李椿热学答案及部分习题讲解部分习题的参考答案
- 格式:doc
- 大小:98.50 KB
- 文档页数:16
热学课程教学大纲一、课程说明课程名称:热学所属专业:物理学专业本科学生课程性质:大类平台课程学分:3分主要先修课程和后续课程:(1)先修课程:高等数学,力学。
(2)后续课程:热力学与统计物理,电磁学,原子物理学,固体物理。
课程简介、目标与任务:“普通物理学”课程是理科物理类专业的重要基础课,由力学、热学电磁学、光学和原子物理学这五个部分组成。
各个部分单独设课,“热学”是其中继“力学”后的第二门课程。
“普通物理学”课程的“目的是使学生系统地了解和掌握物理学的基本概念、基本原理、基本知识、基本思想“和方法,以及它们的实验基础;了解物理学的发展方向及物理学与其它自然科学和社会科学等的关系;培养学生进一步学好物理学的兴趣,提高学生的自学能力、分析和解决问题的能力;逐步帮助学生建立科学的自然观、世界观和方法论。
”“热学”课程在物理类专业一年级第二学期开设。
通过“热学”课程的学习,使学生认识物质热运动形态的特点、规律和研究方法,深刻地理解热运动的本质,较为系统地掌握热力学、气体动理论和物性学的基础知识,能独立解决今后学习中遇到的一般热学问题,为进一步学习电磁学、原子物理学、理论物理热力学和统计物理等后续课程打下良好的基础。
教材:《热学》(第二版),李椿等编,高等教育出版社,2008主要参考书:1. 《热学》(第二版)习题分析与解答,宋峰常树人编,高等教育出版社,20102. 《热学》(第二版)常树人编,南开大学出版社,20092.《热学教程》,包科达编,科学出版社,20073. 《热学》(第二版),张玉民编,科学出版社,20064.《新概念物理教程·热学》(第二版),赵凯华等编,高等教育出版社,20055.《普通物理学教程·热学》(第二版),秦允豪编,高等教育出版社,20046. 《热学》(第二版),李洪芳编,高等教育出版社,2001二、课程内容与安排绪论(1学时)第一节热学研究的对象和方法第二节热学发展简述主要内容:热学研究的对象热现象热运动热力学统计物理学气体动理学理论物性学热学研究的方法宏观量微观量宏观量与微观量的关系热学发展简史热学常用物理量的符号热学常用物理量的单位基本物理常量基本物理常量的国际推荐值物理量的数量级物质世界的层次分子的典型数据热学课程的特点【掌握】:热学研究的对象热运动热学研究的方法宏观量微观量宏观量与微观量的关系热学课程的特点【了解】:热学发展简史热学常用物理量的符号热学常用物理量的单位物理量的数量级分子的典型数据物质世界的层次【难点】:深入理解热学是适用于宏观和微观的普适理论宏观理论和微观理论的本质关系第一章温度(5学时)第一节平衡态状态参量第二节温度第三节气体的物态方程主要内容:平衡态热动平衡对平衡态的描述力学平衡热学平衡化学平衡相变平衡状态参量几何参量力学参量化学参量电磁参量热接触热平衡热动平衡的条件热力学第零定律温度及温标建立温标的要素水的冰点水的汽点水的三相点经验温标华氏温标摄氏温标理想气体温标热力学温标国际实用温标ITS-90 温度计液体温度计定体气体温度计定压气体温度计物态方程气体物态方程玻意耳定律阿伏伽德罗定律理想气体物态方程普适气体常量阿伏伽德罗常量玻尔兹曼常量洛施密特常量道尔顿分压定律混合理想气体的物态方程分体积定律平均摩尔质量体积分数压强分数摩尔质量分数质量分数物质的量分数混合理想气体的密度非理想气体物态方程范德瓦耳斯方程范德瓦耳斯气体昂内斯方程【重点掌握】:平衡态热动平衡热动平衡的条件热力学第零定律温度及温标的概念理想气体物态方程范德瓦耳斯方程【掌握】:对平衡态的描述力学平衡热学平衡化学平衡相变平衡状态参量几何参量力学参量化学参量热接触热平衡建立温标的要素水的冰点水的汽点水的三相点经验温标理想气体温标热力学温标玻意耳定律阿伏伽德罗定律普适气体常量阿伏伽德罗常量玻尔兹曼常量洛施密特常量道尔顿分压定律混合理想气体的物态方程【了解】:国际实用温标ITS-90华氏温标摄氏温标温度计液体温度计定体气体温度计定压气体温度计各种物态方程平均摩尔质量体积分数压强分数摩尔质量分数质量分数物质的量分数混合理想气体的密度非理想气体物态方程昂内斯方程【难点】:平衡态热动平衡温度及温标概念的建立物态方程的建立第二章气体分子动理论的基本概念(6学时)第一节物质的微观模型第二节理想气体的压强第三节温度的微观解释第四节分子力第五节范德瓦耳斯气体的压强主要内容:气体动理学理论的基本论点分子论点热运动论点分子力论点统计论点布朗运动的微观解释统计规律性与涨落现象偶然性与必然性的关系统计性假设平均值加权平均统计平均理想气体的微观模型理想气体压强公式的推导气体压强的微观解释用不同的简化模型推导理想气体压强公式理想气体分子平均平动动能与热力学温度的关系温度的微观解释对理想气体定律的推证阿伏伽德罗定律道尔顿分压定律分子间力伦纳德-琼斯模型短程力分子间力势能常用分子间力势能模型微观粒子的弹性碰撞模型分子有效直径分子直径与热力学温度的关系分子间力的平衡距离分子间斥力的有效作用距离分子间引力的有效作用距离分子间力的典型数据分子体积引起的修正分子间引力所引起的修正范德瓦耳斯常量b 范德瓦耳斯常量a范德瓦耳斯气体的压强范德瓦耳斯气体的压强与理想气体的压强范德瓦耳斯方程的适用范围范德瓦耳斯气体的摩尔体积【重点掌握】:气体动理学理论的基本论点理想气体的微观模型气体压强的微观解释温度的微观解释【掌握】:理想气体压强公式的推导用不同的简化模型推导理想气体压强公式理想气体分子平均平动动能与热力学温度的关系对理想气体定律的推证常用分子间力势能模型微观粒子的弹性碰撞模型分子有效直径的概念分子体积引起的修正分子间引力所引起的修正范德瓦耳斯气体的压强【了解】:布朗运动的微观解释分子间力来源分子直径与热力学温度的关系分子间力的平衡距离分子间斥力的有效作用距离分子间引力的有效作用距离分子间力的典型数据范德瓦耳斯常量b范德瓦耳斯常量a范德瓦耳斯方程的适用范围【一般了解】:偶然性与必然性的关系统计性假设算术平均几何平均加权平均统计平均范德瓦耳斯气体的压强与理想气体的压强用迭代法计算范德瓦耳斯气体的摩尔体积【难点】:各种简化模型的建立方式物体内分子之间的相互作用和分子的热运动决定其宏观性质理想气体压强公式的推导宏观量的微观本质第三章气体分子热运动速率和能量的统计分布(11学时)第一节气体分子的速率分布率第二节用分子射线实验验证麦克斯韦速度分布律第三节玻尔兹曼分布律重力场中微粒按高度的分布第四节能量按自由度均分定理主要内容:分布函数速率分布函数速率分布函数的归一化条件麦克斯韦速率分布律麦克斯韦速率分布曲线的特征麦克斯韦速率分布律的适用范围随机事件概率概率加法定理概率乘法定理概率分布函数气体分子的最概然速率麦克斯韦速率分布函数的约化形式用麦克斯韦速率分布函数求平均值气体分子的平均速率和方均速率用麦克斯韦速率分布函数求分子数误差函数的计算气体分子速率其他特征速率麦克斯韦速度分布律麦克斯韦速度分布曲线的特征麦克斯韦速度分布函数的约化形式速度空间麦克斯韦速度分布函数与麦克斯韦速率分布函数的关系麦克斯韦速度分布函数的定义域气体分子速度分量的最概然值、平均值和方均根值分子通量公式泻流分子束泻流存在的条件麦克斯韦发射分布麦克斯韦发射分布的约化形式麦克斯韦速率分布律的实验验证密勒和库士实验葛正权实验等温大气等温气压公式气压计和高度计玻尔兹曼分布律重力场中微拉按高度的分布阿伏伽德罗常量的测定大气标高大气粒子总数大气的温度结构标准大气负绝对温度自由度分子运动的自由度分子的平动自由度分子的转动自由度分子的振动自由度刚性分子和非刚性分子的自由度线形分子和非线形分子的自由度能量均分定理理想气体的内能理想气体热容的经典理论能量均分定理的应用限度量子理论对气体热容量的解释【重点掌握】:麦克斯韦速率分布律麦克斯韦速度分