勾股定理检测题含答案解析
- 格式:pdf
- 大小:62.77 KB
- 文档页数:2
勾股定理测试题一、相信你的选择1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为().A.16πB.12πC.10πD.8π2、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+7C.12或7+7D.以上都不对3、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m4、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm二、试试你的身手5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.三、挑战你的技能如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A 的仰角为30°,已知侧角仪高DC =, BC =30米,请帮助小明计算出树高AB .(3取,结果保留 三个有效数字)参考答案与提示一、相信你的选择 150o 20米30米1、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=21πR 2=21π×(28)2=8π.故选D );2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm≤h ≤16cm ,故选D ).二、试试你的身手5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有 (3k )2+(2k )2=(213)2,解得a =b ,b =4.);6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43);7.(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =.故AD =226.36-=);8、150a .三、挑战你的技能10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D作DE⊥AB于点E,则ED=BC=30米,EB=DC=米.设AE=x 米,在Rt△ADE中,∠ADE=30°,则AD=2x.由勾股定理得:AE2+ED2=AD2,即x2+302=(2x)2,解得x=103≈.∴AB=AE+EB≈+≈(米).答:树高AB约为米.。
第十七章勾股定理检测试题(含解析)(考试时间60分钟,总分100分)一、选择题(每小题3分,共30分)1. 下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cm C.2cm,5cm,6cm D.5cm,12cm,13cm2.已知命题:等边三角形是等腰三角形.则下列说法正确的是()A.该命题为假命题B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题3. 在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定4. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定5. 如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=,则BC的长等于()A.B.2 C.1 D.第5题图第6题图第7题图6.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15 B.225 C.81 D.257. 如图,在△ABC中,三边a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<a<c8.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m9. 已知钝角三角形的三边为2、3、4,该三角形的面积为()A.B.C.D.10.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF第8题图第10题图第14题图二、填空题(每小题4分,共24分)11. 如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为.12. 下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有(填序号).13.在平面直角坐标系中,点A(﹣1,0)与点B(0,2)的距离是.14.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.15. 在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面1 尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是x尺,根据题意,可列方程为.16. 如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2019=.第15题图第16题图三、解答题(17-19每题8分,20每题10分,21题12分,共46分)17. 将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD=.(1)求AD的长.(2)求△ABC的周长.19. 如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积?20.