高温合金简述.
- 格式:ppt
- 大小:1.63 MB
- 文档页数:14
高温合金国民经济行业类别高温合金是一种特殊材料,由于其独特的性能,广泛应用于国民经济的各个行业。
下面将从不同行业的角度,介绍高温合金在国民经济中的作用和应用。
一、航空航天行业:在航空航天领域,高温合金被广泛用于制造发动机和燃气涡轮机等关键部件。
高温合金具有优异的高温性能,能够耐受高温和高压环境,保证发动机的稳定运行。
同时,高温合金还具有优异的耐腐蚀性能,能够抵抗氧化、硫化等腐蚀介质的侵蚀,确保航空器在恶劣环境下的安全运行。
二、能源行业:在能源领域,高温合金被广泛应用于石油、天然气开采和化工等领域。
高温合金可以制造各种耐高温、耐腐蚀的设备,如石油钻探工具、管道、石油化工设备等。
高温合金的应用,提高了能源开采和化工生产的效率,同时也提高了设备的使用寿命,减少了维修和更换的成本。
三、汽车制造业:在汽车制造业中,高温合金被广泛应用于发动机、排气系统和涡轮增压器等关键部件。
高温合金具有优异的耐高温性能和耐腐蚀性能,能够承受高温、高压和腐蚀介质的侵蚀,保证汽车发动机的高效运行。
高温合金的应用,提高了汽车的动力性能和燃油效率,同时也延长了发动机的使用寿命。
四、船舶制造业:在船舶制造业中,高温合金被广泛应用于船舶的船体、船舱和发动机等部件。
高温合金具有优异的耐腐蚀性能和耐高温性能,能够抵抗海水的腐蚀和高温环境的影响,确保船舶的安全运行。
高温合金的应用,提高了船舶的耐久性和可靠性,同时也减少了维修和更换的成本。
五、电力行业:在电力领域,高温合金被广泛应用于发电设备和输电线路等关键部件。
高温合金具有优异的导电性能和耐高温性能,能够承受高温和高电流的作用,确保电力设备的稳定运行。
高温合金的应用,提高了电力系统的效率和可靠性,同时也减少了设备的损耗和故障率。
高温合金在航空航天、能源、汽车、船舶和电力等行业中起着重要作用。
高温合金的优异性能,保证了关键设备的安全运行和寿命延长,提高了生产效率和能源利用效率。
高温合金的应用,推动了国民经济的发展和技术进步,为各个行业带来了巨大的经济效益和社会效益。
高温合金共晶组织高温合金是一种重要的材料,在高温、高压、腐蚀等极端环境下具有出色的性能。
而高温合金的共晶组织是其性能优越的重要原因之一。
共晶组织是指由两个或多个成分组成的合金中,各成分在凝固时以共晶方式结晶形成的特殊组织结构。
本文将从共晶组织的形成机制、特点以及应用领域等方面进行探讨。
我们来了解一下共晶组织的形成机制。
在高温合金中,通常存在着两个或多个成分,其中一个成分的熔点较高,称为主相;另一个或其他成分的熔点较低,称为共晶相。
当高温合金冷却至一定温度时,主相和共晶相会同时凝固。
由于主相和共晶相的熔点差异,共晶相会以固溶体的形式溶解在主相中,形成共晶组织。
共晶组织的形成可以通过调整合金的成分比例和凝固速率等因素来控制。
共晶组织具有一些独特的特点。
首先,共晶组织中的主相和共晶相相互交织,形成了复杂的网络结构。
这种结构可以提高材料的强度和韧性,增强其抗拉、抗压和抗疲劳等性能。
其次,共晶组织中的共晶相具有低熔点和良好的塑性,能够吸收和分散应力,提高材料的耐热和耐蠕变性能。
此外,共晶组织还能够提高材料的耐腐蚀性能,减少腐蚀介质对材料的侵蚀。
高温合金共晶组织在航空航天、能源等领域有着广泛的应用。
在航空航天领域,高温合金被广泛应用于涡轮发动机、航空发动机涡轮叶片等关键部件中。
共晶组织的高强度和高温稳定性使得这些部件能够在高温、高压的工作环境下保持良好的性能。
在能源领域,高温合金被应用于核电站、火电站等能源设备中。
共晶组织的耐蠕变性能使得这些设备能够长时间稳定运行,提高能源利用效率。
除了航空航天和能源领域,高温合金共晶组织还在其他领域有着广泛的应用。
