高一数学人教版必修一第一单元知识点:函数的基本性质
- 格式:doc
- 大小:2.14 MB
- 文档页数:6
人教版高一数学第一章函数的基本性质知识点归纳2021-2021高一数学第一章的内容是集合,下面是查字典数学网整理的第一章函数的基本性质知识点,请大家学习。
1、函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D内的任意两个自变量x1,x2;当x1 (2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:任取x1,x2D,且x1(B)图象法(从图象上看升降)_(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:函数单调性u=g(x) 增增减减y=f(u) 增减增减y=f[g(x)] 增减减增注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?2.函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。
○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 总结:利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2 确定f(-x)与f(x)的关系;○3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数.注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=f(x)比较困难,可考虑根据是否有f(-x)f(x)=0或f(x)/f(-x)=1来判定; (3)利用定理,或借助函数的图象判定 .第一章函数的基本性质知识点的全部内容就是这些,查字典数学网预祝大家在新学期取得更好的成绩。
高中数学必修一函数知识点函数是数学中一个非常重要的概念,在高中数学必修一的课程中,函数的内容占据了很大的比重。
学好函数,不仅可以帮助我们更好地理解数学知识,还可以提高我们的数学解题能力。
下面,我们就来系统地总结一下高中数学必修一中的函数知识点。
一、函数的定义在数学中,函数是对两个集合之间的一种特殊关系的描述。
简单来说,函数就是一个输入与输出之间的对应关系。
如果对于集合A中的每一个元素,都存在且仅存在一个元素与之对应在集合B中,那么这样的对应关系就可以称为一个函数。
通常用f(x)来表示函数,其中x为自变量,f(x)为因变量。
二、函数的性质1. 定义域和值域:函数的定义域是指所有自变量可以取得的值的集合,通常用D(f)表示;而函数的值域是指所有因变量可能取得的值的集合,通常用R(f)表示。
2. 增减性和奇偶性:函数的增减性指的是函数在定义域内的某个区间上是增函数还是减函数;而函数的奇偶性则是指当自变量取相反数时因变量的取值是否相同。
3. 周期性:如果对于所有x∈D(f),都有f(x)=f(x+T)成立,那么该函数就具有周期性,其中T为函数的周期。
4. 单调性:若对于定义域内任意的x₁、x₂(x₁<x₂),有f(x₁)≤f(x₂)或f(x₁)≥f(x₂)成立,则函数具有单调性。
5. 奇偶性:如果对于定义域内任意的x,有f(-x)=f(x)或f(-x)=-f(x)成立,那么该函数就具有奇函数或偶函数的性质。
三、常见的函数类型1. 一元一次函数:一元一次函数的一般形式为f(x)=kx+b,其中k和b为常数,代表了斜率和截距。
2. 一元二次函数:一元二次函数的一般形式为f(x)=ax²+bx+c,其中a、b、c为常数,且a≠0。
3. 幂函数:幂函数是一种形如f(x)=xⁿ的函数,其中n为常数。
4. 指数函数:指数函数是一种形如f(x)=aⁿ的函数,其中a为常数,n为变量。
5. 对数函数:对数函数是指以对数形式表示的函数,常见的以10为底或以自然对数e为底的对数函数。
新人教版高一数学必修1第一章要点:函数的基本性质一、函数的概念在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解。
函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用。
二、函数关系的建立“探索具体问题中的数量关系和变化规律,并能使用函数实行描述和解决问题”,这是《课标》关于函数目标的一段描述。
所以,各地中考试卷都有“函数建模及其应用”类问题,而建模的首要是建立函数表达式。
三、函数的运算函数的运算是各阶段考试和高考命题的必考内容,数学函数的运算知识点是对大家夯实基础的重点内容,请大家务必认真掌握。
四、函数的基本性质在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
函数的基本性质知识点总结1.函数的定义:函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
函数通常以符号表示,例如f(x)。
2.定义域:函数的定义域是指函数能够接受的自变量的值的集合。
它是函数能够有效进行计算的自变量的范围。
通常用符号表示为D(f)。
3.值域:函数的值域是指函数在定义域上所有可能的函数值的集合。
它是因变量的取值范围。
通常用符号表示为R(f)。
4.图像:函数的图像是指由函数的所有有序对(x,f(x))组成的点的集合。