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?21.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB 上两点A,B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?22.在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.参考答案:一、选择题(每小题3分,共30分)1. 下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cm C.2cm,5cm,6cm D.5cm,12cm,13cm【分析】欲判断是否为直角三角形,需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,能构成直角三角形,不符合题意;B、22+22=(2)2,能构成直角三角形,不符合题意;C、22+52≠62,不能构成直角三角形,符合题意;D、52+122=132,能构成直角三角形,不符合题意.故选:C.【点评】此题主要考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.已知命题:等边三角形是等腰三角形.则下列说法正确的是()A.该命题为假命题B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题【考点】命题与定理.【分析】首先判断该命题的正误,然后判断其逆命题的正误后即可确定正确的选项.【解答】解:等边三角形是等腰三角形,正确,为真命题;其逆命题为等腰三角形是等边三角形,错误,为假命题,故选B.3. 在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定【分析】先把AC2﹣AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC 是直角三角形,再根据大边对大角的性质即可作出判断.【解答】解:∵AC2﹣AB2=BC2,∴AC2=AB2+BC2,∴△ABC是直角三角形,∴∠B=90°.故选:B.【点评】本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定【解答】解:设另一直角边为a,斜边为a+1.根据勾股定理可得,(a+1)2﹣a2=92.解之得a=40.则a+1=41,则直角三角形的周长为9+40+41=90.故选C.5. 如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=,则BC的长等于()A.B.2 C.1 D.【分析】根据含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,可知BC=AB,再根据勾股定理即可求出BC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴BC=AB,∵AC=,∴AC2+BC2=AB2,∴()2+BC2=4BC2,解得:BC=,故选:D.【点评】本题考查了含30度角的直角三角形的性质,此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.6.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15 B.225 C.81 D.25【分析】根据正方形的面积公式求出BC、AB,根据勾股定理计算即可.【解答】解:∵S1=64,S3=289,∴BC=8,AB=17,由勾股定理得,AC==15,∴S2=152=225,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.7. 如图,在△ABC中,三边a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<a<c【分析】先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.【解答】解:根据勾股定理,得a==;b==;c==.∵5<10<13,∴b<a<c.故选:D.【点评】本题考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.8.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【解答】解:∵△ABC是直角三角形,BC=6m,AC=10m∴AB===8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选:C.【点评】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系9. 已知钝角三角形的三边为2、3、4,该三角形的面积为()A.B.C.D.【解答】解:如图所示:过点B作BD⊥AC于点D,设BD=x,CD=y,则AD=4﹣y,故在Rt△BDC中,x2+y2=32,故在Rt△ABD中,x2+(4﹣y)2=22,故9+16﹣8y=4,解得:y=,∴x2+()2=9,解得:x=,故三角形的面积为:×4×=.故选:D.10.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.二、填空题(每小题4分,共24分)11. 如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为90°.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形可得答案.