例如,在汽车制造领域,高温合金被应用于汽车发动机的涡轮增压器和排气系统中,提高发动机的动力性能和燃烧效率。
在石油化工领域,高温合金被应用于石油加工设备的反应器和管道中,提高设备的耐腐蚀性和耐高温性。
在船舶制造领域,高温合金被应用于船舶的涡轮机和蒸汽发生器中,提高船舶的动力性能和燃料利用效率。
耐高温的金属材料耐高温的金属材料引言:随着现代工业的发展和科学技术的进步,高温环境下的工作需求越来越多。
例如,汽车引擎、航空发动机、核电站等都需要在高温条件下正常工作。
因此,耐高温的金属材料的研究和应用日益重要。
本文将详细介绍几种常见的耐高温金属材料,并讨论其特性和应用领域。
一、镍基高温合金镍基高温合金是一种使用镍和其他合金元素制成的金属材料。
由于其优异的高温力学性能和耐腐蚀性,镍基高温合金在航空、航天、能源等领域得到广泛应用。
例如,现代喷气发动机中的涡轮叶片、燃烧室等都采用了镍基高温合金。
此外,镍基高温合金还常用于核电站、石油化工设备等高温环境中。
二、钼基高温合金钼基高温合金是以钼为基础元素的合金材料。
钼具有高熔点、高热传导性和良好的力学性能,因此钼基高温合金在高温环境下表现出色。
主要应用领域包括航空航天、航空发动机、化工装备等。
例如,超音速飞机的发动机涡轮叶片和喷管等部分常采用钼基高温合金制造。
三、钛基高温合金钛基高温合金是一种以钛为基础元素的合金材料。
钛具有低密度、高强度和良好的耐腐蚀性,在高温环境下有一定的抗氧化性能。
钛基高温合金常应用于航空航天、核工业、舰船制造等领域。
例如,宇航器中的舰身、喷管和发动机部件可以采用钛基高温合金制造。
四、铜基高温合金铜基高温合金是以铜为基础元素的合金材料。
铜具有良好的导热性和导电性,在高温环境下能保持较高的强度和韧性。
因此,铜基高温合金常用于电力工业和电子工业。
例如,高能密度电池、电子器件散热器和导线等部件通常采用铜基高温合金制造。
五、钼铜合金钼铜合金是由钼和铜按一定比例熔炼而成的合金材料。
钼具有良好的高温强度和抗氧化性能,而铜具有高热传导率和良好的导电性能。
因此,钼铜合金具有良好的耐高温特性和导热性能。
广泛应用于航空航天、电子器件和真空设备等领域。
结论:耐高温的金属材料在现代工业中起着重要的作用。
镍基高温合金、钼基高温合金、钛基高温合金、铜基高温合金和钼铜合金都具有优异的高温性能和特性。
G4145合金主要是以Y"相进行时效强化的镍基高温合金,在980℃以下具有良好的耐腐蚀和抗氧化性能,800℃以下具有较高的强度,540℃以下具有较好的耐松弛性能, 同时还具有良好的成形性能和焊接性能。
由于该合金具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。
使用该合金可以制得各种不同用途以及形状的零部件,例如棒、饼、环、板、带、丝、管等。
GH4145合金可用于制造航空发动机在800℃以下工作并要求强度较高的耐松弛的平面弹簧和螺旋弹簧。
还可用于制造气轮机涡轮叶片等零件。
通常,GH4145合金的化学成分包括标准成分、优质成分和高纯成分。
为了减少疲劳源和增加强化相的数量,一种方法是在标准成分的基础上增加优质成分,也就是增加锯而减少碳,从而减少碳化锯的数量,提高抗疲劳性能和材料强度,同时减少有害杂质和气体含量。
尽管通过增加优质成分可以提高合金的抗疲劳性能,但是该方法成本较高,不利于生产需要。
因此需要一种合金制造方法,在提高抗疲劳性能的同时降低成本。
材料牌号①⑧⑨⒍⒋⒍⒏②⑥⑧⑦GH4145(GH145)相近牌号Inconel X-750(美国),NiCr15Fe7TiAl(德国),NC15FeTNbA(法国),NCF750(日本)材料的技术标准Q/3B 4088-1994《GH4145合金毛细管材》Q/3B 4098-1995《GH4145合金丝材》Q/3B 4198-1993《GH4145合金冷轧板材、带材》化学成分GH4145金相结构:合金标准热处理状态的组织由γ基体、Ti(C、N)、Nb(C、N)、M23C6碳化物和γ'[Ni3(Al、Ti、Nb)]相组成,γ'含量大约为14.5%,是合金的主要强化相。