布律玻尔兹曼分布律能量均分定理【掌握】:麦克斯韦速率分布曲线的特征麦克斯韦速率分布律的适用范围气体分子的最概然速率用麦克斯韦速率分布函数求平均值、气体分子的平均速率和方均速率用麦克斯韦速率分布函数求分子数麦克斯韦速度分布曲线的特征分子通量公式等温大气等温气压公式重力场中微拉按高度的分布分子运动的自由度理想气体的内能理想气体热容的经典理论【了解】:分布函数随机事件概率概率加法定理概率乘法定理气体分子特征速率的量纲分析麦克斯韦速率分布函数的约化形式麦克斯韦发射分布麦克斯韦速率分布律的实验验证密勒和库士实验葛正权实验大气标高能量均分定理的应用限度量子理论对气体热容量的解释【一般了解】:误差函数的计算麦克斯韦发射分布的约化形式阿伏伽德罗常量的测定大气粒子总数大气总质量大气的温度结构大气的均质层标准大气负绝对温度【难点】:速率分布函数及分布函数的统计意义麦克斯韦速率及速度分布律函数的统计意义及应用玻尔兹曼分布律的统计意义及应用第四章气体内的输运过程(5学时)第一节气体分子的平均自由程第二节输运过程的宏观规律第三节输运过程的微观规律主要内容:气体分子的碰撞频率气体分子的碰撞截面气体分子的平均自由程气体分子的平均相对速率与平均速率的关系分子的自由程分布函数穿过指定截面的分子的平均自由程分子穿过指定截面前最后一次受碰处至截面的平均距离黏性现象牛顿黏性定律黏度系数黏性现象的微观解释热传导现象傅里叶定律热导率热传导现象的微观解释热传导与电传导扩散现象菲克定律扩散系数扩散现象的微观解释黏度系数、热导率、扩散系数与压强的关系黏度系数、热导率、扩散系数与温度的关系黏度系数、热导率、扩散系数彼此之间的关系黏度系数、热导率、扩散系数的数量级低压下气体的黏性现象低压下气体的热传导现象容器对其内的低压气体分子的碰撞频率和平均自由程的限定估算分子有效直径的方法的比较分子热运动的典型数据【重点掌握】:气体分子的碰撞频率气体分子的碰撞截面气体分子的平均自由程黏性现象热传导现象扩散现象【掌握】:牛顿黏性定律及其微观解释傅里叶定律及其微观解释菲克定律及其微观解释低压下气体的黏性现象低压下气体的热传导现象容器对其内的低压气体分子的碰撞频率和平均自由程的限定【了解】:黏度系数、热导率、扩散系数与压强、温度的理论和实验比较黏度系数、热导率、扩散系数彼此之间的关系黏度系数、热导率、扩散系数的数量级估算分子有效直径的方法的比较分子热运动的典型数据【一般了解】:穿过指定截面的分子的平均自由程分子穿过指定截面前最后一次受碰处至截面的平均距离的概念【难点】:气体分子的碰撞频率、气体分子的碰撞截面、气体分子的平均自由程的概念的建立分子穿过指定截面前最后一次受碰处至截面的平均距离第五章热力学第一定律(10学时)第一节热力学过程第二节功第三节热量第四节热力学第一定律第五节热容焓第六节气体的内能焦耳-汤姆孙实验第七节热力学第一定律对理想气体的应用第八节循环过程和卡诺循环主要内容:热力学过程准静态过程非静态过程作功体积功作功的计算过程曲线示功图广义坐标广义位移广义力广义功绝热过程绝热功内能热量传热传热的计算热容量比热容摩尔热容焓作功与传热都是过程量作功与传热的等当性热力学第一定律能量守恒定律第一类永动机符号规定焦耳实验绝热自由膨胀过程等内能过程理想气体的内能焦耳-汤姆孙实验绝热节流膨胀过程等焓过程焦耳-汤姆孙效应焦耳-汤姆孙系数理想气体的焓反转温度理想气体的宏观定义迈耶关系热功当量的测定热力学第一定律对理想气体的应用等体过程等压过程等温过程绝热过程多方过程等热容过程直线过程理想气体绝热过程方程泊松公式循环热机的工作原理正循环的效率制冷机与热泵的工作原理逆循环的制冷系数符号规定卡诺热机卡诺循环理想气体卡诺循环的效率理想气体逆向卡诺循环的制冷系数奥托循环狄塞尔循环斯特林循环回热式循环热机与热泵的组合应用【重点掌握】:热力学过程准静态过程作功体积功作功的计算绝热功内能热量热容量比热容摩尔热容焓理想气体的宏观定义迈耶关系热力学第一定律对理想气体的应用循环热机的工作原理正循环的效率逆循环的制冷系数【掌握】:理想气体的内能理想气体绝热过程方程泊松公式【难点】:绝热过程多方过程第六章热力学第二定律(6学时)第一节热力学第二定律第二节热现象过程的不可逆性第三节热力学第二定律的统计意义第四节卡诺定理第五节热力学温标第六节应用卡诺定理的例子主要内容:热力学第二定律开尔文表述克劳修斯表述第二类永动机热力学第二定律的适用范围热力学第二定律两种表述的等效性可逆过程不可逆过程各种不可逆过程互相关联热力学第二定律的实质论证过程的不可逆性的方法不可逆过程的特点孤立系统宏观状态和微观状态气体自由膨胀的不可逆性热力学第二定律的统计意义卡诺定理可逆卡诺循环的效率不可逆卡诺循环的效率对于制冷机类似卡诺定理的结论卡诺定理的推广任意正循环的效率卡诺定理的应用热力学温标的引入热力学温标与理想气体温标和摄氏温标的关系内能随体积的改变与物态方程的关系定压摩尔热容与定体摩尔热容的关系【重点掌握】:热力学第二定律开尔文表述克劳修斯表述热力学第二定律两种表述的等效性可逆过程不可逆过程热力学第二定律的实质卡诺定理【掌握】:孤立系统宏观状态和微观状态气体自由膨胀的不可逆性热力学第二定律的统计意义【难点】:论证过程的不可逆性的方法不可逆过程的特点第七章固体(1学时)第一节晶体第二节晶体中粒子的结合力和结合能第三节晶体中粒子的热运动主要内容:物质的聚集态凝聚体固体液体气体晶体与非晶体单晶体和多晶体长程有序晶体中粒子的结合力晶体弹性的微观解释晶体中粒子的热运动热振动杜隆-珀蒂定律晶体热膨胀的微观解释晶体线膨胀率的计算非晶态固体过冷液体短程有序【重点掌握】:晶体中粒子的热运动热振动杜隆-珀蒂定律【掌握】:晶体与非晶体单晶体和多晶体晶体中粒子的结合力晶体弹性的微观解释晶体热膨胀的微观解释第八章液体(4学时)第一节液体的微观结构液晶第二节液体的彻体性质第三节液体的表面性质主要内容:液体与晶体和气体的比较液体的宏观特征液体的微观结构定居时间液体各向同性液晶外界因素对液晶的影响显示技术液体的表面性质表面张力表面层表面张力的微观解释表面张力系数影响表面张力系数的因素表面活性物质球形液面下的附加压强拉普拉斯公式柱形液面下的附加压强马鞍形液面下的附加压强接触角润湿和不润湿附着层附着力和内聚力润湿和不润湿的微观解释毛细现象毛细管【重点掌握】:液体的表面性质表面张力表面层表面张力的微观解释表面张力系数球形液面下的附加压强接触角毛细现象【掌握】:润湿和不润湿附着层附着力和内聚力润湿和不润湿的微观解释第九章相变(5学时)第一节单元系一级相变的普遍特征第二节气液相变第三节克拉珀龙方程第五节范德瓦耳斯等温线对比物态方程第六节固液相变第七节固气相变三相图主要内容:元单元系二元系多元系相相变一级相变单元系一级相变相变中体积的改变相变潜热内潜热和外潜热汽化蒸发气液等温相变饱和蒸气与液体平衡汽化曲线相平衡曲线饱和蒸气压影响饱和蒸气压的因素饱和蒸气压与液面曲率的关系凝结过冷蒸气亚稳态凝结核云雾的形成云室沸腾沸腾的条件过热液体亚稳态汽化核泡室暴沸临界等温线临界点临界态临界参量临界温度临界压强临界摩尔体积克劳修斯—克拉珀龙方程沸点与压强的关系正常沸点高压锅蒸气压方程由蒸气压方程求潜热沸点与海拔高度的关系兰州市区水的沸点熔点与压强的关系正常熔点范德瓦耳斯等温线亚稳平衡范德瓦耳斯气体的临界参量临界系数由临界参量确定范德瓦耳斯常量对应态对应态定律熔化凝固熔化曲线凝固时体积的改变升华凝华升华曲线升华与蒸发升华热与汽化热和熔化热的关系三相点相图三相图【重点掌握】:单元系一级相变相变中体积的改变相变潜热克劳修斯—克拉珀龙方程【掌握】:气液等温相变饱和蒸气与液体平衡汽化曲线相平衡曲线【难点】:临界等温线临界点临界态临界参量范德瓦耳斯等温线亚稳平衡制定人:蔡让岐毛延哲审定人:批准人:日期:。