【解答】解:∵()2+22=()2,∴此三角形是直角三角形,∴这个三角形的最大角的度数为90°,故答案为:90°.12. 下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有②④(填序号).【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④【点评】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.13.在平面直角坐标系中,点A(﹣1,0)与点B(0,2)的距离是.【解答】解:点A(﹣1,0)与点B(0,2)的距离是:=.故答案填:.14.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【分析】本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】本题就是一个简单的勾股定理的应用问题.15. 在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面1 尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是x尺,根据题意,可列方程为.【分析】首先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2,再解即可.【解答】解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺,故答案为:x2+52=(x+1)2.【点评】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.16. 如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2019=.【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【解答】解:∵OP1=,由勾股定理得:OP2==,OP3==,…OP2019=2020,故答案为:2020.【点评】本题考查了勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.三、解答题(17-19每题8分,20每题10分,21题12分,共46分)17. 将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.【分析】(1)利用勾股定理计算c边的长;(2)利用勾股定理计算a边的长;【解答】解:(1)∵∠C=90°,a=,b=3.∴c==4(2))∵∠C=90°,c=13,b=12,∴a==5【点评】本题主要考查了勾股定理的应用,属于基础题.18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD=.(1)求AD的长.(2)求△ABC的周长.【分析】(1)根据勾股定理求出AD;(2)根据勾股定理求出AC,计算即可.【解答】解:(1)在Rt△ABD中,AD==3;(2)在Rt△ACD中,AC==2,则△ABC的周长=AB+AC+BC=5+4++2=9+3.【点评】本题考查的是勾股定理,掌握直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2是解题的关键.19. 如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积?【分析】连接AC,利用勾股定理求出AC的长,在△ABC中,判断它的形状,并求出它的面积,最后求出四边形ABCD的面积.【解答】解:连接AC,∵AD=4cm,CD=3cm,∠ADC=90°,∴AC===5(cm)∴S△ACD=CD•AD=6(cm2).在△ABC中,∵52+122=132即AC2+BC2=AB2,∴△ABC为直角三角形,即∠ACB=90°,∴S△ABC=AC•BC=30(cm2).∴S四边形ABCD=S△ABC﹣S△ACD=30﹣6=24(cm2).答:四边形ABCD的面积为24cm2.【点评】本题考查了勾股定理、勾股定理的逆定理及三角形的面积公式.掌握勾股定理及其逆定理,连接AC,说明△ABC是直角三角形是解决本题的关键.20.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?【分析】直接利用勾股定理得出AE,DE的长,再利用BD=DE﹣BE求出答案.【解答】解:由题意得:AB=2.5米,BE=0.7米,∵在Rt△ABE中∠AEB=90°,AE2=AB2﹣BE2,∴AE==2.4(m);由题意得:EC=2.4﹣0.4=2(米),∵在Rt△CDE中∠CED=90°,DE2=CD2﹣CE2,∴DE==1.5(米),∴BD=DE﹣BE=1.5﹣0.7=0.8(米),答:梯脚B将外移(即BD长)0.8米.【点评】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.21.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB 上两点A,B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【解答】解:(1)海港C受台风影响.理由:如图,过点C作CD⊥AB于D,∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB∴300×400=500×CD∴CD==240(km)∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受到台风影响.