工艺性能要求:1、合金的锻造温度在1220~950℃之间均易成形。
铸造高温合金是一种在高温环境下具有优异性能的金属材料,广泛应用于航空、航天、核能等领域。
铸造高温合金牌号是根据其化学成分和热处理工艺进行分类的。
以下是一些常见的铸造高温合金牌号及其特点:1. Inconel 718(铬镍铁合金):Inconel 718是一种沉淀强化型镍基高温合金,具有良好的抗氧化性、抗蠕变性能和疲劳强度。
它的主要应用领域包括航空发动机涡轮叶片、燃气轮机涡轮盘等。
2. Waspaloy(钨钼铬镍铁合金):Waspaloy是一种固溶强化型镍基高温合金,具有优异的抗腐蚀性能、抗氧化性和抗蠕变性能。
它的主要应用领域包括化工设备、石油化工反应器等。
3. Haynes 214(铬镍铁合金):Haynes 214是一种时效硬化型镍基高温合金,具有良好的抗氧化性、抗蠕变性能和疲劳强度。
它的主要应用领域包括航空发动机涡轮叶片、燃气轮机涡轮盘等。
4. René80(钴铬镍铁合金):René80是一种时效硬化型钴基高温合金,具有优异的抗腐蚀性能、抗氧化性和抗蠕变性能。
它的主要应用领域包括化工设备、石油化工反应器等。
5. Incoloy 901(铬镍铁合金):Incoloy 901是一种固溶强化型镍基高温合金,具有良好的抗氧化性、抗蠕变性能和疲劳强度。
它的主要应用领域包括航空发动机涡轮叶片、燃气轮机涡轮盘等。
6. Inconel X-750(铬镍铁合金):Inconel X-750是一种沉淀强化型镍基高温合金,具有良好的抗氧化性、抗蠕变性能和疲劳强度。
它的主要应用领域包括航空发动机涡轮叶片、燃气轮机涡轮盘等。
7. Hastelloy C-276(铬镍铁合金):Hastelloy C-276是一种固溶强化型镍基高温合金,具有优异的抗腐蚀性能、抗氧化性和抗蠕变性能。
它的主要应用领域包括化工设备、石油化工反应器等。
在选择铸造高温合金牌号时,需要根据具体的应用环境和工况要求,综合考虑材料的抗氧化性、抗蠕变性能、疲劳强度、抗腐蚀性能等因素。
GH高温合金是一种镍基高温合金,其牌号采用字母加阿拉伯数字相结合的方法表示。
根据特殊需要,可以在牌号后加英文字母表示原合金的改型合金,如表示某种特定工艺或特定化学成分。
以下是一些常见的GH高温合金国际牌号及其对应的国内外材料牌号:
- GH3030:ЭИ435,合金在800℃以下有满意的热强性和高的塑性,具有良好的抗氧化、热疲劳、冷冲压和焊接工艺性能。
- GH3039:ЭИ436,合金在800℃以下有满意的热强性和高的塑性,具有良好的抗氧化、热疲劳、冷冲压和焊接工艺性能。
- GH4033:ЭИ437,合金在700~750℃具有足够的高温强度,在900℃以下具有良好的抗氧化性,合金的冷热加工性能好。
高温合金中常见元素及其作用高温合金中常见元素及其作用高温合金是航空、航天、能源等领域中广泛应用的一种材料,具有优良的耐高温、抗氧化和抗腐蚀性能。
这些合金中包含多种元素,这些元素的种类和比例会直接影响合金的性能。
本文将介绍一些常见的高温合金元素及其作用。
一、镍(Ni)镍是高温合金中的主要元素之一,通常含量在50%以上。
它能够提高合金的强度、韧性、抗氧化性和耐腐蚀性。
镍还可以降低合金的冷脆性,提高可塑性和可焊性。
在高温下,镍能够保持较好的抗蠕变性和持久性,因此常用于制造高温下承受应力的零件。
二、铬(Cr)铬是一种抗氧化性和耐腐蚀性很好的元素,它能够提高合金的硬度、耐磨性和耐热性。
