2016数学建模论文写作模板(必须按这个模板提交)
- 格式:doc
- 大小:75.50 KB
- 文档页数:5
大学数学建模论文范文模板怎么写数学建模是我们学好数学、运用数学的过程,它主要体现了学以致用的统一。
下面是店铺为大家整理的大学数学建模论文,供大家参考。
大学数学建模论文范文篇一:《数学教学下数学建模》摘要:高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。
教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。
关键词:数学;教学;数学建模1.数学建模思想的意义数学建模是指用数学符号将要求从定量角度进行研究分析的实际问题以公式的形式表述出来,再通过进一步计算得到相关结果,用该结果解决实际问题,即通过建立数学模型和求解的整个过程。
数学建模是符合学生认知发展过程的,在数学建模中,学生通过对具体的假设、研究,对问题进行深入思考,最终得到结论,再根据实际情况应用到具体问题中。
整个过程经历了提出问题、试探问题、提出猜想假设、验证问题及得出结论,整个过程符合学生认知发展的规律。
数学建模思想的应用有助于帮助学生提高对数学的重视程度,调动学生学习的主动性,让学生的创造力得到更大的发挥。
数学建模的应用对提高教师的教学水平也有所帮助,能够帮助教师更好地对学生进行教学,由此扩大教师在学生中的影响力。
教学建模的思想应用还有利于提高学生参加竞赛的综合能力,吸引更多学生参加此类竞赛活动。
2.建模思想对能力的培养数学建模思想很多是由实际问题的一般思维进行转变才能成为抽象的数学问题的,这要求对数学建模要抓住重点,从具体问题中抽象出问题的本质。
因此,建模思想对于培养学生将具体问题经过抽象和简化用数学语言表达的能力具有重要的意义。
在高职数学教学中,有很多的数学模型,这些数学模型为帮助学生解决实际问题提供了便利的方法,同时也为创建新的数学模型提供了基础依据。
数学建模是将数学理论知识和实际应用联系起来的重要纽带,能够帮助学生不断探索数学中的奥妙,以此提高学生对数学的学习兴趣,提高学生实际应用数学的能力和解决实际问题的能力。
数学建模论文范例 [数学建模论文数学建模论文范例]数学建模论文范文数学建模--教学楼人员疏散--获校数学建模二等数学建模人员疏散本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪. 摘要文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。
关键字人员疏散流体模型距离控制疏散过程问题的提出教学楼人员疏散时间预测学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。
对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。
前言建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。
火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。
人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。
随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他我赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)内容要点:1、研究目的:本文研究……问题。
2、建立模型思路、:首先,本文……。
然后针对第一问……问题,本文建立……模型:在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型3、求解思路,使用的方法、程序针对模型的求解,本文使用什么方法,计算出,并只用什么工具求解出什么问题,进一步求解出什么结果。
4、建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验等)5、在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性6、最后,本文通过改变,得出什么模型。
关键词:结合问题、方法、理论、概念等一、问题重述(第二页起黑四号)内容要点:1、问题背景:结合时代、社会、民生等2、需要解决的问题问题一:问题二:问题三:二、问题分析内容要点:什么问题、需要建立什么样的模型、用什么方法来求解三、模型假设与约定内容要点:1、根据题目中条件作出假设2、根据题目中要求作出假设写作要求:细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。
将一些问题理想化、简单化。
1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考3、假设应验证其合理性。
数学建模论文参考范文9700字数学建模论文范文篇一:数模论文范文Ⅰ、问题的重述石油是重要的战略资源,进入新世纪以来石油价格一路高涨且波动频繁,油价成为全球关注的焦点。
成品油的合理定价对国家经济发展及社会和谐稳定具有重要的意义,还关系到民生,石油储备等多方面的问题。
石油价格的变化深深影响着经济和社会的发展,由于石油的特殊战略地位,油价的波动已经成为各国政府、学者以及业界关注的焦点,每次油价上涨更是吸引了各方广泛的关注。
统计数据表明,自2009年以来,国内成品油价格共调整17次,其中12次上调,5次下调。
以北京为例,93号汽油的零售价也从5.33元/升上涨至目前的8.33元/升,涨幅约为56%。
