湖南大学电磁场与电磁波期中考试答案
- 格式:doc
- 大小:537.00 KB
- 文档页数:8
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁学领域考试题及答案一、单项选择题(每题2分,共20分)1. 电场强度的定义式是()。
A. E = F/qB. E = FqC. E = qFD. E = F/Q答案:A2. 电场中某点的电势为零,该点的电场强度一定为零。
()A. 正确B. 错误答案:B3. 电容器的电容与两极板间的距离成反比,与极板的正对面积成正比。
()A. 正确B. 错误答案:A4. 两个点电荷之间的静电力与它们电量的乘积成正比,与它们距离的平方成反比。
()A. 正确B. 错误答案:A5. 电流的磁效应最早由奥斯特发现。
()A. 正确B. 错误6. 根据安培环路定理,磁场强度B沿闭合回路的线积分等于该回路所包围的总电流。
()A. 正确B. 错误答案:A7. 法拉第电磁感应定律表明,感应电动势与磁通量的变化率成正比。
()A. 正确B. 错误答案:A8. 电感线圈的自感系数与线圈的匝数成正比,与线圈的几何形状和介质有关。
()A. 正确答案:A9. 根据楞次定律,当磁通量增加时,感应电流的方向总是阻碍磁通量的增加。
()A. 正确B. 错误答案:A10. 麦克斯韦方程组描述了电场和磁场的产生、传播和相互作用。
()A. 正确B. 错误答案:A二、填空题(每题2分,共20分)11. 电场强度的单位是________,符号为V/m。
答案:伏特每米12. 电容器的单位是________,符号为F。
答案:法拉13. 电感的单位是________,符号为H。
答案:亨利14. 磁场强度的单位是________,符号为T。
答案:特斯拉15. 电流的单位是________,符号为A。
答案:安培16. 电荷的单位是________,符号为C。
答案:库仑17. 电势的单位是________,符号为V。
答案:伏特18. 电势差的单位是________,符号为V。
答案:伏特19. 磁通量的单位是________,符号为Wb。
答案:韦伯20. 磁感应强度的单位是________,符号为A/m。
大学物理电磁试题及答案一、选择题(每题5分,共20分)1. 根据库仑定律,两个点电荷之间的静电力与它们电量的乘积成正比,与它们之间的距离的平方成反比。
下列关于库仑定律的描述中,正确的是:A. 静电力与电荷量成正比B. 静电力与电荷量成反比C. 静电力与距离的平方成正比D. 静电力与距离的平方成反比答案:D2. 电容器的电容与电容器的几何尺寸和介质有关。
下列关于电容器的描述中,正确的是:A. 电容器的电容与电容器的面积成正比B. 电容器的电容与电容器的面积成反比C. 电容器的电容与电容器的介质无关D. 电容器的电容与电容器的介质成正比答案:A3. 法拉第电磁感应定律指出,当磁场变化时,会在导体中产生感应电动势。
下列关于法拉第电磁感应定律的描述中,正确的是:A. 感应电动势与磁场变化率成正比B. 感应电动势与磁场变化率成反比C. 感应电动势与磁场变化率无关D. 感应电动势与磁场变化率成平方关系答案:A4. 麦克斯韦方程组是描述电磁场的基本方程。
下列关于麦克斯韦方程组的描述中,正确的是:A. 麦克斯韦方程组只描述了电场B. 麦克斯韦方程组只描述了磁场C. 麦克斯韦方程组描述了电场和磁场的关系D. 麦克斯韦方程组与电磁波无关答案:C二、填空题(每题5分,共20分)1. 根据高斯定律,通过任意闭合曲面的电通量等于_________。
答案:曲面内包围的净电荷量除以真空中的介电常数2. 两个相同电荷量的点电荷,相距为r,它们之间的库仑力为F,当它们相距变为2r时,它们之间的库仑力变为原来的_________。
答案:1/43. 一个电容器的电容为C,当它两端的电压为V时,它所储存的电荷量为_________。