同时,铬还可以改善合金的加工性能。
在高温下,铬能够减缓合金的氧化过程,并形成致密的氧化膜,保护合金表面免受进一步氧化。
三、铁(Fe)铁是高温合金中的基本元素之一,通常含量在20%以上。
它能够提高合金的强度和硬度。
铁还可以改善合金的切削加工性能。
在高温下,铁能够减缓合金的氧化过程,并形成致密的氧化膜,保护合金表面免受进一步氧化。
四、钨(W)钨是一种高密度、高熔点和良好的抗腐蚀性的元素,它能够提高合金的强度、硬度和耐热性。
在高温下,钨能够提高合金的抗蠕变性和持久性,常用于制造高温下承受应力的零件。
此外,钨还可以提高合金的抗高温氧化性能。
五、钼(Mo)钼是一种高强度、高熔点和良好的抗腐蚀性的元素,它能够提高合金的强度、硬度和耐热性。
在高温下,钼能够提高合金的抗蠕变性和持久性,常用于制造高温下承受应力的零件。
此外,钼还可以提高合金的抗高温氧化性能。
六、钛(Ti)钛是一种低密度、高强度和高熔点的元素,它能够提高合金的强度、韧性和耐腐蚀性。
在高温下,钛能够形成稳定的氧化膜,保护合金表面免受进一步氧化。
此外,钛还可以改善合金的加工性能和抗腐蚀性能。
七、铝(Al)铝是一种轻质、高强度和良好的抗腐蚀性的元素,它能够提高合金的强度、硬度和耐热性。
ni基高温合金γ'相化学腐摘要:1.镍基高温合金概述2.γ"相的化学腐蚀特点3.镍基高温合金γ"相腐蚀机理4.抗腐蚀策略与应用正文:镍基高温合金是一种广泛应用于航空航天、能源、化工等领域的材料,因其具有优异的高温强度、抗氧化性、耐腐蚀性等性能而备受关注。
然而,镍基高温合金在某些环境下会发生腐蚀,其中γ"相腐蚀是一种较为常见的现象。
本文将对镍基高温合金γ"相的腐蚀特点及机理进行分析,并提出相应的抗腐蚀策略。
一、镍基高温合金概述镍基高温合金是指以镍为基体,加入一定比例的铬、钴、钨、钼等元素组成的一种合金。
在高温环境下,镍基高温合金具有较高的抗氧化性、热疲劳性、蠕变性等性能。
其中,γ"相是镍基高温合金中的一种重要相,对合金的力学性能和腐蚀性能具有显著影响。
二、γ"相的化学腐蚀特点1.腐蚀形态:γ"相腐蚀主要表现为局部腐蚀,如点腐蚀、缝隙腐蚀等。
这些腐蚀形态往往导致合金表面出现坑洼、脱落等损伤。
2.腐蚀速率:γ"相腐蚀速率较快,尤其在高温、高湿、含氧环境下,合金的腐蚀速率更为明显。
3.腐蚀产物:γ"相腐蚀产物主要为氧化物、硫化物等,这些腐蚀产物会进一步加剧合金的腐蚀。
三、镍基高温合金γ"相腐蚀机理1.电化学腐蚀:镍基高温合金在含有氯离子、硫离子等活性离子环境下,易发生电化学腐蚀。
活性离子在合金表面与合金元素发生反应,产生局部腐蚀。
2.氧化膜破裂:镍基高温合金在高温环境下,表面会形成一层氧化膜保护层。
然而,在某些条件下,氧化膜会发生破裂,导致合金表面暴露,进而发生腐蚀。
3.合金元素扩散:在腐蚀过程中,合金中的铬、钨等元素会向腐蚀前沿扩散,使得腐蚀产物不断生成并堆积,从而加速腐蚀进程。
四、抗腐蚀策略与应用1.合金成分优化:通过调整合金成分,提高镍基高温合金的抗氧化性、耐腐蚀性。
例如,增加铬、钨等元素的含量,以提高合金的耐腐蚀性能。
高温合金材料的制备和性能测试高温合金材料是指能在高温环境下工作的金属材料。
由于高温环境的特殊性质,高温合金材料具有一系列独特的性质,例如抗氧化、耐热腐蚀、高强度、高温硬度等,因此广泛应用于航空、航天、汽车、核工业等行业。
本文将介绍高温合金材料的制备和性能测试。
一、高温合金材料的制备1. 熔铸法熔铸法是制备高温合金材料的主要方法之一。
该方法的基本原理是将各种金属和非金属元素按照一定的比例混合后,在高温下熔化,再逐步冷却形成所需的合金。
这种方法的优点是制备工艺简单,生产成本低,但是产品质量不容易控制,易产生内部缺陷和杂质。