第六章热力学第二定律6-1 设每小时能造冰m克,则m克25℃的水变成-18℃的水要放出的热量为25m+80m+0.5×18m=114m有热平衡方程得4.18×114m=3600×2922∴ m=2.2×104克=22千克由图试证明:任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热温源温度之间的可逆卡诺循环的效率。
(提示:先讨论任一可逆循环过程,并以一连串微小的可逆卡诺循环过程。
如以T m和T n分别代表这任一可循环所经历的最高热源温度和最低热源温度。
试分析每一微小卡诺循环效率与的关系)证:(1)d当任意循环可逆时。
用图中封闭曲线R表示,而R可用图中一连串微笑的可逆卡诺循环来代替,这是由于考虑到:任两相邻的微小可逆卡诺循环有一总,环段绝热线是共同的,但进行方向相反从而效果互相抵消,因而这一连串微小可逆卡诺循环的总效果就和图中锯齿形路径所表示的循环相同;当每个微小可逆卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环R。
考虑人一微小可逆卡诺循(187完)环,如图中阴影部分所示,系统从高温热源T i吸热Q i,向低温热源T i放热,对外做功,则效率任意可逆循环R的效率为A为循环R中对外作的总功(1)又,T m和T n是任意循环所经历的最高温热源和最低温热源的温度∴对任一微小可逆卡诺循,必有:T i≤T m,T i≥T n或或令表示热源T m和T n之间的可逆卡诺循环的效率,上式为将(2)式代入(1)式:或或(188完)即任意循环可逆时,其效率不大于它所机灵的最高温热源T m和最低温度热源T n之间的可逆卡诺循环的效率。
(2)任意循环不可逆时,可用一连串微小的不可逆卡诺循环来代替,由于诺定理知,任一微小的不可逆卡诺循环的效率必小于可逆时的效率,即(3)对任一微小的不可逆卡诺循环,也有(4)将(3)式代入(4)式可得:即任意不可逆循环的效率必小于它所经历的最高温热源T m和最低温热源T n之间的可逆卡诺循环的效率。
热学第二版课后习题答案热学第二版课后习题答案热学是物理学中的一门重要学科,研究热量的传递、热力学规律以及热力学系统的性质等。
在学习热学的过程中,课后习题是检验学生对知识掌握程度的重要手段。
下面将为大家提供热学第二版课后习题的答案。
第一章:热力学基础1. 什么是热力学第一定律?它的数学表达式是什么?热力学第一定律是能量守恒定律的推广,它表明能量可以从一种形式转化为另一种形式,但总能量守恒。
数学表达式为ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外界做功。
2. 什么是热容?如何计算物体的热容?热容是物体吸收或释放单位温度变化时所需的热量。
计算物体的热容可以使用公式C = Q/ΔT,其中C表示热容,Q表示吸收或释放的热量,ΔT表示温度变化。
3. 什么是等容过程?等容过程的特点是什么?等容过程是指在恒定体积条件下进行的热力学过程。
在等容过程中,系统对外界做功为零,因为体积不变。
等容过程的特点是内能变化等于吸收的热量,即ΔU = Q。
第二章:理想气体的热力学性质1. 理想气体的状态方程是什么?它的含义是什么?理想气体的状态方程是PV = nRT,其中P表示气体的压强,V表示气体的体积,n表示气体的物质量,R表示气体常数,T表示气体的温度。
这个方程表示了理想气体的状态与其压强、体积、物质量和温度之间的关系。
2. 理想气体的内能与温度有何关系?理想气体的内能与温度成正比,即U ∝ T。
当温度升高时,理想气体的内能也会增加。
3. 理想气体的等温过程与绝热过程有何区别?等温过程是指在恒定温度条件下进行的热力学过程,绝热过程是指在没有热量交换的情况下进行的热力学过程。
在等温过程中,气体的温度保持不变,而在绝热过程中,气体的内能保持不变。
第三章:热力学第二定律1. 热力学第二定律的表述是什么?它有哪些等效表述?热力学第二定律的表述是热量不会自发地从低温物体传递到高温物体。
它有三个等效表述:卡诺定理、克劳修斯不等式和熵增原理。
第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。
1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。
(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。
解:根据已知冰点。
1-4用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。
当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。
试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。
解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。
设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。
解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。
(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。
第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。
解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。
解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。
解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ ∵ V p2= 2KTm ,代入上式 △N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p=)代入计算得:△N=×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。
“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。
第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]⋅(︒C/[X]), b = –[100 X i/(X s–X i)]︒C, 其中的[X]代表测温性质X的单位.8. (1) –205︒C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16︒, 273.47︒;(3) 不存在0度.20. 13.0 kg⋅m-3.24. 由教科书137页公式可得p = 3.87⨯10-3 mmHg.25. 846 kg⋅m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg⋅m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159⨯10-3 atm, 71.59 atm, 7159 atm; 4.871⨯10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km⋅s-1和2.38 km⋅s-1第二章部分习题的参考答案1. 3.22⨯103 cm-3.3. 1.89⨯1018.4. 2.33⨯10-2 Pa.5. (1) 2.45⨯1025 m-3;(2) 1.30 kg⋅m-3;(3) 5.32⨯10-26 kg;(4) 3.44⨯10-9 m;(5) 6.21⨯10-21 J.6. 