答案:CV4. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,受到的力的大小为qvB,其中q是电荷量,v是速度,B是磁场强度。
当带电粒子的速度方向与磁场方向垂直时,洛伦兹力的大小为_________。
答案:qvB三、计算题(共60分)1. 一个半径为R的均匀带电球体,其总电荷量为Q,求球外距离球心r处的电场强度。
大学电磁学试题及答案一、选择题1. 下列哪个不是电磁场的性质?A. 磁场比电场强B. 磁场可以存储能量C. 磁场的形状与电流的形状无关D. 磁场可以做功2. 下列哪个不是电场的性质?A. 电场是矢量场B. 电场可以存储能量C. 电场的形状与电荷的分布有关D. 电场可以做功3. 以下哪个定理描述了电场的闭合性?A. 麦克斯韦方程组B. 电场强度叠加定理C. 安培环路定理D. 电场能量密度定理4. 以下哪个定理描述了磁场的无源性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理5. 在匀强电场中沿着电场方向移动电荷,电荷所受的力是:A. 垂直于电场方向的力B. 与电场方向相反的力C. 与电场方向相同的力D. 没有受力6. 以下哪个定理描述了磁场的涡旋性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理7. 当通过匀强磁场的导线以垂直于磁场方向的速度运动时,导线中将感应出电动势。
这个现象被称为:A. 法拉第现象B. 洛伦兹力C. 磁通量D. 磁感应强度8. 以下哪个定理描述了电磁感应现象?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 法拉第定律9. 高频交流电的传输会存在什么现象?A. 电流大于电压B. 电流和电压同相C. 电流小于电压D. 电流和电压反相10. 在电磁波中,电场和磁场之间的关系是:A. 电场和磁场互相作用B. 电场和磁场无关联C. 电场和磁场相互垂直D. 电场和磁场相互平行二、解答题1. 描述安培环路定理的表达式以及其含义。
安培环路定理的表达式是:$\oint \mathbf{B}\cdot d\mathbf{l} =\mu_0I_{\text{enc}}$。
该定理表示通过某一闭合回路的磁感应强度的环路积分等于该回路所围绕的电流的总和与真空中的磁导率的乘积。
即磁场的闭合性质。
2. 描述麦克斯韦方程组中法拉第电磁感应定律的表达式以及其含义。
电磁场与电磁波易考简答题归纳答:平面波是指波阵面为平面的电磁波。
均匀平面波是指波的电场→E 和磁场→H 只沿波的传播方向变化,而在波阵面内→E 和→H 的方向、振幅和相位不变的平面波。
1、电磁波有哪三种极化情况?简述其区别。
答:(1)直线极化,同相位或相差 180;2)圆极化,同频率,同振幅,相位相差 90或 270;(3)椭圆极化,振幅相位任意。
2、试写出正弦电磁场的亥姆霍兹方程(即亥姆霍兹波动方程的复数形式),并说明意义。
答:002222=+∇=+∇→→→→H k H E k E ,式中μεω22=k 称为正弦电磁波的波数。
意义:均匀平面电磁波在无界理想介质中传播时,电场和磁场的振幅不变,它们在时间上同相,在空间上互相垂直,并且电场、磁场、波的传播方向三者满足右手螺旋关系。
电场和磁场的分量由媒质决定。
3、写出时变电磁场中麦克斯韦方程组的非限定微分形式,并简述其意义。
答:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇→→→→→→→ρεμμεE H t H E tE J H )4(0)3()2()1(物理意义:A 、第一方程:时变电磁场中的安培环路定律。
物理意义:磁场是由电流和时变的电场激励的。
B 、第二方程:法拉第电磁感应定律。
物理意义:说明了时变的磁场激励电场的这一事实。
C 、第三方程:时变电场的磁通连续性方程。
物理意义:说明了磁场是一个旋涡场。
D 、第四方程:高斯定律。
物理意义:时变电磁场中的发散电场分量是由电荷激励的。