(2)当EC=250km,FC=250km时,正好影响C港口,∵ED==70(km),∴EF=140km∵台风的速度为20km/h,∴140÷20=7(小时)即台风影响该海港持续的时间为7小时.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.22.在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.【考点】勾股定理的逆定理;全等三角形的判定与性质.【分析】根据题意中的△ABD为等腰直角三角形,显然应分为三种情况:∠ABD=90°,∠BAD=90°,∠ADB=90°.然后巧妙构造辅助线,出现全等三角形和直角三角形,利用全等三角形的性质和勾股定理进行求解.【解答】解:∵AC=4,BC=2,AB=,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.分三种情况:如图(1),过点D作DE⊥CB,垂足为点E.∵DE⊥CB(已知)∴∠BED=∠ACB=90°(垂直的定义),∴∠CAB+∠CBA=90°(直角三角形两锐角互余),∵△ABD为等腰直角三角形(已知),∴AB=BD,∠ABD=90°(等腰直角三角形的定义),∴∠CBA+∠DBE=90°(平角的定义),∴∠CAB=∠EBD(同角的余角相等),在△ACB与△BED中,∵∠ACB=∠BED,∠CAB=∠EBD,AB=BD(已证),∴△ACB≌△BED(AAS),∴BE=AC=4,DE=CB=2(全等三角形对应边相等),∴CE=6(等量代换)根据勾股定理得:CD=2;如图(2),过点D作DE⊥CA,垂足为点E.∵BC⊥CA(已知)∴∠AED=∠ACB=90°(垂直的定义)∴∠EAD+∠EDA=90°(直角三角形两锐角互余)∵△ABD为等腰直角三角形(已知)∴AB=AD,∠BAD=90°(等腰直角三角形的定义)∴∠CAB+∠DAE=90°(平角的定义)∴∠BAC=∠ADE(同角的余角相等)在△ACB与△DEA中,∵∠ACB=∠DEA(已证)∠CAB=∠EDA(已证)AB=DA(已证)∴△ACB≌△DEA(AAS)∴DE=AC=4,AE=BC=2(全等三角形对应边相等)∴CE=6(等量代换)根据勾股定理得:CD=2;如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.∵∠C=90°,∴∠CAB+∠CBA=90°,∵∠DAB+∠DBA=90°,∴∠EBD+∠DAF=90°,∵∠EBD+∠BDE=90°,∠DAF+∠ADF=90°,∴∠DBE=∠ADF,∵∠BED=∠AFD=90°,DB=AD,∴△AFD≌△DEB,则ED=AF,由∠ACB=∠CED=∠AFE=90°,则四边形CEFA是矩形,故CE=AF,EF=AC=4,设DF=x,则BE=x,故EC=2+x,AF=DE=EF﹣DF=4﹣x,则2+x=4﹣x,解得:x=1,故EC=DE=3,则CD=3.。
勾股定理试题及答案
一、选择题
1. 在直角三角形中,直角边长分别为3和4,斜边的长度为()。
A. 5
B. 7
C. 8
D. 9
答案:A
2. 已知直角三角形的一条直角边长为6,斜边长为10,另一条直角边的长度为()。
A. 8
B. 6
C. 4
D. 2
答案:A
二、填空题
1. 直角三角形的两条直角边长分别为5和12,斜边长为____。
答案:13
2. 如果一个直角三角形的斜边长为17,一条直角边长为15,那么另一条直角边长为____。
答案:8
三、解答题
1. 已知直角三角形的一条直角边长为9,斜边长为15,求另一条直角边的长度。
答案:另一条直角边的长度为12。
2. 一个直角三角形的两条直角边长分别为8和15,求斜边的长度。
答案:斜边的长度为17。
四、证明题
1. 证明:如果一个三角形的三边长分别为3,4,5,则这个三角形是直角三角形。
答案:根据勾股定理,如果一个三角形的三边长a,b,c满足a² + b² = c²,则这个三角形是直角三角形。
在本题中,3² + 4² = 9 + 16 = 25,等于5²,所以这个三角形是直角三角形。
2. 已知直角三角形的斜边长为10,一条直角边长为6,求另一条直角边的长度,并证明该三角形是直角三角形。
答案:另一条直角边的长度为8。
证明:根据勾股定理,6² + 8² = 36 + 64 = 100,等于10²,所以该三角形是直角三角形。
勾股定理基础练习题(含答案与解析)勾股定理勾股定理基础练习题(含答案与解析)第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共15小题)1.在直角三角形中,有两边分别为3和4,则第三边是()A.1 B.5 C.D.5或2.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20 B.22 C.24 D.263.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算5.如图,在△ABC中,AD⊥BC于D,AB=17,BD=15,DC=6,则AC的长为()A.11 B.10 C.9 D.86.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.97.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为()A.4 B.6 C.8 D.108.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()勾股定理基础练习题(含答案与解析)A.5m B.6m C.7m D.8m9.如图,已知,CD是Rt△ABC斜边上的高,∠ACB=90°,AC=4m,BC=3m,则线段CD的长为()A.5m B.C.D.10.