数学建模论文写作(刘辉昭)
- 格式:ppt
- 大小:120.50 KB
- 文档页数:26
数学建模论文写作方法数学建模论文写作方法随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,分享数学建模论文写作方法技巧,快来看看吧!数学建模论文写作方法篇1一、问题重述主要是对需要解决的问题用自己的语言对问题的重要特征或者重点进行描述,言简而意赅,这个就看你自己的文笔功底了。
二、模型假设对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。
三、符号说明将你要建立的模型中的一些参量用符号代替表示。
点状符号:以符号个体表达一定意义对象整体;线状符号:一般采用颜色、纹理、空间布局来表达一定的意义;面妆符号:用来表达呈面状分布于一定范围的现象。
四、模型建立这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法五、问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。
六、模型改进解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。
七、参考文献最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。
如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。
数学建模论文写作方法篇2不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。
数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学建模论文_范文标题:基于数学建模的交通拥堵优化方案研究摘要:随着城市化的快速发展和汽车保有量的增加,交通拥堵问题成为了城市生活中的一种普遍现象。
为了有效解决交通拥堵问题,本论文综合运用了数学建模的方法,通过分析交通流量、路网结构和驾驶行为等因素,提出了一种基于信号灯优化的交通拥堵优化方案。
通过该方案的实施,我们可以有效降低交通拥堵状况,提高交通效率。
第一部分:引言交通拥堵问题给城市居民的出行带来了很大的不便,而且还对环境产生了很大的负面影响。
因此,解决交通拥堵问题一直是城市规划师和交通管理者关注的焦点。
本论文旨在通过数学建模的方法,提出一种可行的交通拥堵优化方案。
第二部分:问题分析在交通优化问题中,我们需要考虑的因素很多,包括交通流量、路网结构、驾驶行为等。
在本论文中,我们将主要关注以下几个因素:交通流量的分布特点、路网拓扑结构的复杂性以及驾驶行为对交通拥堵的影响。
第三部分:数学模型的建立在本论文中,我们将采用离散事件系统建模的方法。
首先,我们将城市划分为若干个交通区域,每个区域内部的交通流量将通过数学模型进行描述。
然后,我们将通过网络图的方法建立路网拓扑结构,并分析路网的关键节点和关键路径。
最后,我们将考虑驾驶行为对交通拥堵的影响,通过引入交通流模型来描述驾驶者的行为。
第四部分:模拟结果与优化方案通过对数学模型的求解和仿真,我们得到了模拟结果。
通过对模拟结果的分析,我们可以得出对交通拥堵问题的一些有效解决方案,如增加信号灯数量、优化信号灯的时序和采取智能交通系统等。
通过这些措施,我们可以有效减少交通拥堵情况,提高交通效率。
第五部分:结论在本论文中,我们综合运用了数学建模的方法,通过分析交通流量、路网结构和驾驶行为等因素,提出了一种基于信号灯优化的交通拥堵优化方案。
通过该方案的实施,我们可以有效降低交通拥堵状况,提高交通效率。
未来,我们还可以进一步完善数学模型,考虑更多的因素,以达到更好的交通拥堵优化效果。
数学建模论文数学建模就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
数学建模论文1大学数学包含微积分、线性代数、概率论与数理统计三门基础课程,这是高校经管类专业必修课程;更高级的数学课程还有运筹学、最优化理论,这些在中高级西方经济学中会经常用到。
现实经济中存在很多问题都与数学紧密相关,都需要严谨的数学方法去解决,因此数学的学习是非常重要的。
数学的学习,一方面能够培养学生的逻辑思维能力和空间想象能力,另一方面,数学的系统学习为经管专业后续课程(如西方经济学、计量经济学)提供了数学分析工具和计算方法。
除了需要掌握数学分析和计算能力,经管专业应该更加注重培养学生的经济直觉和数学建模能力,让学生形象地理解数学定义和经济现象。
虽然现在高校中经管类专业的数学教育过程融合了一些本专业的知识,但仍存在很多问题。
笔者根据自己以及同行的教学经验,提出相应的改革措施以更好挖掘数学方法在经管中的有效作用。
一、经管类专业大学数学的特点每个专业都有其独特的学习内容和方法。
经管专业作为我国培养经济工作人员的特殊专业而成为国家重视、社会关注的专业。
大学数学是社会科学和自然科学的基础,因此其在经济学理论中有着举足轻重的地位,数学可以为经济学中的很多问题提供思想和方法的支持。
经管类专业数学的学习有如下特点。
1.经管专业的数学和经济学问题紧密相关经管专业要学习和解决经济相关内容,因此,经济类的数学教育要围绕着经济问题展开讨论,例如简单的经济问题有价格函数、需求函数、供给函数以及边际成本的分析,复杂一些的还有竞争性市场分析、垄断竞争和寡头垄断、博弈论和竞争策略、生产和交换的帕累托最优条件、信息不对称的市场这些都需要用微积分的知识理解。
把数学知识融入经济学,能够给解决经济学问题提供有效的技术支持。