4、写出麦克斯韦方程组的微分形式或积分形式,并简述其意义。
答:(1)微分形式(2) 积分形式 物理意义:同第4题。
5、写出达朗贝尔方程,即非齐次波动方程,简述其意义。
答:→→→-=∂∂-∇J tA A μμε222,ερμε-=∂Φ∂-Φ∇→→222t 物理意义:→J 激励→A ,源ρ激励Φ,时变源激励的时变电磁场在空间中以波动方式传播,是时变源的电场辐射过程。
阶段测测试题目为单选、多选。
简单练习题目为名词解释、填空、简答。
作业题目为计算、论述题目类型:单选、名词解释、填空、简答、计算、论述。
矢量分析与场论初步0-1 正交坐标系与矢量运算 0-2 标量场和矢量场 0-3 标量场的梯度0-4 矢量场的通量与散度 0-5 矢量场的环量与旋度 0-6 亥姆霍茨定理 0-7 三种特殊形式的场 单选:一个标量场中某个曲面上梯度为零时 CA 其旋度必不为零B 其散度为零C 该面为等值面D 该标量场也为零 一个矢量场的散度为零时 BA 沿任一闭合曲线的线积分不为零B 沿任一闭合曲面的通量为零C 其旋度必不为零D 其梯度必为零直角坐标系中的单位向量e x 与e y 的数量积是 A A 1 B e x C e y D e z 直角坐标系中的单位向量e x 与e y 的矢量积是 D A 1 B e x C e y D e z一个矢量场的散度为零时 BA 沿任一闭合曲线的线积分不为零B 沿任一闭合曲面的通量为零C 其旋度必不为零D 其梯度必为零下述公式中不正确的是(其中C 是常数矢量) CA 、 0C =∇B 、0C =•∇ C 、C B B C ⨯=⨯D 、0C =⨯∇ 已知z y x x y z x y x e e e A )2()3()32(-+-+-=,矢量A 的散度为 B A 、1 B 、2 C 、3 D 、4名词解释:正交坐标系 各个坐标轴(单位向量)互相垂直 标量 只有大小而无方向的量 矢量 有大小又有方向的量梯度 标量场的梯度是一个矢量,是空间坐标点的函数;梯度的大小为该点标量函数的最大变化率,即该点最大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向。
矢量场的通量 矢量 E 沿有向曲面S 的面积分 S E d S ⋅⎰=Φ散度 矢量的散度是一个标量,是空间坐标点的函数;散度代表矢量场的通量源的分布特性,是通量密度。
期末考试试卷一、选择题(6小题,共18分)(3分)[1]一半径为a 的圆柱形铁棒在均匀外磁场中磁化后,棒内的磁化强度为0z M e ,则铁棒表面的磁化电流密度为A 、0m z J M e =B 、0m J M e ϕ=C 、0m J M e ϕ=-(3分)[2]恒定电流场中,不同导电媒质交界面上自由电荷面密度0σ=的条件是A 、1122γεγε=B 、1122γεγε>C 、1122γεγε< (3分)[3]已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为A 、左旋圆极化波B 、右旋圆极化波C 、线椭圆极化波(3分)[4]比较位移电流与传导电流,下列陈述中,不正确的是:A. 位移电流与传导电流一样,也是电荷的定向运动B. 位移电流与传导电流一样,也能产生涡旋磁场C. 位移电流与传导电不同,它不产生焦耳热损耗(3分)[5]xOz 平面为两种媒质的分界面,已知分界面处z y x e e e H 26101++=, z y e e H 242+=,则分界面上有电流线密度为:A 、10S z J e =B 、104S x z J e e =+C 、10S z J e =(3分)[6]若介质1为完纯介质,其介电常数102εε=,磁导率10μμ=,电导率10γ=;介质2为空气。
平面电磁波由介质1向分界平面上斜入射,入射波电场强度与入射面平行,若入射角/4θπ=,则介质2 ( 空气) 中折射波的折射角'θ为A 、/4πB 、/2πC 、/3π二、填空题(5小题,共20分)(4分)[1]静电比拟是指( ), 静电场和恒定电流场进行静电比拟时,其对应物理量间的比似关系是( )。