3.88⨯10-2 eV,7.73⨯106 K.7. 301 K.8. 5.44⨯10-21 J.9. 6.42 K, 6.87⨯104Pa (若用范德瓦耳斯方程计算) 或6.67⨯104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m⋅s-1;(2) 7.91 m⋅s-1;(3) 7.07 m⋅s-111. (1) 1.92⨯103 m⋅s-1;(2) 483 m⋅s-1;(3) 193 m⋅s-1.12. (1) 485 m⋅s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02⨯104 K, 1.61⨯105 K; 459 K, 7.27⨯103 K.16. (1) 1.97⨯1025 m-3 或2.00⨯1025 m-3;(2) 由教科书81页公式可得3.26⨯1027m-2或3.31⨯1027 m-2;(3) 3.26⨯1027 m-2或3.31⨯1027 m-2;(4) 7.72⨯10-21 J, 6.73⨯10-20 J.17. 由教科书81页公式可得9.26⨯10-6 g⋅cm-2⋅s-1.18. 2.933⨯10-10 m.19. 3.913⨯10-2 L, 4.020⨯10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ⋅(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)⋅{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)⋅(4π/3)d3]}⋅(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m⋅s-1;(2) 3.37 m⋅s-1;(3) 4.00 m⋅s-1.2. 395 m⋅s-1, 445 m⋅s-1, 483 m⋅s-1.4. 3π/8.5. 4.97⨯1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94⨯10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m⋅s-1;(2) 1.36⨯10-2 g⋅h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2⋅[1 + (mv2/2kT)]⋅exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ⋅[1 + (v2/v p2)]⋅exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74⨯103 J⋅mol-1, 2.49⨯103 J⋅mol-1.27. 6.23⨯103 J⋅mol-1, 6.23⨯103 J⋅mol-1; 3.09⨯103 J⋅g-1, 223 J⋅g-1.28. 5.83 J⋅g-1⋅K-1.29. 6.61⨯10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J⋅mol-1⋅K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74⨯10-10 m.2. 5.80⨯10-8 m, 1.28⨯10-10 s.4. (1)5.21⨯104 Pa; (2) 3.80⨯106 m-1.6. (1) 3.22⨯1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45⨯10-7 m;(3) 1.08⨯10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11⨯10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09⨯10-10 m.15. 2.23⨯10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg⋅m-4;(2) 1.19⨯1023 s-1;(3) 1.19⨯1023 s-1;(4) 4.74⨯10-10 kg⋅s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04⨯103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42⨯103 J, –1.99⨯103 J, 567 J.3.(1) 1.50⨯10-2 m3;(2) 1.13⨯105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44⨯103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47⨯107 J⋅mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J⋅mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];(3) [略].24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19.注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49⨯104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];(3) [略].10. [略].11. [略].12. [略].13. [略].15. ∆T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)]}⋅{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19⨯108 J.2. 7.24⨯10-2 N⋅m-1.3. 1.29⨯105 Pa.4. 1.27⨯104 Pa.6. f = S[α(R1-1 + R2-1) – (ρgh/2)]= {Sα⋅[2cos(π–θ)]/[2(S/π)1/2 ⋅cos(π–θ) + h–h sin(π–θ)]} +{Sα⋅[2cos(π–θ)]/h} – (Sρgh/2)≈Sα⋅[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98⨯10-2 m.10. (1) 0.712 m; (2) 9.60⨯104 Pa; (3) 2.04⨯10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J⋅kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21⨯103 J.2. (1) 6.75⨯10-3 m3;(2) 1.50⨯10-5 m3;(3) 液体体积为1.28⨯10-5 m3, 气体体积为9.87⨯10-4 m3.4. 373.52 K.6. 1.36⨯107 Pa.7. [略].8. [略].9. 1.71⨯103 Pa.11. 4.40⨯104 J⋅mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121⨯104 J⋅mol-1, 2.547⨯104 J⋅mol-1, 5.75⨯103 J⋅mol-1.。