根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。
数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。
关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。
广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。
一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。
如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。
一、二年级是学生初步感知数学得重要时期。
低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。
数学建模全论文写作模板免费版一、引言(1)背景介绍:简要介绍数学建模的背景和意义。
(2)问题陈述:阐述要解决的问题以及其重要性。
(3)文献综述:回顾相关领域的研究成果和方法。
(4)本文的目的和贡献:明确本文的研究目的和研究结果的贡献。
二、问题分析(1)问题拆解:将整体问题分解为若干子问题。
(2)模型假设:对问题进行适度简化并给出所做的假设。
(3)模型建立:建立数学模型,包括变量定义、符号表示和方程等。
三、模型求解(1)模型求解方法选择:选择适合求解该模型的方法。
(2)算法和程序设计:详细描述算法步骤和程序设计过程。
(3)参数估计和敏感性分析:对模型进行参数估计和敏感性分析。
(4)模型求解结果:给出模型得到的数值结果,并进行分析和讨论。
四、模型验证(1)数据处理和准备:对实际数据进行处理和准备。
(2)模型适用性验证:对模型的适用性进行验证,包括模型的精度和鲁棒性等。
(3)与实际情况比较:将模型结果与实际情况进行对比,并进行分析和讨论。
五、模型推广(1)模型推广应用:探讨模型在其他领域的推广应用。
(2)模型改进和扩展:对模型进行改进和扩展,并给出相应的理论分析和实验结果。
六、结论(1)研究总结:总结本文的研究内容和方法。
(2)结果分析:对本文的研究结果进行总结和分析。
(3)研究展望:对未来进一步研究的方向和问题提出展望。
以上是一个标准的数学建模全论文写作模板,你可以根据自己的具体需求和实际情况进行适当修改和调整。
在写作过程中,需要注意逻辑严谨、分析深入、以及对结果的准确评估和合理解释。
同时,注意语言表达清晰、文字流畅,以确保读者能够理解你的研究内容和结论。
希望这个模板对你的论文写作有所帮助!。
数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。
如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。
数学建模所解决的问题不止现实的,还包括对未来的一种预见。
数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。
数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。
教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。
以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。
因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。
1.2数学建模在大学数学教学中的运用。
大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。
再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。
不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。
数学建模优秀论文数学建模优秀论文数学建模优秀论文数学建模优秀论文数学建模优秀论文数学建模优秀论文数学建模优秀论文心得体会:阅读1篇论文对我主要有以下4个方面的启发与指导:(1)大致了解数学建模论文写作时应包含哪些内容(2)每部分内容都应写些什么(3)汲取他写作与处理问题的成功之处,以便将这些优点运用于我以后的论文写作中(4)总结这篇论文写作与处理问题过程中的败笔,提醒我注意在写作论文时不要犯类似错误所以,在下面的学习心得中将主要涉及以上4个方面的内容。
摘要:简明扼要地指出了处理问题的方法途径并给出作答,起到了较好的总结全文,理清条理的作用。
让读者对以下论述有1个总体印象,而且对于本题的答案用图表形式给出,清晰明了问题重述:(略)问题背景:交待问题背景,说明处理此问题的意义和必要性。
优点:叙述详尽,条理清楚,论证充分缺点:前两段过于冗长,可作适当删节问题分析:进1步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径优点:条理比较清晰,论述符合逻辑,表达清楚缺点:似乎不够详细,尤其是第3段有些过于概括。
模型的假设与约定:共有8条比较合理的假设优点:假设有依据,合情合理。
比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。
第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。
缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失1般性。
第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。