2. 粉末冶金法粉末冶金法是制备高温合金材料的另一种常见方法。
该方法的基本原理是将金属和非金属粉末按照一定的比例混合,加工成粉末冶金件,然后在高温下进行烧结和变形加工,形成所需的合金。
这种方法的优点是产品的化学成分均匀,内部无缺陷,但是加工难度大,生产成本高。
3. 热处理法热处理法是制备高温合金材料的较为简单的方法之一。
该方法的基本原理是利用热处理的方法改变金属的结晶结构和物理性质,从而达到提高金属高温性能的目的。
这种方法适用于原料成分比较单一、不需要低温环节的高温合金材料制备。
二、高温合金材料的性能测试1. 抗氧化性能测试高温下的氧化是高温合金材料失效的主要原因之一。
因此,抗氧化性能的测试是高温合金材料性能测试中比较关键的一环。
通常采用高温氧化实验和动态载荷下的氧化实验来测试高温合金材料的氧化性能。
2. 耐热腐蚀性能测试高温下的腐蚀也是高温合金材料失效的原因之一。
耐热腐蚀性能的测试旨在了解高温合金材料在具体腐蚀环境下的长期性能。
常用的测试方法包括塔氏液腐蚀、硝酸腐蚀等。
3. 高强度性能测试高强度是高温合金材料具有的一种重要性能。
通过拉伸试验、冲击试验等方法,可以测试高温合金材料的高强度性能。
4. 高温硬度测试高温硬度是指高温下材料的抗压强度。
通常采用压痕硬度仪等设备来测试高温合金材料的高温硬度。
高温合金牌号(G B/T14992-1994)高温合金:凡在应力及高温(一般指600~650摄氏度以上)同时作用下,具有长时间抗蠕变能力与高的持久强度和高的抗蚀性的金属材料,称为耐热合金或高温合金。
常用的有铁基合金、镍基合金、钴基合金,还有铬基合金、钼基合金及其他合金等。
高温合金是制造燃汽轮机、喷气式发动机等高温下工作零部件的重要材料。
表8-28高温合金的牌号及化学成分注:1.GH1035合金中的Ti和Nb为任选其一,不是同时加入的。
2.GH3039合金中允许有铈(Ce)存在。
3.表中B、Zr、Ce的含量为计算加入量,可不分析测定(除非产品标准或协议、合同中另有规定)。
表8-30高温合金的特性和应用注:各成分含量皆指质量分数。
表5-6-7中国与国外变形高温合金牌号近似对照N o.中国日本JIS美国德国①法国NF俄罗斯TOCT英国②DS/DTD GB/T旧牌号商业牌号AMS/SAEDINW-Nr.(L-Nr.)1 GH1015GH15- - - - - -ЭП868-2 GH1035GH35- - - - - -ЭП703-4 GH1040GH4- - - - - -ЭП395-5 GH1131GH131- - - - - -ЭП126-6 GH1140GH140- - - - - -ЭП602-7 GH2018GH18- - - - - - - N2638 GH2036GH36- - - - - -ЭП481-9 GH2038GH38A- - - - - -ЭП696A-10 GH2130GH130- - - - - -ЭП617-11 GH2132- GH132 A286AMSS525,X5NiCrTi26-151.4980(1.4944)Z6NCT25ATVSMoЭП786DTD5026SAEHEV712 GH2135GH135- - - - - -ЭП437-13 GH2136GH136- V57 - X5NirTi26-15 1.4980Z3NCT25;ATVS2- -14 GH2302GH302- - - -ЭП617-15 GH3030GH3- - - - -ATGR;NC20TЭП435HR5;DTD703B;N203,N40316 GH3039GH39- - - - - -ЭП602-17 GH3044GH44- - - - - -ЭП868-18 GH3128GH128- - - - - - - -19 GH4033GH33- - - - - -ЭП437ЪN80A20 