可以通过将自变量的取值代入函数的表达式来确定函数的图像。
5.奇偶性:函数的奇偶性指函数在坐标系中的对称性。
一个函数被称为奇函数,如果对于定义域上的任何x值,-x处的函数值等于x处的相反数。
一个函数被称为偶函数,如果对于定义域上的任何x值,-x处的函数值等于x处的函数值。
6.单调性:函数的单调性指函数在定义域上的增减趋势。
一个函数被称为严格递增函数,如果对于定义域上的任意两个x值,f(x1)<f(x2)。
一个函数被称为严格递减函数,如果对于定义域上的任意两个x值,f(x1)>f(x2)。
7.周期性:函数的周期性指函数在定义域上以一定的周期重复。
一个函数被称为周期函数,如果存在一个正整数T,对于定义域上的任意x值,有f(x+T)=f(x)。
8.连续性:函数的连续性指函数在定义域上的无间断性。
一个函数在点x=c处连续,如果当x趋近于c时,f(x)趋近于f(c)。
一个函数在整个定义域上连续,如果它在每个点都连续。
9.可导性:函数的可导性指函数在一些点上的导数是否存在。
函数f(x)在点x=c处可导,如果当x趋近于c时,f(x)的斜率存在,并且等于c处的导数。
10.极值:函数的极值指函数在定义域上的最大值和最小值。
一个局部最大值是指函数在一些区间上的最大值,而不一定是整个定义域上的最大值。
一个局部最小值是指函数在一些区间上的最小值,而不一定是整个定义域上的最小值。
31-ξ函数的基本性质1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。
(2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.(3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。
(1)判断或证明函数的单调性;(2)奇偶性概念的形成与函数奇偶性的判断。
一、 函数的单调性 1.单调函数的定义(1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。
(2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。
(3)单调性:如果函数()y f x =在某个区间是增函数或减函数。
那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。
2、单调性的判定方法 (1)定义法:判断下列函数的单调区间:21xy =(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。
(3)复合函数的单调性的判断: 设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在],[b a 上也是单调函数.①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。
②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同. 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。
高一数学必修一函数知识点总结在高中数学的学习中,函数是一个非常重要的知识点。
它不仅是后续知识的基础,也在我们的日常生活中有广泛的应用。
因此,对函数的理解和掌握至关重要。
本文将对高一数学必修一函数的知识点进行总结,希望对同学们的学习有所帮助。
一、函数的概念和表示函数是一种特殊的关系,指的是自变量的每一个取值都唯一对应一个确定的因变量的规律。
函数通常用f(x)或y来表示,其中x是自变量,f(x)或y是因变量。
函数可以用图像、表格、公式等方式来表示。
二、函数的性质1. 定义域和值域:函数的定义域是自变量可能取值的集合,通常用符号D表示;值域是因变量可能取值的集合,通常用符号R表示。
2. 奇偶性:如果对于定义域中的任意x,有f(-x) = f(x),则函数为偶函数;如果对于定义域中的任意x,有f(-x) = -f(x),则函数为奇函数。
3. 单调性:如果对于定义域中的任意两个不同的x1和x2,有f(x1) < f(x2),则函数为增函数;如果有f(x1) > f(x2),则函数为减函数。
4. 周期性:如果存在常数T,使得对于定义域中的任意x,有f(x+T) = f(x),则函数为周期函数。
三、常见函数类型1. 线性函数:函数的图像是一条直线,表达式为y = kx + b,其中k和b为常数,k为斜率,b为截距。
2. 二次函数:函数的图像是一条开口向上或向下的抛物线,表达式为y = ax² + bx + c(a≠0),其中a、b和c都是常数。
3. 指数函数:函数的自变量为指数,底数为常数的函数。
表达式通常为y = a^x,其中a为底数。
4. 对数函数:函数的自变量为底数,底数为常数的函数。
表达式通常为y = logₐx,其中a为底数,x为真数。
5. 三角函数:函数的图像与有关三角函数的图像相似,常见的有正弦函数、余弦函数和正切函数等。
表达式通常为y = f(x),其中f(x)可以是sin x、cos x或tan x等。
函数知识点总结人教版高一函数是数学中的一个重要概念,是我们解决实际问题的有力工具。
函数包含了定义域、值域、图像等概念,在人教版高一数学教材中,我们学习了函数的基本性质、函数的运算以及函数的应用等知识点。