符号说明及名词定义优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。
缺点:有些地方没有标注量纲,比如A和B的量纲不明确。
模型建立与求解6.1问题1:对所给数据惊醒处理和统计,得出规律,找到联系。
初中数学建模论文范文(16篇)摘要:所谓数学建模,即借助数学模型,处理所遇到的具体问题的课程,在本文中,分别就教学、模型建立以及相应的信息检索来进行研究,通过将这三面进行相应的糅合从而证明可以将计算机技术引入到相应的建模实践中,从而有效促进数学建模的发展,使得教学质量得以有效提升。
关键词:数学建模;计算机应用;融合1.数学建模与计算机技术概述目前计算机在生活中应用极为广泛,借助于计算机能够使得先前较为复杂繁琐的问题得以简化,有效提升计算速率。
就数学建模来看,计算机在此方面的作用不言而喻。
对于此,人们普遍认为,能够借助于计算机将任何一个数学问题进行简化处理。
而对于生活中所遇到的任意一个实际问题,均能够借助于相应的数学模型来进行表示,在建模过程中,也可以根据实际情况来做出一些相应的简化处理,从而将其归属于完全的数学问题,最终建立起能够用变量所描述的数学模型。
之后,借助于相应的计算机、软件以及编程方面的知识,来对此模型进行相应的求解计算。
2.计算机技术在数学建模中的应用计算机在数学建模中的应用面非常的广泛,限于笔者的水平,本文主要就两个方面展开讨论:第一,确定建模思想;第二,对数学模型进行求解计算。
计算机技术辅助确立数学建模思想对于数学建模,其最为重要的目的便是为了能够提升学生对于数学知识的使用性,借助于相关的数学思想来对实际问题进行解决,同时,还能够促进学生数学思想的发展、建模能力发展以及相关数学知识的完善,最终提升其对于数学知识的使用能力。
培养数学思维重在将学生所思所想以最快最佳的方式展示出来,计算机技术在数学建模中的应用使得这个设想变得可能。
因为数学模型的计算和设计工作量大,传统的计算办法不能迅速解决一些问题,但是在建模的辅助下一切问题迎刃而解。
计算机技术促进数学建模结果求解对于数学建模,其属于一项系统性工程,整个过程工作量较多。
在前期,对于模型的构想与建立需要不断完善,此后,对于模型的求解也是极为困难的,这主要因为其涉及到非常多的数据处理与计算。
初中数学建模论文范文篇一:数学建模论文范文6目录一、浅谈对问题解决与数学建模的认识................................................................................................. . (5)1.1从现实现象到数学模型................................................................................................. ....................1.2数学建模的相关基本概念............................................................................. 错误!未定义书签。
1.3 数学建模的意义................................................................................................. (10)1.4 数学建模的方法步骤................................................................................................. . (10)二、数学建模应用于中学数学问题解决教学的实践 (11)2.1教学中建立数学模型的过程................................................................................................. .. (12)2.2教学中具体的建模分析方法................................................................................................. .. (12)2.3掌握常见数学应用题的基本数学模型 (12)2.4数学建模教学活动设计的体会................................................................................................. . (12)三、模型案例................................................................................................... ..............................................16一、浅谈对问题解决与数学建模的认识1.从现实现象到数学模型模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物。
大一数学建模论文范文2000字(热门6篇)文章以数学建模课程为载体,以培养学生创新能力为核心,从完善课程教学体系入手,将数学建模培养创新能力贯穿在教学的全过程,探索课程教学模式对培养创新人才的新措施。
一、数学建模课程对培养创新人才的作用(一)提高实践能力(二)提高创新能力数学建模方法是解决现实问题的一种量化手段。
数学建模和传统数学课程相比,是一种创新性活动。
