅰ,Ⅱ,Ⅲ看作不动物,。
两个球看作是可动物,一个一个地放入盒中;a 球可放入的任一个,其放法有 313=C种,b 球也可放入三个盒子的任一个,其放法有313=C 种,由乘法原理知:这件事共有的方法数为11339C C ⨯=种。
(2)观察三粒不同种子的发芽情况。
解:用乘法原理,三粒种子,每一粒种子按发芽与否是两种不同情况(方法)。
三粒种子发芽共有8121212=⨯⨯C C C种不同情况。
(3)从五人中任选两名参加某项活动。
解:从五人中任选两名参加某项活动,可不考虑任选的两人的次序,所以此试验的基本事件个数 1025==Cn 。
34则,AB AB各表示什么事件?B A 、之间有什么关系?解: 设kA =“五件中有k 件是不合格品” =B “五件都是合格品”。
此随机试验E 的样本空间可以写成:{}12345,,,,,S A A A A A B = 而 12345A AA A A A =,A B S ∴=φ=AB ,A 与B 是互为对立事件。
3. 随机抽验三件产品,设A 表示“三件中至少有一件是废品”,设B 表示“三件中至少有两件是废品”,C 表示“三件都是正品”,问,,,,A B C AB AC各表示什么事件?解: =A “三件都是正品”,=B “三件中至多有一件废品”,=C “三件中至少有一件废品”, ,AB A AC φ==.4. 对飞机进行两次射击,每次射一弹,设1A 表示“第一次射击击中飞机”,2A 表示“第二次射击击中飞机”,试用21,A A 及它们的对立事件表示下列各事件:=B “两弹都击中飞机”; =C “两弹都没击中飞5机” =D “恰有一弹击中飞机”;=E “至少有一弹击中飞机”。