(4分)[2] 麦克斯韦方程组的微分形式为( )。
(4分)[3]镜像法的理论根据是( )。
镜像法的基本思想是用集中的镜像电荷代替( ) 的分布。
(4分)[4]恒定磁场中不同媒质分界面处, H 与B 满足的边界条件是:( ), ( ) 或( ),( ),媒质在(12μμ>>或12,μμ→∞)条件下,在分界面一侧B 线垂直于分界面。
电磁场与波课后思考题1-1 什么是标量与矢量?举例说明.仅具有大小特征的量称为标量.如:长度,面积,体积,温度,气压,密度,质量,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量.如:力,位移,速度,加速度,电场强度及磁场强度.1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么?矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3 矢量的标积与矢积的代数定义及几何意义是什么? 矢量的标积: ,A 矢量的模与矢量B 在矢量A 方向上的投影大小的乘积.矢积: 矢积的方向与矢量A,B 都垂直,且由矢量A 旋转到B,并与矢积构成右 旋关系,大小为1-4 什么是单位矢量?写出单位矢量在直角坐标中的表达式. 模为1的矢量称为单位矢量.1-5 梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式.标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式: 1-6 什么是矢量场的通量?通量值为正,负或零时分别代表什么意义?矢量A 沿某一有向曲面S 的面积分称为矢量A 通过该有向曲面S 的通量,以标量表示,即 通量为零时表示该闭合面中没有矢量穿过. 通量为正时表示闭合面中有源;通量为负时表示闭合面中有洞.1-7 给出散度的定义及其在直角坐标中的表示式. 散度:当闭合面S 向某点无限收缩时,矢量A 通过该闭合面S 的通量 与该闭合面包围的体积之比的极限称为矢量场A 在该点的散度。
直角坐标形式: 1-8 试述散度的物理概念,散度值为正,负或零时分别表示什么意义?物理概念:通过包围单位体积闭合面的通量。
散度为正时表示辐散,为负时表示辐合,为零时表示无能量流过.1-9 试述散度定理及其物理概念.散度定理:建立了区域 V 中的场和包围区域V 的闭合面S 上的场之间的关系θcos B A B A B A B A B A z z y y x x =++=⋅z y x z y x z y x B B B A A A e e e B A =⨯θsin B A e z θsin B A a e zy x e e e γβαcos cos cos ++=z y x e ze y e x ∂∂+∂∂+∂∂=∇⎰⋅=S S A Ψ d VS V Δd lim div 0Δ⎰⋅=→S A A zA y A x A A div z y x ∂∂+∂∂+∂∂= A ⋅∇=物理概念: 散度定理建立了区域 V 中的场和包围区域 V 的闭合面 S 上的场之间的关系。
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
湖南大学课程考试试卷sv⎰⎰⎰⎰⎰0u ∇∇=; 0u ∇∇⨯=;关于距离矢量R r r '=-,下面表示正确的为)21R ∇=; (B )R ∇=∇考试中心填写:6. 下面表述正确的为(D )(A )矢量场的散度仍为一矢量场; (B )标量场的梯度结果为一标量; (C )矢量场的旋度结果为一标量场;(D )标量场的梯度结果为一矢量7. 已知(23)()(22)x y z D x y e x y e y x e =-+-+-,如已知电介质的介电常数为0ε,则自由电荷密度ρ为 (C)(A ) (B )(C )1 (D ) 0 8. 镜像法中的镜像电荷是(A)的等效电荷。