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2 C.3cm2 D.4cm211.直角三角形的一直角边长是12,斜边长是15,则另一直角边是()A.8 B.9 C.10 D.1112.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()A.B.C.D.13.用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm14.将一个直角三角形的三边扩大3倍,得到的三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定15.下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5勾股定理基础练习题(含答案与解析)第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共13小题)16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S 的边长为cm.17.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.18.如图:5米长的滑梯AB开始在B点距墙面水平距离3米,当向后移动1米,A点也随着向下滑一段距离,则下滑的距离(大于,小于或等于)1米.19.如图,长方体长、宽、高分别为4cm,3cm,12cm,则BD′=.勾股定理基础练习题(含答案与解析)20.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是.21.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为.22.把两个全等的直角三角形拼成如图图形,那么图中三角形面积之和与梯形面积之间的关系用式子可表示为,整理后即为.23.如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.勾股定理基础练习题(含答案与解析)24.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.25.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.26.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止当t=时,△PBQ是直角三角形.27.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.勾股定理基础练习题(含答案与解析)28.一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B处,则小虫所爬的最短路径长是(π取3).评卷人得分三.解答题(共5小题)29.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?30.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.勾股定理基础练习题(含答案与解析)31.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.32.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?33.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?勾股定理基础练习题(含答案与解析)本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
勾股定理试题及答案
一、选择题
1. 在直角三角形中,如果直角边长分别为3和4,那么斜边的长度是:
A. 5
B. 6
C. 7
D. 8
答案:A
2. 勾股定理描述的是:
A. 三角形的内角和
B. 三角形的外角和
C. 直角三角形两直角边的平方和等于斜边的平方
D. 直角三角形的面积
答案:C
二、填空题
1. 若直角三角形的两条直角边分别为a和b,斜边为c,则勾股定理
可以表示为:\[ a^2 + b^2 = \]________。
答案:c^2
2. 如果一个直角三角形的斜边长为13,一条直角边长为5,那么另一
条直角边的长度是________。
答案:12
三、解答题
1. 已知直角三角形的两条直角边分别为6和8,求斜边的长度。
解:根据勾股定理,斜边长度c可以通过以下公式计算:
\[ c = \sqrt{6^2 + 8^2} \]
\[ c = \sqrt{36 + 64} \]
\[ c = \sqrt{100} \]
\[ c = 10 \]
答案:斜边的长度为10。
2. 一个直角三角形的斜边长为17,一条直角边长为15,求另一条直角边的长度。
解:设另一条直角边的长度为x,根据勾股定理,有:
\[ 15^2 + x^2 = 17^2 \]
\[ 225 + x^2 = 289 \]
\[ x^2 = 289 - 225 \]
\[ x^2 = 64 \]
\[ x = \sqrt{64} \]
\[ x = 8 \]
答案:另一条直角边的长度为8。
勾股定理测试题及答案一、选择题(每题 5 分,共 30 分)1、直角三角形的两直角边分别为 5 厘米、12 厘米,则斜边长是()A 13 厘米B 14 厘米C 15 厘米D 16 厘米答案:A解析:根据勾股定理 a²+ b²= c²(其中 a、b 为直角边,c 为斜边),可得斜边 c =√(5²+ 12²) =√(25 + 144) =√169 = 13 厘米。