第四章气体内的输运过程4-1.氢气在,时的平均自由程为×m,求氢分子的有效直径。
解:由=得:=代入数据得:(m)4-2.氮分子的有效直径为,求其在标准状态下的平均自由程和连续两次碰撞间的平均时间。
解:=代入数据得:-(m)=代入数据得:=(s)4-3.痒分子的有效直径为3.6×m,求其碰撞频率,已知:(1)氧气的温度为300K,压强为1.0atm;(2)氧气的温度为300K,压强为1.0×atm解:由=得==代入数据得:=6.3×()()4-4.某种气体分子在时的平均自由程为。
(1)已知分子的有效直径为,求气体的压强。
(2)求分子在的路程上与其它分子的碰撞次数。
解:(1)由得:代入数据得:(2)分子走路程碰撞次数(次)4-5.若在下,痒分子的平均自由程为,在什么压强下,其平均自由程为?设温度保持不变。
解:由得4-6.电子管的真空度约为HG,设气体分子的有效直径为,求时单位体积内的分子数,平均自由程和碰撞频率。
解:(2)(3)若电子管中是空气,则4-7.今测得温度为压强为时,氩分子和氖分子的平均自由程分别为和,问:(1)氩分子和氖分子的有效直径之比是多少?(2)时,为多大?(3)时,为多大?解:(1)由得:(2)假设氩分子在两个状态下有效直径相等,由得:(3)设氖气分子在两个状态下有效直径相等,与(2)同理得:4-8.在气体放电管中,电子不断与气体分子相碰撞,因电子的速率远远大于气体分子的平均速率,所以后者可以认为是静止不动的。
设电子的“有效直径”比起气体分子的有效直径来可以忽略不计。
(1)电子与气体分子的碰撞截面为多大?(2)证明:电子与气体分子碰撞的平均自由程为:,n为气体分子的数密度。
解:(1)因为电子的有效直径与气体分子的有效直径相比,可以忽略不计,因而可把电子看成质点。
又因为气体分子可看作相对静止,所以凡中心离电子的距离等于或小于的分子都能与电子相碰,且碰撞截面为:(2)电子与气体分子碰撞频率为:(为电子平均速率)4-9.设气体分子的平均自由程为试证明:一个分子在连续两次碰撞之间所走路程至少为x的几率是解:根据(4.6)式知在个分子中自由程大于x的分子占总分子数的比率为=由几率概念知:对于一个分子,自由程大于x的几率为,故一个分子连续两次碰撞之间所走路程至少为x的几率是。
第七章 固体7-1立方点阵的点常数为a,在体心立方点阵情况下,求:(1)原胞的体积(2)原胞的结点数(3)最近邻结点间距离(4)最近邻结点的数目(5)以顶心到体心连线为边所形成的菱面体(图7—16)作为原胞,此原胞的体积和包含的结点数。
(6)作为原胞,此原胞的体积和包含的结点数。
解:(1)体心立方原胞的体积为a 3,如图所示。
(2)原胞有8个顶点,共有8个结点,但每个结点为8个原胞所共有,每个顶点的结点只有1/8属于该原胞,因此顶点上的结点只有1个属于该原胞。
另外,外心有一个结点。
故体心立方原胞的结点数为2。
(3)最邻近结点之间的距离为顶点到邻近体心之间的距离,以A 表示任一顶点,0表示体心,如图7—1(a ) a a a a AB BC OC AC OC AO 23)2()2()2(22222222=++=++=+= 即最邻近结点的距离(4)以体心结点为坐标原点(0。
0),如图7—1(a ),最邻近的8个结点的坐标为(a/2,a/2,a/2), (-a/2,a/2,a/2)(-a/2,-a/2,a/2), (a/2,-a/2,a/2)(a/2,a/2,-a/2), (-a/2,a/2,-a/2)(-a/2,-a/2,-a/2), (a/2,-a/2,-a/2)(5)以这种方式形成的菱面体称固体物理学原胞,是空间点阵的最小几何重复单元,结点都在顶点上,如图7—1(b )所示。
若取D 点为坐标原点,则菱面体三条边的端点的坐标分别为1(a/2,-a/2,-a/2)2(-a/2,a/2,-a/2)3(a/2,a/2,a/2)根据平行六面体的体积公式,求得菱面体的体积为22,2,22,2,22,2,23a a a a a a a a a a V =---= 此原胞的结点数为8×181=7-2 n 重旋转对称指的是,晶体绕转轴转动2 π /n 后晶体与自身完全重合这种对称性,证明一个晶体不可能有五重旋转对称。
第二章 气体分子运动论的基本概念2-1目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。
解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =3.21×109(m –3) 注:1mmHg=1.33×102N/m 22-2钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m , 试问在标准状态下,其中有多少个空气分子。
解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg 的真空。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。
若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。
解:设烘烤前容器内分子数为N 。
,烘烤后的分子数为N 。
根据上题导出的公式PV = NKT 则有:)(0110011101T P T P K V KT V P KT V P N N N -=-=-=∆ 因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此T P 与11T P 相比可以忽略 1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g的氩气。
设混合气体的温度为150℃,求混合气体的压强。
部分思考题解答1、气体的平衡状态有何特征?当气体处于平衡状态时还有分子热运动吗?与力学中所指的平衡有何不同?实际上能不能达到平衡态?答;系统处于平衡状态时,系统和外界没有能量交换,内部也没有化学变化等任何形式的能量转换,系统的宏观性质不随时间变化。
对气体来说,系统状态的宏观参量有确定数值,系统内部不再有扩散、导热、电离或化学反应等宏观物理过程发生。
气体处于平衡态时,组成系统的分子仍在不停地运动着,只不过分子运动的平均效果不随时间变化,表现为宏观上的密度均匀,温度均匀和压强均匀。
与力学中的平衡相比较,这是两个不同的理想概念。
力学中的平衡是指系统所受合外力为零的单纯静止或匀速运动问题。
而热力学中的平衡态是指系统的宏观性质不随时间变化。
但组成系统的分子却不断地处于运动之中,只是与运动有关的统计平均量不随时间改变,所以这是一种热动平衡。
平衡态是对一定条件下的实际情况的概括和抽象。
实际上,绝对的完全不受外界条件变化影响的平衡状态并不存在。
2、一金属杆一端置于沸水中,另一端和冰接触,当沸水和冰的温度维持不变时,则金属杆上各点的温度将不随时间而变化。
试问金属杆这时是否处于平衡态?为什么?答:金属杆就是一个热力学系统。
根据平衡态的定义,虽然杆上各点的温度将不随时间而改变,但是杆与外界(冰、沸水)仍有能量的交换。
一个与外界不断地有能量交换的热力学系统所处的状态,显然不是平衡态。
3、水银气压计中上面空着的部分为什么要保持真空?如果混进了空气,将产生什么影响?能通过刻度修正这一影响吗?答:只有气压计上面空着的部分是真空,才能用气压计水银柱高度直接指示所测气体的压强。
如果气压计内混进了一些空气,则这种气体也具有一定的压强。
这时,水银柱高度所指示的压强将小于所测气体的真实压强,而成了待测气体与气压计内气体的压强之差。
