八年级勾股定理折叠问题专题
- 格式:doc
- 大小:116.50 KB
- 文档页数:2
折叠问题(一)(人教版)(专题)一、单选题(共6道,每道12分)1.如图,在长方形纸片ABCD中,AB=8,BC=12,点M在BC边上,且CM=4,将矩形纸片折叠使点D落在点M处,折痕为EF,则AE的长为( )A.1B.2C.3D.5答案:B解题思路:如图,过点E作EG⊥BC,交BC于点G在Rt△EGM中,EG=AB=8,EM=ED=12-AE,MG=12-4-AE=8-AE∵∴∴AE=2故选B试题难度:三颗星知识点:略2.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为8cm,则MN的长为( )A.12cmB.12.5cmC.cmD.13.5cm答案:C解题思路:如图,过N作NF⊥AM于F,∵MN为折痕,A,E为对应点,∴MN⊥AE∴∠AMN+∠MAE=90°∵∠AMN+∠MNF=90°∴∠MAE=∠MNF∵FN=AD∴△ADE≌△NFM(ASA)∴MN=AE∵AB=12,EC=8∴DE=4在Rt△ADE中,∴AE=故选C试题难度:三颗星知识点:略3.如图,矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是( )cm.A. B.3C. D.答案:C解题思路:如图,连接QE,过点Q作QG⊥CD于点G∴QG=PD=3设PQ=x,则GE=x-2,由折叠得,QE=x,在Rt△QGE中,由勾股定理得,即∴故选C试题难度:三颗星知识点:略4.将长方形纸片ABCD按如图所示的方式折叠,AE,EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的处,并且点B落在边上的处.则BC的长为( )A. B.4C.6D.答案:C解题思路:在Rt△ABE中,∠BAE=30°,,∴BE=2,AE=4∵∠BAE=30°∴∵是由∠AEB折叠而来∴∴是等边三角形∴又∵EC折叠后得到∴∴BC=6故选C试题难度:三颗星知识点:略5.如图,先把矩形ABCD对折,折痕为MN,展开后再折叠,使点B落在MN上,此时折痕为AE,点B在MN上的对应点为,则=( )A.15°B.30°C.45°D.60°答案:B解题思路:如图,过点作⊥AD于点F.由第一次折叠,得,由第二次折叠,得,,∴,又∵∴∴∴故选B试题难度:三颗星知识点:略6.如图,将长方形纸片ABCD折叠,使点D与点B重合,折痕为EF,AE=4cm,DE=8cm,则折痕EF的长是( )cm.A.4B.8C. D.答案:B解题思路:如图,由折叠,得∠1=∠2,BE=DE=8.在Rt△ABE中,∵AE=4,BE=8,∴∠ABE=30°,∴∠AEB=60°,∴∠1=∠2=60°.在长方形ABCD中,BC∥AD,∴∠3=∠1=60°,∴△BEF为等边三角形,∴EF=BE=8.故选B试题难度:三颗星知识点:略二、填空题(共2道,每道12分)7.如图,P是平行四边形纸片ABCD的边BC上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在边上处,折痕与AB边交于点N.若∠MPC=75°,则=____°.答案:15解题思路:如图,由折叠性质可知,∵∴∴故填15.试题难度:知识点:略8.如图,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为____.答案:5解题思路:解:由折叠知,∠CBD=∠C′BD,由平行知,∠ADB=∠CBD,∴∠ADB=∠C′BD,EB=ED设ED=x,则EB=x、AE=8-x在Rt△ABE中,由勾股定理可得,AE2+AB2=BE2即(8-x)2+42=x2解得x=5所以DE的长为5.试题难度:知识点:略。
专题:勾股定理在折叠问题中应用一.知识要点(1)折叠的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等.(2)利用线段关系和勾股定理,运用方程思想进行计算.二.典例解析(一)三角形的折叠1.如图,Rt ⊿ABC 中,∠C=90°,AC=6,AB=10,D 为BC 上一点,将AC 沿AD 折叠,使点C 落在AB 上,求CD 的长2.如图,Rt ⊿ABC 中,∠C=90°, D 为AB 上一点,将⊿ABC 沿DE 折叠,使点B 与点A 重合,①若AC=4,BC=8,求CE 的长ACBDC ´A ´②若AC=24,BC=32,求折痕DE 的长(二)矩形的折叠1.如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG2.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm , 求EC 的长.变式:如图.在直角坐标系中,矩形ABC0的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为3.如图,矩形纸片ABCD,AB=4cm,BC=8cm,现将A、C重合,使纸片折叠压平,设折痕为EF①求DF的长;②求重叠部分△AEF的面积;③求折痕EF的长.(三)正方形的折叠1.将边长为8cm的正方形ABCD折叠,使D落在BC边的中点E处,点A落在F处,折痕为MN①求线段CN的长;②求AM;③求折痕MN的长EA´D AB CN M变式:如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B'处,点A对应点为A',且3B C'=,则AM的长是___________.。
八年级勾股定理之折叠问题【知识点睛】1. 轴对称(折叠)性质(1)全等变换:折叠前后对应边相等,对应角相等; (2)对称轴性质:折叠前后对应点所连的线段被对称轴垂直平分. 对称轴上的点与对应点距离相等.2. 组合搭配:长方形中的折叠常出现等腰三角形.角平分线+平行→等腰 3. 折叠问题处理思路(1)找折痕(所在直线为对称轴); (2)表达、转移; (3)利用勾股定理列方程.【精讲精练】1. 如图,有一张直角三角形纸片,两直角边AC =6cm ,BC =8cm ,点D 在BC边上,将直角边AC 沿直线AD 折叠,点C 恰好落在斜边AB 上的点E 处,则线段CD 的长为__________.DEABCF CB EDA第1题图 第2题图 2. 如图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,若AB =4cm ,BC =5cm ,则EF 的长为________.3. (2019·大连)如图,将长方形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D′F 的长为( ) A. B .4 C .3 D .2N M AC B4. 如图,在△ABC 中,AB =20,AC =12,BC =16,E 为BC 边上一点,把△ABC沿AE 折叠,使AB 落在直线AC 上,则重叠部分(阴影部分)的面积为________.5. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B'处,点A 的对应点为A'.若B'C =3,则CN =______,AM =_______.A'B'A DBC MB FAE N M D第5题图 第6题图6. 如图,将长为4cm ,宽为2cm 的长方形纸片ABCD 折叠,使点B 落在CD 边的中点E 处,压平后得到折痕MN ,则线段AM 的长为__________.7. 如图,在长方形ABCD 中,BC =4,CD =3,将该长方形沿对角线BD 折叠,使点C 落在点F 处,BF 交AD 于点E ,则EF 的长为_______.ADEF (C )D′F E DCB A D (B )A 1EA第7题图 第8题图8. 