(A )感应电荷 (B )原电荷 (C ) 原电荷和感应电荷 (D )不确定 9. 静电场中(C)在通过分界面时连续。
(A )E (B )D (C )E 的切向分量 (D )J10. 在使用镜像法解静电边值问题时,镜像电荷必须位于( B )(A )待求场域内 (B )待求场域外 (C )边界面上 (D )任意位置 11. 传导电流是由(C)形成的。
(A )真空中带电粒子定向运动 (B )电介质中极化电荷v 运动 (C )导体中自由电子的定向运动 (D )磁化电流v 速移动12. 矢量场的散度在直角坐标下的表示形式为(A )(A )Ax Ay Az x y z ∂∂∂++∂∂∂ (B )x y z Ax Ay Aze e e x y z ∂∂∂++∂∂∂(C )x y z A A A e e e x y z ∂∂∂++∂∂∂ (D )A A Ax y z ∂∂∂++∂∂∂ 13. 非线性、非均匀、各向异性的磁介质,磁导率是(C ):(A )不随空间位置变化的标量 (B )非标量(C ) 与外加磁场有关的标量(D )与外加磁场无关的标量。
14. 关于导体,下列说法中错误的是(D )(A )静电场中,导体内部的电场强度处处为0; (B )恒定电场中,导体内电位处处相等;(C )静电场中,导体表面电场强度的方向与表面的法线方向平行; (D ) 金属导体的介电常数约等于真空中的介电常数; 15. 导电介质的复介电常数c ε为(C )。
0ε01ε(A )jωεσ+;(B )j σεω+;(C )j σεω-;(D )j ωεσ- 二、填空题 (每空1分,共22分)1、复数形式的麦克斯韦方程组是(1) H J j D ω∇⨯=+ (2) E j B ω∇⨯=- (3) 0B ∇= (4) D ρ∇=2、在无界理想媒质中传播的均匀平面电磁波,电场与磁场的相位 相同 ,幅度随传播距离的增加而 保持不变 。
而在导电媒质中传播的均匀平面电磁波,电场与磁场的相位 不同 ,幅度随传播距离的增加而 呈指数衰减 。
3、在理想介质中的均匀平面电磁波,其电场方向与磁场方向 垂直 ,其振幅之比等于本征阻抗 。
4、麦克斯韦方程组中的和 表明:不仅_电荷 要产生电场,而且随时间变化的磁场也要产生电场。
5、真空中的静电场是_有源_场和_无旋_场;而恒定磁场是_无源_场和有旋_场。
传导电流密度J E σ=。
位移电流密度d D J t ∂=∂。
电场能量密度w e =_212E ε_。
磁场能量密度w m =212H μ。
6. 在无源区域中,磁场强度矢量H 满足的波动方程为_2222020H k H orHH tμε∇+=∂∇-=∂_。
7. 麦克斯韦第二方程是 电磁感应 定律的另一种表达形式。
三、简答题(每题3分,共18分)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
答: 矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
2. 分离变量法的基本步骤有哪些?答: 具体步骤是1、先假定待求的位函数由两个或三个各自仅含有一个坐标变量的乘积所组成。
2、把假定的函数代入拉氏方程,使原来的偏微分方程转换为两个或三个常微分方程。
解这些方程,并利用给定的边界条件决定其中待定常数和函数后,最终即可解得待求的位函数。
3. 试说明导体处于静电平衡时特性 答:导体处于静电平衡时特性有 ①导体内0E =;②导体是等位体(导体表面是等位面);③导体内无电荷,电荷分布在导体的表面(孤立导体,曲率); ④导体表面附近电场强度垂直于表面,且 0/E n σε=。
4. 叙述什么是镜像法?其关键和理论依据各是什么?答:镜像法是用等效的镜像电荷代替原来场问题的边界,其关键是确定镜像电荷的大小和位置,理论依据是唯一性定理。
5. 能流密度矢量(玻印廷矢量)S 是怎样定义的?坡印廷定理是怎样描述的? 答:能流密度矢量(坡印廷矢量)S 定义为单位时间内穿过与能量流动方向垂直的单位截面的能量。