本文将对人教版高一数学教材中的函数知识点进行总结和归纳,帮助大家系统地掌握这一部分内容。
一、函数的定义与性质函数是一种映射关系,它将一个集合的元素映射到另一个集合的元素。
在函数的定义中,我们要明确函数的定义域和值域。
定义域是自变量的取值范围,值域是函数的取值范围。
另外,函数还有奇偶性、单调性、周期性等性质。
二、初等函数的图像和性质在高一数学教材中,我们学习了常见的初等函数,如幂函数、指数函数、对数函数、三角函数等。
我们要了解它们的图像特点、定义域、值域、单调性等性质,以及它们之间的关系。
例如,幂函数y=x^n(n为正整数)的图像在原点呈现出不同的形状,对数函数y=loga(x)(a>0且a≠1)在定义域内是严格单调递增函数。
三、函数的运算函数之间的运算包括函数的加减、函数的乘除以及函数的复合。
加减运算是指将两个函数相加或相减,得到一个新的函数。
乘除运算是指将两个函数相乘或相除,得到一个新的函数。
复合运算是指将一个函数作为另一个函数的自变量或者将两个函数相互嵌套。
四、反函数与反函数图像在函数的定义中,有一个重要的概念是反函数。
反函数可以简单理解为将函数的自变量和因变量互换得到的新函数。
反函数的定义域等于原函数的值域,反函数的值域等于原函数的定义域。
反函数的图像与原函数的图像关于直线y=x对称。
五、函数的应用函数在数学中的应用非常广泛。
例如,我们可以应用函数来解决实际问题中的最值问题、约束问题、函数建模等。
在应用函数解决问题时,我们需要根据问题的背景和条件,选择合适的函数进行建模,并运用各种数学方法进行求解。
综上所述,函数是数学中的重要概念,它能够帮助我们解决实际问题。
在人教版高一数学教材中,我们学习了函数的定义与性质、初等函数的图像与性质、函数的运算、反函数与反函数图像以及函数的应用等知识点。
高一数学人教版必修一第一单元知识点:函数的基本性质
高一数学人教版必修一第一单元知识点:函数的
基本性质
函数表示每个输入值对应唯一输出值的一种对应关系。
小编准备了高一数学人教版必修一第一单元知识点,希望你喜欢。
1.高中数学必修一函数的基本性质——函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.
定义域补充
能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:
(1) 分式的分母不等于零;
(2) 偶次方根的被开方数不小于零;
(3) 对数式的真数必须大于零;
(4) 指数、对数式的底必须大于零且不等于 1.
中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的
集合 C ,叫做函数y=f(x),(x ∈A)的图象.
C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) | y= f(x) , x ∈A }
图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可
能是由与任意平行与 Y 轴的直线最多只有一个交点的若干
条曲线或离散点组成 .
(2) 画法
A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点
P(x, y) ,最后用平滑的曲线将这些点连接起来 .
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换(3) 作用:
1 、直观的看出函数的性质;
2 、利用数形结合的方法分析解题的思路。
提高解题的速度。
发现解题中的错误。
4.高中数学必修一函数的基本性质——快去了解区间的概
念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷
区间;(3)区间的数轴表示.
5.高中数学必修一函数的基本性质——什么叫做映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B 中都有唯一确定的元素y与之对应,那么就称对应f:A B 为从集合A到集合B的一个映射。
记作“f:A B”
给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
常用的函数表示法及各自的优点:
函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; 解析法:必须注明函数的定义域; 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;
列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意啊:解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值
补充一:分段函数 (参见课本P24-25)
在定义域的不同部分上有不同的解析表达式的函数。
在不同的范围里求函数值时必须把自变量代入相应的表达式。
分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
补充二:复合函数
如果y=f(u),(u ∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。
高一数学人教版必修一第一单元知识点就为大家介绍到这里,希望对你有所帮助。