GH4037GH37- -AMS5829;SAEHEV6;- -ATGS4;NC20KTAЭП6172HRC,2HR202DTD747B;N501,N50321 GH4043GH43- - - - - -ЭП598- -22 GH4049GH49- - - -(2.4636)NCK15ATDЭП929HR4;N11523 GH4133GH33A- - - - - -ЭП437ЪN80A24 GH4169GH169- Inconel7186,5662SAEXEV-1NiCr19NbMo 2.4668ATGC1;NC19FeNb- Inconel18*25 - GH19SUH661N155AMS5531,5585;SAEHEV1X12CrCoNi21-201.4971(1.4974)ATGXZ12CNKDW20- -26 - GH2NCF800B;NCF2BIncoloy800AMS5766,5871;X10NiCrAlTi32-201.487625NC35-20;NicralC-Incoloy800*27 - GH32- HestelloyXAMS55365754;SG-NiCr21Fe18Mo2.4613 ATGE -HR6HR20428 - GH25- L605AMS5537,5759;CoCr20W15Ni 2.4964ATGH;KC20WN- HR2529 - GH80A- -NiMonic80ANiCr20TiAl2.4952(2.4631)ATGS3NC20TA-2HR12HR201;2HR401;3HR601;DTD736B30 - GH141- Rene41AMS5545;5712NiCr19CoMo 2.4973ATGW2NC20KDTA- -31 - GH143- - - - 2.4634NCKD20ATr-HR3;DTD5007A; N10532 - GH145NCF750BInconelX-750AMS5542,5567NiCr15Fe7TiAL2.4669ATGF;NC15FeTNbAЭП974InconelX-750*33 - GH146- Udimet500AMS57515753NICr18Co 2.4983ATGW2;NC20KDTA-Udimet500*NPK2534 - GH163- - -NiCo20Cr20MoTi2.4650ATGWO;NCK20D-HR10,HR206;N26335 - GH167-HastelloyR-135AMS5872A- - - -36 - GH182-Hatell-oyC4- NiMo16Cr16Ti 2.4610 - -37 - GH333- RA333AMS5716;5717- -ATG33;Z6NCKDW45- -38 - GH600Imonel600AMS5665NiCr15Fe(NiCr15Fe8)2.4816NC15Fe;NiCralZ- -39 - GH710- - -ATGW4;Z6NCK18TDA-Udimet710*-40 - GH738- WaspaloyAMS5704;5544NiCr1gCo14Mo4Ti2.4654ATGW1;NC20K14- NPK5041 - GH901- Udimet901AMS5660;5561NiFeCr12Mo2.4975(2.4662)Z8NCDЭП725HR53,HR404;①W-Wr.是德国DIN17007系统的数字材料号(Wdrkstoff-Nummer);L-Nr.是德国航空标准数字牌号(Luftfahrtstoff-Nr)的缩写,在表中加括号,以示区别。
高温合金,耐蚀合金常用材质与用途
高温合金和耐蚀合金是目前工业生产中重要的材料之一,它们可以在高温、腐蚀等恶劣环境下长期稳定运行。
下面介绍一些常用的高温合金和耐蚀合金材质及其用途。