油价的上涨引起了广大消费者的不满,每到成品油调价窗口期,油价话题总会引发热议;与此同时,现行的成品油定价机制也遭到了广泛质疑,定价机制改革的呼声也日益高涨。
成品油价格究竟多少合适,随之成为一个敏感而又复杂的问题。
当前我国成品油定价体制是否依然合理?现在的问题就是如何综合考虑各种影响成品油价格的因素如原油价格等提出一个合理的成品油定价机制。
试根据中国国情,收集相关数据,综合考虑各种因素,并通过数学建模的方法,就成品油定价机制进行定性分析与定量计算,得出明确、有说服力的结论。
最后,根据建模分析计算的结果,给国家发改委写一份报告,提出自己的新成品油价格机制,并说明新机制的优越性。
Ⅰ、问题的分析及思路2.1、问题分析石油价格过高会影响国民经济的积极性,影响社会稳定,过低又会影响企业的正常运转等,还需要考虑到与国际油价接轨以及我国特殊的国情,以及我国现行的石油价格机制所存在的不合理问题。
现行成品油价格机制是否合理,需要一个量化指标来判定,然而影响成品油定价机制的指标的相关关系和所反应结果的准确度都是模糊不清的。
应此我们需要基于FCE模糊综合评判算法建立一个评价模型,还需要基于AHP层次分析法得到在各级别指标的权重向量。
数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。
如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。
数学建模所解决的问题不止现实的,还包括对未来的一种预见。
数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。
数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。
教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。
以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。
因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。
1.2数学建模在大学数学教学中的运用。
大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。
再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。
不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。
(数学建模论文书写基本框架,仅供参考)题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。
根据这些特点我们对问题1用。
的方法解决;对问题2用。
的方法解决;对问题3用。
的方法解决。
(第2段)对于问题1我们用。
数学中的。
首先建立了。
模型I。
在对。
模型改进的基础上建立了。
模型II。
对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。
,然后借助于。
数学算法和。
软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。
(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)(第3段)对于问题2我们用。
(第4段)对于问题3我们用。
如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。
并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。
(第5段)如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。
要注意合理性。
此推广模型可以不深入研究,也可以没有具体结果。
关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。
注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。
摘要是重中之重,必须严格执行!。
页码:1(底居中)目录可选:目录(4号黑体)(以下小4号)第一部分问题重述…………………………………………………………() 第二部分问题分析…………………………………………………………() 第三部分模型的假设…………………………………………………………() 第四部分定义与符号说明…………………………………………………() 第五部分模型的建立与求解………………………………………………() 1.问题1的模型………………………………………………………………() 模型I(…(随机规划)模型)……………………………………………() 模型II(………(数学)的模型)………………………………………….() ………………………………………………………………………………….2.问题2的模型…………………………………………………………………() 模型I(………数学的模型)………………………………………………()模型II(………数学的模型)…………………………………………….() ……………………………………………………………………………….第六部分对模型的评价………………………………………………………() 第七部分参考文献……………………………………………………………() 第八部分附录…………………………………………………………………………()一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。