一张长方形纸片ABCD 按如图所示方式折叠,使顶点B 和顶点D 重合,折痕是EF .若BF =4,CF =2,则∠DEF =________.9. 如图,在长方形ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,则EF 的长为_________.FCBEDAC'10. 如图,在平面直角坐标系中,已知点A 的坐标为(2,1),P 是x 轴上的一个动点,则当△AOP 是等腰三角形时,点P 的坐标为____________.11. (2019·河北)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ),笔直铁路经过A ,B 两地. (1)A ,B 间的距离为___________km ;(2)计划修一条从C 到铁路AB 的最短公路....l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为____________km .C(0,-17),1)【参考答案】1.3cm2.52cm3. C4.365.4,26.138cm7.7 88.60°9.10.(,,(40),,5 (0) 4,11.(1)20(2)13。
小专题(二) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题 1.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为( )A.252 cmB.152 cmC.254 cm D.154cm2.如图所示,有一块直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( )A .1 cmB .1.5 cmC .2 cmD .3 cm3.(青岛中考)如图,将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB =6,BC =9,则BF 的长为( )A .4B .3 2C .4.5D .54.如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .65.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为( )A .3 B.154 C .5 D.1526.如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是( )A.210-2B.6C.213-2D.47.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE 的周长为________.8.如图,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB 边的C′点,那么△ADC′的面积是________.9.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的锐角A翻折,使得点A落在BC边的中点D处,折痕交AC边于点E,交AB边于点F,则DE的值为________.10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.11.为了向建国六十六周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20 cm,宽AB=16 cm的长方形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,请你根据①②步骤解答下列问题:计算EC,FC的长.类型2 利用勾股定理解决立体图形的展开问题1.如图,一圆柱体的底面周长为24 cm,高AB为5 cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是( )A.6 cm B.12 cmC.13 cm D.16 cm2.如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.3.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达C处需要走的最短路程是________m(精确到0.01 m).4.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?5.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.参考答案类型11.D 2.A 3.A 4.D 5.B 6.A 7.7 8.6 cm29.13310.1.511.因为△ADE与△AFE关于AE对称,所以△ADE≌△AFE.所以DE=FE,AD=AF.因为BC=20 cm,AB=16 cm,所以CD=16 cm,AD=AF=20 cm.在Rt△ABF中,由勾股定理,得BF=12 cm.所以CF=20-12=8(cm).因为四边形ABCD是长方形,所以∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理,得(16-x)2=64+x2.解得:x=6.所以EC=6 cm.答:EC=6 cm,CF=8 cm.类型21.C 2.15 3.2.604.把长方体的面DCC′D′沿棱C′D′展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连接AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC.即O为DC的中点,由勾股定理,得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O,再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.5.(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89.∵l1>l2,∴最短路径的长是89.。
折叠问题学案
1.如图,把矩形纸条ABCD沿EFGH,同时折叠,BC,两点恰好落在AD边的
P
点处,若90FPHo∠,8PF,6PH,则矩形ABCD的边BC长为( )
A.20 B.22 C.24 D.30
2.如图,折叠长方形的一边AD,点D落在BC边的点F处,已知AB=8cm, BC=10cm ,
求EC的长.
3.如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于
点F,连结AE.
证明:(1)BFDF.
(2)AEBD∥.
(3)若AB=6,BC=10,分别求AF、BF的长,
并求三角形FBD的周长和面积。
4.如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边
A
E
P
D
G
H
F
B
A
C
D
A B D
F E C
A
B
C
D
E
F
E
D
A
的中点E处,折痕为AF.若6CD,求AF的值。
5.在矩形纸片ABCD中,AB=33,BC=6,沿EF折叠后,点C落在AB边上的
点P处,•点D落在点Q处,AD与PQ相交于点H,∠BPE=30°.(1)求BE、
QF的长;(2)求四边形PEFH的面积.
6.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′
与CD交于点E.
若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求
PG+PH的值,并说明理由.