能否在刻度时扣除漏进气体的压强,而仍由水银柱的高度来直接指示待测气体的压强呢?也不行。
因为水银气压计内部气体的压强随着温度和体积的变化而变化,对不同压强和不同温度的待测气体测量时,内部气体的压强是不同的。
第九章 相变9-1在大气压P 0=1.013×105P a下,4. 0×10-3Kg 酒精沸腾化为蒸汽,已知酒精蒸汽比容为0.607 m 8/Kg ,酒精的汽化热为L=8.63×10-5J/Kg ,酒精的比容υ1与酒精蒸汽的比容υ2相比可以忽不计,求酒精内能的变化解:酒精等温度等压下化为蒸汽,每千克吸热为 L=(u 2-u 1)+P 0(u 2-u 1)由于u 2>>u 1,则M 千克酒精内能的变化为 U 2-U 2 =M ( L - P 0u 2) =3.21 ×103J9-2 说明蒸发和沸腾的异同,和发生沸腾的条件。
答:蒸发和沸腾是液体汽化的两种不同形式。
蒸发是液体表面的汽化,任何温度下都能进行。
沸腾是在整个液体内部发生的汽化,只在沸点进行。
但从相变机构看,两者并无根本区别,沸腾时,相变仍在气、液分界面上以蒸发的方式进行,只是液体内部涌现大量气泡,大大增加了气液分界面,因而汽化剧烈。
9-3 氢的三相点温度T 3=14K ,在三相点时,固态氢密度ρ=81.0kg ·m -3,液态氢密度ρ=71.0kg ·m -3,液态氢的蒸汽压方程T Tp ln 3.012233.18ln --= 熔解温度和压强的关系Tm=14+2.991×10-7p ,式中压强的单位均为帕斯卡,试计算: (1) 在三相点的气化热,熔解热及升华热(误差在5%以内); (2) 升华曲线在三相点处的斜率。
解:求三相点处蒸汽压强p 3,824.814ln 3.01412233.18ln 3=--=p kPa p 795.63=氢气的比容)(561.810795.61021431.8133333--⋅=⨯⨯⨯*==kg m p RT v g μ已知固态氢比容210235.11-⨯==gg v ρ液态氢比容210408.11-⨯==ll v ρ(1) 由蒸汽压方程微分得到:)3.0122()(333-=T T p dT dpg 应与克氏方程等价,因为g v >>l v ,故有)3.0122(33-=T T p Tv ll 气化热为:)(10895.415-⋅⨯=kg J l 熔解热:4210097.8⨯=l 氢的升华热=)(10705.515-⋅⨯kg J (2)升华曲线在三相点处的斜率:1332110767.4)(-⋅⨯--+=K Pa v v T l l dT dp l g9-4饱和蒸汽压和液面的形状有什么关系?为什么?答:凹液面时,饱和蒸汽压比平液面时小,因为在凹液面情形下,分子逸出液面所需的功比平液面时大(要多克服一部分液体分子的引力),使单位时间内逸出凹液面的分子数比平液面时少,因而饱和蒸汽压较小。
《热学教程》习题参考答案第三章 习 题3-1. 在掷两颗骰子时,组成总点数为2,3,4,5,6,7,8,9,10,11,12的概率各为多少? 并用所得结果检验归一化条件.(答: P 2=P 12=361,P 3= P 11=181,P 4= P 10=121,P 5= P 9=91,P 6=P 8=365,P 7=1;1P 122=∑=i i )解:每个骰子有六个面,在条件完全等同的情况下掷骰子,出现每个面的概率都相等,等于()61,满足等概率原理. 当掷两个骰子时,出现任意一种组合的概率为()361. 考虑到骰子的六个面形成三组对称面,分别为1-6,2-5,3-4. 故出现两颗骰子总数为2的概率与出现总数为12的概率相等;同理出现总数为3与总数为11的概率相等,故一般情况下出现总数为i 和()i -14的概率满足关系式:i i P P =-14,12,,3,2 =i .因此, 可以写出:()361122==P P ,()181113==P P ,为什么掷两个骰子时出现总数为3的概率比总数为2的概率大一倍?这是因为形成总数为2时的两骰子,只有一种组合()1,1;而形成总数为3时的两骰子,可以有两种组合:()1,2 或 ()2,1. 作类似分析可知:()121104==P P ,两面的可能组合为()2,2,()1,3,()3,1;()195==P P ,组合为()4,1,()1,4,()3,2,()2,3;()586==P P ,组合为()3,3,()4,2,()2,4, ()5,1,()1,5;()617=P ,组合为()6,1,()1,6,()5,2,()2,5,()4,3,()3,4.不难看出总概率之和满足归一条件:1122=∑=i i P ,这结果说明,只要掷两个骰子一次,总会出现各种可能组合中的一种组合,事件总是会发生的.3-2. 从一副扑克的52张牌中,任意抽取两张,问都是红桃的概率有多大?( 答: 5.88 %) 解:3-3 甲、乙两个高射炮手同时射击一入侵敌机,甲和乙分别击中敌机的概率为60% 和50%,问敌机被击落的概率为多少? ( 答:80% ) 解:3-4. 计算300K 时氧分子的最概然、平均和方均根速率.(答:395 m/s,446 m/s,483 m/s) 解: 氧分子的最概然、平均和方均根速率分别为:13s m 395103230031.822--⋅=⨯⨯⨯==μRTv p , 13s m 446103214.330031.888--⋅=⨯⨯⨯⨯==μπRTv , 132s m 483103230031.833--⋅=⨯⨯⨯==μRTv . 3-5. 气体分子速率与最概然速率之差不超过1%的分子数目占全部分子数目的百分之几? (答:1.66 %)解: 应用麦克斯韦速率分布律,可得:(),%66.10166.002.042exp 24B 2p 23B 2p p ==⨯⨯==∆⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∆ev T k mv T k m v Nv N πππ其中的 p 02.0v v =∆;m T k v B p 2=.3-6. 试就下列几种情况,求气体分子数目占总分子数目的比率:(1) 速率在区间p p ~v v 1.01内;(2) 速度分量x v 在区间p p ~v v 1.01内;(3) 速度分量x v ,z y v v ,同时在区间p p ~v v 1.01内.(答:8.3×103-;2.08×103-;9×109-) 解: (1)();103.801.0401.02ex p 243p B 2p 3B 2p -⨯=⨯⨯=⨯⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m v Nv N p πππ (2)();1008.201.001.02ex p 23p B 2p 21B p -⨯=⨯=⨯⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m N v N ππ (3)()932363p 6B 2p 23B p 1094.8101023ex p 2---⨯=⨯=⨯⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m N v N ππ 3-7. 设有一群粒子具有下列速率分布:试求:(1)平均速率v ;(2)方均根速率2v ;(3)最概然速率p v .(答:(1)318m/s ;(2)337m/s ;(3)400m/s) 解:(1);s m 31820806040205002040080300602004010020=++++⨯+⨯+⨯+⨯+⨯==∑∑iiiii N v N v(2)s m 33722==∑∑iiii i N v N v ;(3)s m 400p =v .3-8. 