附件一:数学建模论文模板(注:论文标题、摘要、关键词为单独的第1页;第2页开始为正文,原则上应该包括问题提出、问题分析、…、模型的评价与改进及参考文献;若需写短文的则另起一页附在最后)论文标题姓名1;姓名2;姓名3(学院班级1,学院班级2,学院班级3,)摘要:XXXXXX(字数至少3百,但不得超过8百)关键词:XXXXXXXXXXXXX1 问题的提出(重述)2 问题的分析3 模型基本假设4 定义符号说明5 模型的建立6 模型的求解XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX7 结果分析XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX8 模型的评价与改进参考文献(数学建模论文书写基本框架,仅供参考)题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。
根据这些特点我们对问题1用。
的方法解决;对问题2用。
的方法解决;对问题3用。
的方法解决。
(第2段)对于问题1我们用。
数学中的。
首先建立了。
模型I。
在对。
模型改进的基础上建立了。
模型II。
对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。
,然后借助于。
数学算法和。
软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。
(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)(第3段)对于问题2我们用。
(第4段)对于问题3我们用。
如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。
《数学建模》论文(宋体、小三、居中)题目:数学与信息科学学院学院:专业:班级:姓名:学号:2015 年月日1车道被占用对城市道路通行能力的影响摘 要本文针对交通事故占用车道对城市道路通行能力的影响进行分析,通过采集附件1、附件2中的数据,对横断面实际通行能力、上游车流量与时间的函数关系运用拟合,通过判断车辆排队长度与实际通行能力、事故持续时间、上游车流量的关系,并建立了它们之间的微分方程模型.运用Matlab 软件,对模型进行分析和求解.对于问题一,为得出事故发生到撤离期间,横断面实际通行能力和时间的函数关系.对事故发生即刻起每10秒统计通过横断面汽车的标准当量数,再转化 为单位为/pcu h 来表示实际通行能力,通过对附件1所给视频中车辆数据的统计与筛选,用Matlab 软件将统计筛选数据进行多项式拟合,得到该函数关系为21()0.305622.22941392.0532f t t t =-+.对于问题二,运用问题一的方法对处理附件2,同理得出函数关系为20()0.0106 2.34661365.7067f t t t =-+,根据两图曲线走势得出两图趋势大体相当,但图4.2较图4.1曲线平缓,说明图4.2的横断面实际通行能力受事故影响较小.产生差异的原因是根据附件3上左转流量比例35%、直行流量比例44% 和右转流量比例21%,即三车道比一车道车流量大,导致二三车道占用后需要换道的较多于一二车道占用,从而二三车道被占用时对横断面实际通行能力影响大,符合曲线走势.对于问题三,根据路段上游车流量与事故横断面实际通行能力对路段车辆排队长度变化率的关系为基础,利用问题一求横断面实际通行能力的时间变化函数的方法得出路段上游车流量与时间的函数,建立车辆排队长度与横断面实际通行能力、事故持续时间、上游车流量间的微分方程模型,假设车辆排队单位长度与横断面实际同行能力、路段上游车流量均称正比例关系,与事故持续时间之间的关系可以忽略不计,即得该微分方程模型为'2211()()()f t k f t k f t =+,再利用Maple 及初始值解出所设参量1k ,2k .对于问题四,由于题设条件符合上述模型,故将所给数据带入问题三所建模型当中求出时间即可.事故所处位置距离上游路口变为140米,根据视频中的实地情况,该路段中的支路位置将处在事故发生的下游,会相对减弱道路拥堵程度即提高实际通行能力,则运用原始模型求出时间相对应该偏小,但误差不会太大.关键词:实际通行能力;微分方程模型;拟合;Maple 软件目录(由域生成的目录,交稿前此页可以保留或删掉)摘要 (1)1、问题重述与问题分析 (3)1.1 问题重述(大家一定要注意样式的使用) (3)1.2 问题分析 (3)2、模型假设 (4)3、符号说明 (4)4、模型的建立与求解 (5)4.1 问题一的模型建立与求解 (5)4.2 问题二的模型建立与求解 (5)4.3 问题三的模型建立与求解 (6)4.4 问题四的求解 (7)5、模型的评价与改进 (8)5.1 对现有模型进行评价 (8)5.2 对现有模型的改进 (8)参考文献 (8)附录A (9)附录B (10)21、问题重述与问题分析1.1 问题重述(大家一定要注意样式的使用)随着城市化进程的加快,城市车辆数量剧增,交通事故日显突出,交通事故车道被占用导致车道或道路横断面通行能力在单位时间内降低.由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵.就针对交通事故降低车道通行能力方面解决如下问题:(1) 描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.(2) 分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.