2、以下列各组数为边长,能组成直角三角形的是()A 3,4,6B 5,12,13C 5,11,12D 2,3,4答案:B解析:选项 A,3²+ 4²= 9 + 16 = 25,6²= 36,25 ≠ 36,所以不能组成直角三角形;选项 B,5²+ 12²= 25 + 144 = 169,13²=169,所以能组成直角三角形;选项 C,5²+ 11²= 25 + 121 = 146,12²= 144,146 ≠ 144,所以不能组成直角三角形;选项 D,2²+ 3²=4 + 9 = 13,4²= 16,13 ≠ 16,所以不能组成直角三角形。
3、一个直角三角形,两直角边长分别为 3 和 4,下列说法正确的是()A 斜边长为 25B 三角形的周长为 12C 斜边长为 5D 三角形的面积为 6答案:C解析:根据勾股定理,斜边长为√(3²+ 4²) =√25 = 5,选项 A 错误,选项 C 正确;三角形的周长为 3 + 4 + 5 = 12,选项 B 错误;三角形的面积为 1/2 × 3 × 4 = 6,选项 D 正确。
4、若直角三角形的三边长分别为 2,4,x,则 x 的值可能有()A 1 个B 2 个C 3 个D 无数个答案:B解析:当 x 为斜边时,x =√(2²+ 4²) =√20 =2√5;当 4 为斜边时,x =√(4² 2²) =√12 =2√3。
勾股定理测试题及答案1. 计算下列直角三角形的斜边长度:a. 直角边长度分别为 3cm 和 4cmb. 直角边长度分别为 5cm 和 12cmc. 斜边长度为 10cm,直角边长度分别为 6cm 和 xcm2. 判断以下三角形是否为直角三角形,并说明理由:a. 三边长度分别为 3cm, 4cm, 5cmb. 三边长度分别为 8cm, 15cm, 17cmc. 三边长度分别为 7cm, 24cm, 25cm3. 已知一个直角三角形的斜边长度为 13cm,一条直角边长度为 5cm,求另一条直角边的长度。
4. 一个直角三角形的斜边和一条直角边的长度之比为 5:2,如果斜边长度为 20cm,求另一条直角边的长度。
答案1.a. 根据勾股定理,斜边长度等于两直角边长度的平方和的平方根。
因此,√(3² + 4²) = √(9 + 16) = √25 = 5cm。
b. 同样地,斜边长度为√(5² + 12²) = √(25 + 144) =√169 = 13cm。
c. 设另一条直角边长度为 y,则√(x² + 6²) = 10,解得 x²= 100 - 36 = 64,所以 x = 8cm。
2.a. 3² + 4² = 9 + 16 = 25,等于 5²,所以这是一个直角三角形。
b. 8² + 15² = 64 + 225 = 289,等于 17²,所以这也是一个直角三角形。
c. 7² + 24² = 49 + 576 = 625,不等于 25²,所以这不是一个直角三角形。
3. 设另一条直角边长度为 y,则根据勾股定理,5² + y² = 13²,解得 y² = 169 - 25 = 144,所以 y = 12cm。
八年级数学下(上海科技版) 第18章 勾股定理检测题 1第18章 勾股定理检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A.2,3,4 B.3,4,5 C.6,8,10 D.53,54,1 2.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7 D .7或253.下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △中,∠°,所以222c b a =+D.在Rt △中,∠°,所以222c b a =+4.如图,已知正方形的面积为144,正方形的面积为169,那么正方形的面积( ) A.313 B.144 C.169 D.255.如图,在Rt △中,∠°, cm , cm ,则其斜边上的高为( )A.6 cmB.8.5 cmC.1360cmD.1330cm 6. 在△中,三边长满足222c a b =-,则互余的一对角是( )ABC第4题图八年级数学下(上海科技版)第18章 勾股定理检测题 2A .∠与∠B .∠与∠C .∠与∠D .以上都不正确7. (2019·辽宁大连中考)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( )A.3-1B. 3+1C. 5-1D. 5+18.如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm. A.6B.8C.10D.129. 如图,直角△ABC 的周长为24,且AB :AC =5:3,则BC =( ) A .6 B .8 C .10 D .1210. (2019·湖南株洲中考)如图是“赵爽弦图”,△ABH ,△BCG ,△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,EF =2,那么AH 等于 .第7题图第9题图第10题图八年级数学下(上海科技版)第18章 勾股定理检测题 3二、填空题(每小题3分,共24分)11.已知两条线段的长分别为5 cm 、12 cm ,当第三条线段长为________时,这三条线段可以组成一个直角三角形. 12.在△中,cm ,cm ,⊥于点,则_______.13.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.14.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.15.