设氢气的温度为300K,求速率在3000~3010m/s 之间的分子数1n 与速率在最概然速率附近10~p p +v v m/s 之间的分子数2n 之比.(答:26.5 %)解: 应用麦克斯韦速率分布律,可得两种速率区间内气体分子数之比为:()()⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=∆∆=2p 2p212p 21p p 11p 1ex p v v v v v v v f v v f n n , 已知式中的 ;m 157910230031.822,s m 30003p 1=⨯⨯⨯===-μRT v v,s m 10p 1=∆=∆v v 故可求得()%5.26265.0p 1==n n .3-9. 证明: 若以最概然速率为度量气体分子速率的单位,用u 表示此相对速率,则速率处于u u u d ~+之间的分子数与气体的温度无关.解: 以最概然速率m T k v B p 2=为单位,衡量气体分子的速率,可以引进无量纲速 率()p v v u =,从而可写出无量纲的麦克斯韦速率分布律及其分布函数:()()u u f N u N d d =, ()()22ex p 4u u u f -=π. 不难看出,无量纲的麦克斯韦速率分布律仍然满足归一条件,而且与温度明显无关.3-10. 根据麦克斯韦速率分布律,求速率倒数的平均值 v / 1,并与速率平均值v 的倒数相比较.(答:T k m B 2π)解: 应用麦克斯韦速率分布律,可得:()21B 20B 223B 02d 2ex p 22d 11⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==⎰⎰∞∞T k m v T k mv T k m v v f v v πππ,显然它较之平均速率的倒数 21B 81⎪⎪⎭⎫⎝⎛=T k m v π要大. 3-11. 用泻流分离从天然铀中将同位素U 235浓缩到99.5%,需作几级泻流?(答:2395)解: 应用能计算泻流使轻组元较之种组元相对富集的公式2122121''β⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛m m n n n n ,式中的‘1’和‘2’分别表示泻流气体中的轻组元6235F U 和重组元6238F U ;1m 和2m 分别是轻和重组元的分子质量,即它们的摩尔质量分别为/m ol kg 349.0A 11==N m μ和kg/mol 352.0A 22==N m μ,这里的A N 是阿伏伽德罗常数;1n ,'1n 和2n ,'2n 分别表示轻和重组元在泻流前和经过β次泻流后的丰度,由题意可知:%7.01=n ,%3.992=n 和%5.99'1=n ,%5.0'2=n .故可求得泻流级数为:2395349352ln 5.07.03.995.99ln 2ln ln 22112'2'1=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⨯⨯=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=m m n n n n β. 3-12. N 个气体分子满足如图所示的速率分布,试(1)由N 和0v 求a ;(2)求速率在1.500~v v 2.0之间的分子数目;(3)求分子的平均速率.(答:(1) 032v N ;(2)3N ;(3)9110v )解:(1) 由归一条件可得:()()()N v v f N v v f N v v f N v v v =+=⎰⎰⎰∞0200d d d ,按题意可知:()()a v f N v v v av v f N v v =>=≤,;,000,故得()N av av v v a v v f N ==⎪⎪⎭⎫ ⎝⎛+⨯=⎰∞232d 002000, 032v Na =; 习题3-12图(2)气体分子速率在000.2~5.1v v 之间的分子数目为()35.0d d 00.25.10.25.10N v a v a v v f N v v v v===⎰⎰; (3)气体分子的平均速率为()020000911d 32d d 000v v v v v v N v a vv v f v v v v v =+==⎰⎰⎰∞。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载热学(李椿+章立源+钱尚武)习题解答_第八章液体地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第八章液体8-1 在20平方公里的湖面上,下了一场50mm的大雨,雨滴的半径r=1.0mm.。
设温度不变,求释放出来的能量。
解:已知湖表面积S=20×106m2,下雨使湖水面升高h=50×10-3m,设雨滴总个数为N,则现只考虑由于雨水本身表面积变化而释放的能量ΔE,ΔE=2.18×108J其中α=73×10-2N·m-1可由表8-9查出。
8-2 图8-2是测表面张力系数的一种装置,先将薄铜片放入待测液体中,慢慢提起铜片,使它绝大部分都露出液面,刚要离开但还没有离开液面,测得此时所用的上提力f,既可测得表面张力系数。
设测液体与铜片的接触角θ=0,铜片的质量=5.0×10-4㎏,铜片的宽度L=3.977×10-2m,厚度d=2.3×10-4m,f=1.07×10-2N,求液体表面张力系数。
解:由于铜片下边四周都有液面包围,而θ=0,所以,液面施于铜片的表面张力的方向竖直向下,大小为α·2(L+d)则f=mg+α·2(L+d)∴带入数据得:α=7.25×10-2 N·m-1即液体的表面张力系数。
8-3 一球形泡,直径等于1.0×10-5,刚处在水面下,如水面上的气压为1.0×105N·m-2,求泡内压强。
已知水的表面张力系数α=7.3×10-2N·m-1解:由于气泡刚处在水面下,所以,泡外是液体(这与空气中的肥皂泡不同,应注意区别),压强等于水面上方的大气压P0,则泡内压强为p=p0+2 =1.3×105Pa8-4 一个半径为1.0×10-2m的球形泡,在压强为1.0136×105N·m-2的大气中吹成。
“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。
第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]⋅(︒C/[X]), b = –[100 X i/(X s–X i)]︒C, 其中的[X]代表测温性质X的单位.8. (1) –205︒C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16︒, 273.47︒;(3) 不存在0度.20. 13.0 kg⋅m-3.24. 由教科书137页公式可得p = 3.87⨯10-3 mmHg.25. 846 kg⋅m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg⋅m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159⨯10-3 atm, 71.59 atm, 7159 atm; 4.871⨯10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km⋅s-1和2.38 km⋅s-1第二章部分习题的参考答案1. 3.22⨯103 cm-3.3. 1.89⨯1018.4. 2.33⨯10-2 Pa.5. (1) 2.45⨯1025 m-3;(2) 1.30 kg⋅m-3;(3) 5.32⨯10-26 kg;(4) 3.44⨯10-9 m;(5) 6.21⨯10-21 J.6. 