(3) 构建数学模型,分析交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.(4) 假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500/pcu h,事故发生时车辆初始排队长度为零,且事故持续不撤离.则求从事故发生开始到车辆排队长度将到达上游路口的时间.1.2 问题分析本题给出了两个交通事故发生时道路通行情况的视频及其示意图,通过视频采集数据来建立数学模型.针对问题一:根据实际通行能力的概念,在交通事故出现之前,道路保持基本通行能力,不必考虑实际通行能力,在事故出现即刻到撤离时间段内,通过视频1每10秒逐一统计标准车当量数(统计表见附件6),再转化为/pcu h为单位表示实际通行能力,利用Matlab软件将所统计筛选的数据拟合出一条曲线,筛选的目的是将视频中出现跳跃产生模糊的剪去,该曲线的走势及拟合出的函数反应实际通行能力的变化过程.针对问题二:就视频2采用问题一相同的方法统计,拟合出一条曲线及函数,将曲线一二进行比较,从而得出所占车道不同对横断面实际通行能力影响的差异.产生差异的原因是根据附件3上左转流量比例35%、直行流量比例44% 和右转流量比例21%,说明三车道比一车道车流量大,则所占二三车道比一二车道对降低实际通行能力影响大.3针对问题三:构建路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的模型,利用问题一所求出的实际通行能力的函数,用同样的方法求出上游车流量的函数关系及车辆排队长度与时间的函数关系(统计表见附录).根据车流量排队长度的变化率与横断面实际通行能力、路段上游车流量间的关系为基础,建立一个微分方程模型,再利用Maple软件及初始值解微分方程中的参量.针对问题四:问题四条件基本吻合问题三所建的模型,则直接将数据带进模型求出即可.事故所处位置距离上游路口变为140米,该路段中的支路位置将处在事故发生的下游,会相对减弱道路拥堵程度即提高实际通行能力,则运用原始模型求出时间相对应该偏小,但误差不会太大,则直接代入模型求解.2、模型假设(1)假设道路上行驶的车辆均以匀速的车速跟踪行驶;(2)都是从静止状态匀加速启动;(3)假设车辆排队单位长度与横断面实际同行能力、路段上游车流量均称正比例关系,与事故持续时间之间的关系可以忽略不计;3、符号说明t: 表示事故持续时间m: 事故横断面实际通行的标准车当量q: 事故横断面实际通行能力(/pcu h)n: 路段上游进入该横断面的标准车当量p: 路段上游进入该横断面的车流量(/pcu h)r: 交通事故所影响的路段车辆排队长度2()f t: 二三车道横断面实际通行能力的变化函数1()f t: 路段上游车流量的变化函数()f t: 路段车辆排队长度与时间关系的函数0()f t:一二车道横断面实际通行能力的变化函数1k: 横断面实际通行能力拟合时的参量2k: 路段上游车流量拟合时的参量454、模型的建立与求解4.1 问题一的模型建立与求解经分析,问题一是通过拟合曲线和函数来定量描述事故发生到撤离期间,横断面实际通行能力的变化,其实际通行能力是用每10秒统计通过横断面汽车的标准当量数,再转化为单位为/pcu h 来表示实际通行能力.图4.1实际通行能力的时间变化图(占用二三车道)是通过Matlab 拟合得到,从而得到实际通行能力与时间的关系21()0.305622.22941392.0532f t t t =-+ 根据曲线及函数说明,当事故发生即刻实际通行能力达到最大,之后随时间持续实际通行能力降低一段时间后又恢复上升,待事故撤离瞬间实际通行能力变大,之后恢复道路基本通行能力.可得出实际通行能力与事故持续时间之间并非单调关系,近似拟合方程有个最低点.图4.1 实际通行能力的时间变化图(占用二三车道)4.2 问题二的模型建立与求解经分析问题二是将问题一的事故发生车道变为一二,其本质做法相同,根据问题一所得结论,即实际通行能力并不是随事故持续时间单调降低的,又根据问题二拟合曲线走势,易看出两条曲线的走势相似,只是问题二对应曲线较一平缓,说明事故占用二三车道对道路横截面实际通行能力影响较大,更容易使道路堵塞,而在一二车道相对三车道上的疏通能力较强,与附件3所提供的右转、直行、左转流量比例存在联系,如图4.2实际通行能力的时间变化图(占用一二车道)图4.2 实际通行能力的时间变化图(占用一二车道)4.3 问题三的模型建立与求解根据交通事故所影响的路段车辆排队长度与横断面实际通行能力、事故持续时间和路段上游车流量间的关系得出,把持续时间当作自变量,运用微分方程,如方程显示不全就用单位行距即可(Mathtype的插入Right-numbered).67(8.1)由问题一及(1.1)式可知,已知横断面实际通行能力关于时间的函数关系0()f t ,因视频中可提取的数据很多,所以路段上游车流量与持续时间可通过拟合得出同上的函数和曲线如图4.3上游车流量的时间变化图()!!!n r n r - .再用相同的方式得出路段车辆排队长度随时间变化的函数关系及曲线.由假设条件知假设车辆排队单位长度与横断面实际同行能力、路段上游车流量均称正比例关系,与事故持续时间之间的关系可以忽略不计.根据'2211()()()f t k f t k f t =+利用Maple 软件及初始值计算得出1k 2k (如表1.1所示)则模型求得函数为1k = —1.6903, 2k =1.8 ,即12() 1.6903() 1.8()f t f t f t '=-+.