面对实际问题,根据数据和现象分析,用数学语言描述建模问题,再进行科学计算处理,最后反馈到现实中解释,这一过程没有固定的标准模式,可以采用不同方法和思路解决同样的问题,能锻炼学生的想象力、洞察力和创新能力。
(三)提高科学素质二、基于数学建模课程教学全方位推进创新能力培养的实践(一)分解教学内容增强课程的适应性根据学生的接受能力及数学建模的发展趋势,在保持课程理论体系完整性和知识方法系统性的基础上,教学内容分解为课堂讲授与课后实践两部分。
课堂教师讲授数学建模的基础理论和基本方法,精讲经典数学模型及建模应用案例,启发学生数学建模思维,激发学生数学建模兴趣;课后学生自己动手完成课堂内容扩展、模型运算及模型改进等,教师答疑解惑。
课堂教学注重数学建模知识的学习,课后教学重在知识的运用。
随着实际问题的复杂化和多元化,基本的数学建模方法及计算能力满足不了实际需求。
课程教学中还增加了图论、模糊数学等方法,计算机软件等初级知识。
(二)融入新的教学方法提高学生的参与度1.课堂教学融入引导式和参与式教学方法。
数学建模涉及的知识很多是学生学过的,对学生熟悉的方法,教师以引导学生回顾知识、增强应用意识为主,借助应用案例重点讲授问题解决过程中数学方法的应用,引导学生学习数学建模过程;对于学生不熟悉的'方法,则要先系统讲授方法,再分析講解方法在案例中的应用,引导学生根据问题寻找方法。
此外,为了增强学生学习的积极性和效果,组织1~2次专题研讨,要求学生参与教学过程,教师须做精心准备,选择合适教学内容、设计建模过程、引导学生讨论、纠正错误观点。
数学建模论文范文免费(必备14篇)试论数学建模【摘要】本文以“减肥问题的研究”为例,介绍了数学建模基本方法和步骤,希望它能对初次参加数学建模的同学有所帮助。
【关键词】数学建模;基本方法;步骤数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题作抽象、简化、确定变量和参数并应用一些“规律”建立含变量和参数的数学问题,求解该数学问题并验证所得到的解,从而确定能否用于解决实际问题的这种多次循环,不断深化的过程。
数学建模可以培养学生下列能力:(1)洞察能力,许多提出的问题往往不是数学化的,这就是需要建模者善于从实际工作提供的原形中;抓住其数学本质,同时有些数学模型又可以有许多现实意义,这使得建模者不得不具有很强的洞察以及多种思维方式进行横向、纵向的研究;(2)数学语言翻译能力即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众的语言表达出来,在此基础上提出解决其中一问题的方案或建议;(3)综合应用分析能力,用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力,对于不少的实际问题,看起来完全不同,但在一定的简化层次下它们的数学建模是相同的或相似的,这正是数学应用广泛性的体现,这就要培养学生有广泛的兴趣,多思考,勤奋踏实地学习,通过熟能生巧达到触类旁通地境界。
因此,目前有越来越多的高等院校自己组织或参加全国乃至国际大学生数学建模竟赛。
然而,有部分学生特别是初次参加数学建模的学生对数学建模感到很茫然,本人多次承担数学建模指导老师,撰写该论文,希望对初次参加数学建模的同学有所帮助。
1.建立数学模型的一般步骤使问题理想化在众多因素中孤立出所研究的问题是科学研究的经典方法。
按照辩证唯物主义观点,世界上一切事物都是相互依赖、相互依存的,要精细地研究一个问题常常无从下手,就是因为思考相关问题太多所致。
因此,对初学者最好的方法就是使问题简单化、理想化,在特殊或极端情况下进入课题,然后加入相关因素,修正结果,使问题深化。
数学建模论文摘要论文正文的写作方法数学建模是应用数学的一种重要方法,用于研究实际问题并提出解决方案。
论文摘要、论文正文的写作方法要符合学术规范,清晰准确地传达研究目的、方法、结果和结论,下面将介绍如何写作数学建模论文的摘要、论文和正文。
论文摘要是文章的信息提炼和概括,通常包括研究背景、目的、方法、结果和结论。
摘要应简明扼要,具体准确,使用一般现在时态,避免使用非常规缩写和公式符号。
1.第一部分:背景和目的。
简要介绍研究所涉及的问题背景和研究目的,说明该研究在该领域的重要性和价值。
2.第二部分:方法。
简洁说明所采用的数学模型、算法和实证分析方法,可以提及关键的数学理论和公式。
3.第三部分:结果和结论。
概括性地描述研究的主要结果和结论,强调研究的贡献和实际应用价值。
1.引言部分:简要介绍研究背景和意义,引入研究问题,并概述论文的结构。
2.文献综述部分:对当前已有的相关研究进行概述,总结已有研究成果和不足,突出本文研究的创新点。
3.问题分析部分:将问题进行准确定义,明确研究目标和约束条件,分析问题的特点和难点,说明研究的必要性。
4.模型建立部分:根据问题特点,建立数学模型,包括建立基本假设、制定变量、构建方程和约束条件等。
5.实验与结果分析部分:描述实验数据的采集和处理方法,分析结果的合理性和可行性,提出对模型的改进和扩展方法。
6.结论部分:对研究的主要结果进行总结,指出所取得的成果、局限性和后续研究的方向。
总体上,论文正文的写作应思路清晰,逻辑严密,精确表达问题的分析和解决过程。
三、论文的整体写作方法在写作整篇论文时,需要注意以下几点:1.结构合理:根据论文要求,合理安排各部分的内容和顺序,确保论文逻辑性和层次感。
2.数据和公式的使用:使用准确、完整、可靠的数据和符号,尽可能精确描绘研究过程和结果。
3.可读性和清晰度:避免使用过于专业的术语和专有名词,使用简洁明了的语言描述方法、过程和结论。
4.合理的图表和附录:合理使用图表和附录,并在正文中引用和解读,增强文章的可读性和论证力。