3.88⨯10-2 eV,7.73⨯106 K.7. 301 K.8. 5.44⨯10-21 J.9. 6.42 K, 6.87⨯104Pa (若用范德瓦耳斯方程计算) 或6.67⨯104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m⋅s-1;(2) 7.91 m⋅s-1;(3) 7.07 m⋅s-111. (1) 1.92⨯103 m⋅s-1;(2) 483 m⋅s-1;(3) 193 m⋅s-1.12. (1) 485 m⋅s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02⨯104 K, 1.61⨯105 K; 459 K, 7.27⨯103 K.16. (1) 1.97⨯1025 m-3 或2.00⨯1025 m-3;(2) 由教科书81页公式可得3.26⨯1027m-2或3.31⨯1027 m-2;(3) 3.26⨯1027 m-2或3.31⨯1027 m-2;(4) 7.72⨯10-21 J, 6.73⨯10-20 J.17. 由教科书81页公式可得9.26⨯10-6 g⋅cm-2⋅s-1.18. 2.933⨯10-10 m.19. 3.913⨯10-2 L, 4.020⨯10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ⋅(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)⋅{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)⋅(4π/3)d3]}⋅(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m⋅s-1;(2) 3.37 m⋅s-1;(3) 4.00 m⋅s-1.2. 395 m⋅s-1, 445 m⋅s-1, 483 m⋅s-1.4. 3π/8.5. 4.97⨯1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94⨯10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m⋅s-1;(2) 1.36⨯10-2 g⋅h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2⋅[1 + (mv2/2kT)]⋅exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ⋅[1 + (v2/v p2)]⋅exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74⨯103 J⋅mol-1, 2.49⨯103 J⋅mol-1.27. 6.23⨯103 J⋅mol-1, 6.23⨯103 J⋅mol-1; 3.09⨯103 J⋅g-1, 223 J⋅g-1.28. 5.83 J⋅g-1⋅K-1.29. 6.61⨯10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J⋅mol-1⋅K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74⨯10-10 m.2. 5.80⨯10-8 m, 1.28⨯10-10 s.4. (1)5.21⨯104 Pa; (2) 3.80⨯106 m-1.6. (1) 3.22⨯1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45⨯10-7 m;(3) 1.08⨯10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11⨯10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09⨯10-10 m.15. 2.23⨯10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg⋅m-4;(2) 1.19⨯1023 s-1;(3) 1.19⨯1023 s-1;(4) 4.74⨯10-10 kg⋅s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04⨯103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42⨯103 J, –1.99⨯103 J, 567 J.3.(1) 1.50⨯10-2 m3;(2) 1.13⨯105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44⨯103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47⨯107 J⋅mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J⋅mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];(3) [略].24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19.注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49⨯104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];(3) [略].10. [略].11. [略].12. [略].13. [略].15. ∆T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)]}⋅{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19⨯108 J.2. 7.24⨯10-2 N⋅m-1.3. 1.29⨯105 Pa.4. 1.27⨯104 Pa.6. f = S[α(R1-1 + R2-1) – (ρgh/2)]= {Sα⋅[2cos(π–θ)]/[2(S/π)1/2 ⋅cos(π–θ) + h–h sin(π–θ)]} +{Sα⋅[2cos(π–θ)]/h} – (Sρgh/2)≈Sα⋅[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98⨯10-2 m.10. (1) 0.712 m; (2) 9.60⨯104 Pa; (3) 2.04⨯10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J⋅kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21⨯103 J.2. (1) 6.75⨯10-3 m3;(2) 1.50⨯10-5 m3;(3) 液体体积为1.28⨯10-5 m3, 气体体积为9.87⨯10-4 m3.4. 373.52 K.6. 1.36⨯107 Pa.7. [略].8. [略].9. 1.71⨯103 Pa.11. 4.40⨯104 J⋅mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121⨯104 J⋅mol-1, 2.547⨯104 J⋅mol-1, 5.75⨯103 J⋅mol-1.。