1. 高温合金
(1) 铸造高温合金:主要用于制造航空发动机叶片、高温轴承、高温燃烧室组件等。
(2) 变形高温合金:主要用于制造热交换器、高温管道、汽轮机叶片等。
(3) 粉末高温合金:主要用于制造航空、航天发动机叶轮、燃烧室、燃气轮机叶片等。
2. 耐蚀合金
(1) 铸造耐蚀合金:主要用于制造化工、石油、医药等行业的设备零部件,如反应器、换热器、泵体、阀门等。
(2) 变形耐蚀合金:主要用于制造化工、石油、海洋等领域的设备零部件,如管道、储罐、气体净化器、锅炉等。
(3) 铸造不锈钢:主要用于制造食品、医疗、建筑等领域的设备零部件,如厨具、手术器械、建筑装饰材料等。
总之,高温合金和耐蚀合金是现代工业生产中必不可少的材料,它们的生产和应用发展已成为推动工业技术进步的重要动力。
- 1 -。
高温合金的工作温度范围
高温合金的工作温度范围因类型而异。
变形高温合金的工作温度范围为-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能。
而固溶强化型合金的使用温度范围为900~1300℃,最高抗氧化温度达1320℃。
例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa应力的持久寿命为200小时、延伸率40%。
镍基高温合金主要成分为Ni、Co、Cr、W、Mo、Re、Ru、Al、Ta、Ti等元素,基体为镍元素,含量在60%以上,主要工作温度段在950℃-1100℃,在此温度段内服役时,其有较高的强度,较强的抗氧化能力以及抗腐蚀能力。
此外,高温合金分为三类材料:760℃高温材料、1200℃高温材料和1500℃高温材料,抗拉强度800MPa。
或者说是在760--1500℃以上及一定应力条件下长期工作的高温金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,已成为军民用燃气涡轮发动机热端部件不可替代的关键材料。
以上信息仅供参考,具体工作温度范围会受到多种因素影响,如有需求,建议查阅高温合金的规格书或者与相关从
业者沟通获取。
高温合金的钎焊1 高温合金可分为以下几类1.1铁基高温合金如GH132,它属于时效硬化奥氏体合金,可制造 700℃以下工作的工件。
1.2铁镍基高温合金如 K14,用于 900℃以下燃气涡轮导向叶片或工作叶片。
1.3 镍基高温合金,绝大部分高温合金均属于镍基合金,它们用来制造火焰筒,燃烧室和加力燃烧室,涡轮工作叶片和导向叶片等。
1.4钴基合金在我国应用较少。
1.5用于钎焊结构的一些高温合金的成分、牌号和热处理规范列于表1。
表1 高温合金成分、牌号和热处理规范2 钎焊特点2.1高温合金含有较多的铬,表面的 Cr2O3比较难以去除。
钎焊高温合金时,很少采用钎剂,因为钎剂中的硼酸和硼砂同母材作用后产生硼向母材渗入的现象,造成各种缺陷。
所以高温合金绝大多数都用气体保护钎焊和真空钎焊。
同时对保护气体的纯度要求很高。
2.2对于一些含铝、钛量高的高温合金来说,如GH33、GH37、GH132、K3、K14、K17等,它们的表面除了形成Cr2O3外,还有A123和TiO2等氧化物,这二种氧化物无论是在氢气或氩气保护下钎焊均不能去除,必须采取一些其它措施。
含铝、钛高的合金最适宜于真空钎焊,此时,可得到光洁的表面,确保钎料很好铺展。
2.3 高温合金都在淬火状态下使用,有的还要经过时效处理,以保证获得最佳性能。
因此对这些合金的钎焊温度应选择尽量与它们的淬火温度一致。
钎焊温度过高,会影响其性能,例如,与 GH33成分相接近的Incone1702合金,经1220℃钎焊和正常热处理后的性能示于图1。
由于钎焊温度比正常淬火温度高得多,钎焊后虽经热处理,但在各种温度下合金的强度要比未经钎焊的低得多。