坡印廷定理的表达式为()()e m sdE H dS W W P dtτ-⨯⋅=++⎰或 22211()()22sd E H dS E H d E d dt ττεμτγτ-⨯⋅=++⎰⎰⎰,反映了电磁场中能量的守恒和转换关系。
6. 简述唯一性定理,并说明其物理意义答: 对于某一空间区域V ,边界面为s ,φ满足,给定(对导体给定q )则解是唯一的。
只要满足唯一性定理中的条件,解是唯一的,可以用能想到的最简便的方法求解(直接求解法、镜像法、分离变量法……),还可以由经验先写出试探解,只要满足给定的边界条件,也是唯一解。
不满足唯一性定理中的条件无解或有多解。
四、计算题(共30分)1. (5分)已知标量函数22223326u x y z x y z =+++--。
(1)求u ∇;(2)在哪些点上u ∇等于零。
解 (1)(23)(42)(66)xy z x y z u u uu x y z x y z∂∂∂∇=++=++-+-∂∂∂e e e e e e ; (2)由(23)(42)(66)0x y z u x y z ∇=++-+-=e e e ,得32,12,1x y z =-==2. (5分)设点电荷位于金属直角劈上方,如图1所示,求 (1) 画出镜像电荷所在的位置(2) 直角劈内任意一点),,(z y x 处的电位表达式解:(1)镜像电荷所在的位置如图2-1所示。
(注:画对一个镜像得1分,三个全对得3分)(2)如图2-2所示任一点),,(z y x 处的电位为⎪⎪⎭⎫⎝⎛-+-=4321011114r r r r q πεφ (2分) 其中,()()()()()()()()222422232222222121212121z y x r z y x r z y x r z y x r +-++=++++=+++-=+-+-=3. (10分)在自由空间(0ε,0μ)传播的均匀平面波磁场为)109cos(1008z t e H y β-⨯=A /m(1)求相位常数β,指出波的传播方向;图2-1图2-2q -q+q -(2)写出H的复数形式;(3)求电场强度E的复数表达式; (4)求玻印廷矢量 (5)求平均玻印廷矢量。
解:(1)88910,310c ω=⨯=⨯,所以:3c βω==rad/s (2)H的复数形式:3100j z y H e e -=(3)电场强度E的复数表达式;33310010012000j z j z z y z x j zx E H e e e e e e e eηηηπ---=⨯=⨯==(4)玻印廷矢量:电场的瞬时表达式为:812000cos(9103)x E e t z π=⨯- 玻印廷矢量为:882812000cos(9103)100cos(9103)1200000cos (9103)x y z S E H e t z e t z e t z ππ=⨯=⨯-⨯⨯-=⨯-(5)平均玻印廷矢量:()()*3311Re Re 1200010060000022j z j z av x y z S E H e e e e e ππ-=⨯=⨯= 4. (10分)在半径为a 、电导率为σ的无限长直圆柱导线中,沿轴向通以均匀分布的恒定电流I ,且导线表面上有均匀分布的电荷面密度S ρ。
求导线表面外侧的玻印廷矢量S 。
解:当导线的电导率σ为有限值时,导线内部存在沿电流方向的电场i E 2z I a σπσ==J e 根据边界条件,在导线表面上电场的切向分量连续,即iz E oz E =。
因此,在导线表面外侧的电场的切向分量为2ozaIE a ρπσ==又利用高斯定理,容易求得导线表面外侧的电场的法向分量为So aE ρρρε==故导线表面外侧的电场为20S oz aI a ρρρεπσ==+E e e 利用安培环路定理,可求得导线表面外侧的磁场为2oaI aφρπ==H e故导线表面外侧的坡印廷矢量为2230()22S oo o z aaI I a aρρρρπσπε===⨯=-+S E H e e 2W m。