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是 . 16.下列四组数:①5,12,13;②7,24,25;③;④.其中作为三角形的三边长可以构成直角三角形的有________.(把所有你认为正确的序号都写上)17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形的面积之和为___________cm 2.18.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m ),却踩伤了花草.三、解答题(共46分)19.(6分)若△三边满足下列条件,判断△是不是直角三角形,并说明哪个角是直角: (1)1,45,43===AC AB BC ;八年级数学下(上海科技版)第18章 勾股定理检测题 4(2))1(1,2,122>+==-=n n c n b n a .20.(6分)若三角形的三个内角的比是,最短边长为1,最长边长为2.求:(1)这个三角形各角的度数;(2)另外一边长的平方.21.(6分)如图,有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放,则比门高出1尺,如果斜放,则恰好等于门的对角线的长.已知门宽4尺,请你求出竹竿的长与门的高.22.(7分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗? 23.(7分)观察下表:列举 猜想3,4,55,12,137,24,25… … …… … …请你结合该表格及相关知识,求出的值.第21题图第22题图八年级数学下(上海科技版) 第18章 勾股定理检测题 524.(7分)如图,折叠长方形的一边,使点落在边上的点处, cm ,cm ,求:(1)的长;(2)的长.25.(7分)如图,长方体中,,,一只蚂蚁从点出发,沿长方体表面爬到点,求蚂蚁怎样走路径最短,最短路径长是多少?第18章 勾股定理检测题参考答案1.A2.D3.C解析:A.不确定三角形是否为直角三角形及是否为斜边,故A 选项错误;B.不确定第三边是否为斜边,故B 选项错误;C.∠,所以其对边为斜边,故C 选项正确;D.∠,所以,故D 选项错误.4.D 解析:设三个正方形的边长依次为,由于三个正方形的三边组成一个直角三角形,所以,故,即.第24题图第25题图八年级数学下(上海科技版) 第18章 勾股定理检测题 65.C 解析:由勾股定理可知 cm ,再由三角形的面积公式,有21,得1360=⋅AB BC AC (cm ). 6. B 解析:由,得,所以△是直角三角形,且是斜边长,所以∠,从而互余的一对角是∠与∠. 7. D8.C 解析:如图为圆柱的侧面展开图,∵ 为的中点,则就是蚂蚁爬行的最短路径.∵,∴.∵ ,∴ ,即蚂蚁要爬行的最短路程是10 cm .9.B10. 6 解析:∵ △ABH ≌△BCG ≌△CDF ≌△DAE ,∴ AH =DE . 又∵ 四边形ABCD 和EFGH 都是正方形, ∴ AD =AB =10,HE =EF =2,且AE ⊥DE . ∴ 在Rt △ADE 中,,∴+=∴+=,∴ AH =6,AH = - 8(舍).11.cm 或13 cm 解析:根据勾股定理,当12为直角边长时,第三条线段长为;当12为斜边长时,第三条线段长为.第8题答图12.15 cm 解析:如图,∵等腰三角形底边上的高、中线以及顶角平分线三线合一,∴.∵,∴.∵,第12题答图∴(cm).13.108 解析:因为,所以△是直角三角形,且两条直角边长分别为9、12,则以两个这样的三角形拼成的长方形的面积为.14.12 解析:.15.15 解析:设第三个数是,①若为最长边,则,不是整数,不符合题意;②若17为最长边,则,三边是整数,能构成勾股数,符合题意,故答案为15.16.①②③17.49 解析:四个正方形的面积之和是最大的正方形的面积,即49 .18.4 解析:在Rt△ABC中,,则(m),少走了(步).19.解:(1)因为,即,所以根据三边满足的条件,可以判断△是直角三角形,其中∠为直角.(2)因为,所以,八年级数学下(上海科技版)第18章勾股定理检测题7根据三边满足的条件,可以判断△是直角三角形,其中∠为直角.20.解:(1)因为三个内角的比是,所以设三个内角的度数分别为.由,得,所以三个内角的度数分别为30°,60°,90°.(2)可知三角形为直角三角形,则一条直角边长为1,斜边长为2.设另外一条直角边长为,则,即.所以另外一条边长的平方为3.21.解:设门高为尺,则竹竿长为尺.由题意可得,即,解得.答:竹竿长为8.5尺,门高为7.5尺.22.分析:旗杆折断的部分,未折断的部分和旗杆顶部离旗杆底的部分构成了直角三角形,运用勾股定理可将折断的位置求出.解:设旗杆未折断部分的长为米,则折断部分的长为米,根据勾股定理得,解得,即旗杆在离底部6米处断裂.23.分析:根据已知条件可找出规律;根据此规律可求出的值.解:由3,4,5:;八年级数学下(上海科技版)第18章勾股定理检测题85,12,13:;7,24,25:.故,,解得,,即.24.分析:(1)由于△翻折得到△,所以,则在Rt△中,可求得的长,从而的长可求;(2)由于,可设的长为,在Rt△中,利用勾股定理求解直角三角形即可.解:(1)由题意可得(cm),在Rt△中,∵cm,∴(cm),∴(cm).(2)由题意可得,可设的长为,则.在Rt△中,由勾股定理得,解得,即的长为5 cm .25.分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解:如图(1),把长方体沿棱剪开,形成长方形,宽为,长为,连接,则△ACC ′为直角三角形,由勾股定理得.如图(2),把长方体沿棱剪开,形成长方形,宽为,长为,连接,则△ADC ′为直角三角形,同理,由勾股定理得.八年级数学下(上海科技版)第18章勾股定理检测题9八年级数学下(上海科技版) 第18章 勾股定理检测题10∴ 蚂蚁从点出发穿过到达点路径最短,最短路径长是5.第25题答图。