图1 Incone1702合金机械性能与温度的关系1—正常热处理 2—1220℃钎焊+正常热处理2.4 而对于GH37、K3等固溶处理温度较高(1200℃左右)的合金来说,经1200℃钎焊加热后,对合金性能没有影响。
2.5 对时效硬化合金来说,钎焊后还应按照规定的规范进行时效处理。
高温合金牌号对照表
高温合金是一类具有优异耐高温性能的金属材料,常用于航空航天、能源、化工等领域。
以下是一些常见的高温合金牌号及其对照表:
1. 镍基高温合金:
Inconel 600/625/718/725,这些合金具有良好的耐腐蚀性和高温强度,广泛应用于化工、核工业等领域。
Hastelloy X/C-276,这些合金具有优异的耐腐蚀性和抗氧化性能,常用于化工、航空等领域。
Nimonic 80A/90,这些合金具有良好的高温强度和抗氧化性能,常用于航空发动机部件制造。
2. 钛基高温合金:
Ti-6Al-4V,这是一种常见的钛合金,具有良好的高温强度和耐腐蚀性能,广泛应用于航空航天领域。
Ti-6Al-2Sn-4Zr-2Mo,这种合金具有优异的高温强度和低密度,常用于航空发动机零部件制造。
3. 铬基高温合金:
Incoloy 800/800H/800HT,这些合金具有良好的高温蠕变和
抗氧化性能,常用于石油化工、电力等领域。
Haynes 230/556,这些合金具有优异的高温强度和耐腐蚀性能,常用于航空发动机零部件制造。
需要注意的是,不同厂家或国家对于高温合金的命名和牌号可
能会有所差异,因此在具体应用中需要根据实际情况进行对照和选择。
此外,高温合金的性能也受到制造工艺和热处理等因素的影响,因此在选用和应用时需要综合考虑材料的化学成分、力学性能、耐
腐蚀性能等方面的要求。
镍基高温合金newmaker镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。
发展过程镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。
英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic80(Ni-20Cr-2.5Ti-1.3Al)。
美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。
镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。
50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。
初期的镍基合金大都是变形合金。
50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。
60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。
为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。
在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。
镍基高温合金的发展趋势见图1。
镍基高温合金的发展趋势成分和性能镍基合金是高温合金中应用最广、高温强度最高的一类合金。
其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。
镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。
根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。