勾股定理测试题及答案一、选择题1. 勾股定理描述的是直角三角形的哪两个边的关系?A. 两条直角边B. 斜边和一条直角边C. 斜边和两条直角边D. 两条直角边和斜边答案:D2. 直角三角形中,如果两条直角边的长度分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A3. 勾股定理的公式是:A. a² + b² = c²B. a² + c² = b²C. b² + c² = a²D. a² - b² = c²答案:A二、填空题4. 在一个直角三角形中,如果两条直角边的长度分别为6和8,那么斜边的长度是______。
答案:105. 已知直角三角形的斜边长度为13,一条直角边的长度为5,另一条直角边的长度是______。
答案:12三、解答题6. 一个直角三角形的斜边长度为10,一条直角边的长度为6,求另一条直角边的长度。
答案:另一条直角边的长度为8。
7. 已知直角三角形的两条直角边的长度分别为9和12,求斜边的长度。
答案:斜边的长度为15。
四、证明题8. 证明:如果一个三角形的三边满足a² + b² = c²,那么这个三角形是直角三角形。
答案:根据勾股定理,如果三角形的三边满足a² + b² = c²,那么这个三角形是直角三角形,其中c为斜边,a和b为直角边。
五、应用题9. 一个梯子长5米,斜靠在墙上,梯子的底部距离墙1.5米,求梯子顶端到地面的距离。
答案:梯子顶端到地面的距离为3.5米。
10. 一个长方形的长为8米,宽为6米,求对角线的长度。
答案:对角线的长度为10米。
数学数学勾股定理试题含答案数学勾股定理试题含答案1. 已知直角三角形的斜边长为10cm,一直角边长为6cm,求另一直角边的长度。
解析:根据勾股定理,直角三角形中,斜边的平方等于两直角边平方和。
设另一直角边为x,则有10^2 = 6^2 + x^2,化简得 x^2 = 64,所以 x = 8。
答案为8cm。
2. 已知一个直角三角形的两直角边分别为5cm和12cm,求斜边的长度。
解析:根据勾股定理,设斜边的长度为x,则有 x^2 = 5^2 + 12^2,化简得 x^2 = 25 + 144,所以x = √169。
答案为13cm。
3. 若一个直角三角形的两直角边分别为a和b,斜边长度为c,求证:a^2 + b^2 = c^2。
解析:设直角边为a和b,斜边长度为c。
根据勾股定理,有 c^2 =a^2 + b^2。
此式即为勾股定理的数学表达。
证毕。
4. 已知一个直角三角形的斜边长为5√2cm,一直角边长为4cm,求另一直角边的长度。
解析:设另一直角边为x,则根据勾股定理,有(5√2)^2 = 4^2 + x^2,即 50 = 16 + x^2,化简得 x^2 = 34,所以x = √34。
答案为√34 cm。
5. 已知一个直角三角形的两直角边分别为3m和4m,求斜边的长度。
解析:设斜边的长度为x。
根据勾股定理,有 x^2 = 3^2 + 4^2,即x^2 = 9 + 16,化简得 x^2 = 25,所以 x = 5。
答案为5m。
6. 若一个直角三角形的两直角边分别为m和n,斜边长度为p,求证:m^2 + n^2 = p^2。
解析:设直角边为m和n,斜边长度为p。
根据勾股定理,有 p^2 = m^2 + n^2。
此式即为勾股定理的数学表达。
证毕。
综上所述,数学勾股定理是描述直角三角形中三条边之间关系的重要定理。
通过勾股定理,我们可以计算直角三角形中未知边长的长度,解决与直角三角形相关的数学问题。
掌握勾股定理的应用,对于数学学习和实际问题的解决都具有重要意义。
勾股定理检测题
【本检测题满分:100分,时间:90分钟】
一、选择题(每小题3分,共30分)
1.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()
A.25 B.14 C.7 D.7或25
2.下列说法中正确的是()
A.已知a,b,c是三角形的三边长,则a2?b2?c2
B.在直角三角形中,两边的平方和等于第三边的平方
C.在Rt△ABC中,若∠C?90?,则a2?b2?c2
D.在Rt△ABC中,若∠B?90?,则a2?b2?c2
3.(2015·辽宁大连中考)如图,在△ABC中,∠C=90°,AC=2,点D在BC 上,∠ADC= 2∠B,AD=,则BC的长为() A.3?1 B.?1 C.?1 D.?1
第4题图
∠ACB?90?,AC?5 cm,BC?12 cm,4.如图,在Rt△ABC中,则其斜边上的高为()6030A.6 cm B.8.5 cm C. cm D. cm 1313
∠ACB?90?,AC?40,CB?9,5.如图,在△ABC中,点M,N在AB上,且AM?AC,
BN?BC,则MN的长为()
A.6
B.7
C.8
D.9
第5题图第6题图
66.如图,一圆柱高8 cm,底面半径为 cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短距离是()
A.6 cm
B.8 cm
C.10 cm
D.12 cm
7.下列满足条件的三角形中,不是直角三角形的是()
∶2∶3 B.三边长的平方之比为1∶2∶3 A.三内角之比为1
C.三边长之比为3∶4∶5
D.三内角之比为3∶4∶5
8.在△ABC中,三边a,b,c满足b2?a2?c2,则互余的一对角是()
A.?A 与?B
B.?C 与?A
C.?B 与?C
D.以上都不是
9.(2015·黑龙江龙东中考)在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点。