表1.1 示例表格五号黑体(尽可能用三线表)五号 五号 五号 宋体 宋体4.4 问题四的求解由题意可知,此时最大车辆排队长度为140,而()f t 是排队长度与持续时间的函数关系,因此,欲求达到最大车辆排队长度所需的时间,只需用maple 软件直接把140代入即可,解得t =98s ,其中位于事故下游的支路不加考虑.5、模型的评价与改进5.1 对现有模型进行评价优点:(1)通过数据的拟合,弱化了数据的随机性,强化了其规律性;(2)模型的参数是通过回归参数的最小二乘估计法得到的,精确度较高;(3)采用微分方程模型建立起问题三中的各个关系,同时得到函数与问题四条件吻合.(4)在采用微分方程的同时考虑周期性相结合更切合实际.缺点:(1)对数据的拟合会产生较大的误差,并且丧失一些特征点,使得函数与实际相差大(2) 采用微分方程需针对连续函数,而此模型中以10秒为间隔相当于连续.会存在一定偏差.5.2 对现有模型的改进未考虑红绿灯对路段上游车流量的影响,即对模型所建立的函数没有周期性的影响.参考文献[1]姜启源,数学模型(第二版),北京:高等教育出版社,1993年.[2]王松桂,陈兰红,陈立萍,论线性统计模型的应用,中国科学,28(2):1228-1239,1999年.[3]王高雄,论文的模板,/,2014年5月21日.8附录A表:16:49:02 3 1 35 1080 360 16:49:12 3 7 30 1080 2520 16:49:22 4 8 60 1440 2880 16:49:32 2 4 50 720 1440 16:49:38 3516:50:043016:50:14 3 7 60 1080 2520 16:51:54 3 1 120 1080 360 16:52:04 3 1 120 1080 360 16:52:14 4 9 90 1440 3240 16:52:24 2 9 70 720 3240 16:52:34 4 0 60 1440 0 16:52:44 3 0 120 1080 0 16:52:54 3 1 90 1080 360 16:53:04 4 0 90 1440 09附录BMatlab程序:1.第一个视频数据代码t=0:84;q=[1440 1080 1800 1440 1080 1080 2160 1080 1440 1440 720 720 1440 1080 720 720 1080 720 1080 1080 360 1080 1440 1080 1440 1080 1080 720 1080 360 1080 1080 1440 1440 1080 1080 1440 1080 1080 1080 1440 720 1080 1080 720 1080 1080 1440 1440 1080 720 1080 1080 1080 1440 720 1440 1080 1080 1440 1080 720 1080 1080 1800 720 1080 1800 1440 720 720 720 1440 1440 1080 1080 1440 1800 720 1080 1080 1800 1440 1080 4680];A=polyfit(t,q,2)z=polyval(A,t);plot(t,q,'+',t,z,'.')2.第二个视频数据代码t=0:174;q=[720 360 1800 1440 1800 1800 720 1800 2160 1440 1080 1080 1080 720 720 1800 1800 1080 1440 1440 2160 1800 720 1080 1440 1440 1080 2160 1440 720 1080 1080 1800 1800 1080 360 720 1800 2160 1440 1080 720 1080 1440 1440 1080 1440 1440 1440 1440 1800 1800 2160 1440 1080 1440 1080 1440 720 720 360 1080 1440 1800 1080 720 720 1800 1080 1440 1080 1080 1440 1080 1800 720 720 360 360 1440 1440 1800 1080 1800 1440 1080 1080 1800 1080 1080 720 1440 1440 1800 1440 1440 1440 1440 1080 1080 1080 1440 1440 1080 1080 1440 1080 1080 1080 1440 1440 1080 1080 720 1080 1440 1080 1440 1440 1080 1800 1080 1440 1440 1440 1080 1080 1440 1440 1080 1080 1440 1440 1800 1080 1440 1440 1080 1440 1080 1440 1080 1440 1080 1080 1440 1080 1080 360 720 1080 1080 1440 1440 1080 1440 1440 1080 1440 1080 1440 1080 720 1080 1080 1080 1440 1800 1440 1440 1080 1440 1440 1440 1440];12 10 11 10 14 13 24 13];A=polyfit(t,q,2)z=polyval(A,t);plot(t,q,'+',t,z,'.')103.路段上游车流量与时间的函数源程序:t=0:92;y=[360 360 360 2880 1440 0 360 360 0 1800 2520 0 0 360 360 2520 2880 0 0 0 360 1800 1800 0 0 360 360 2520 3240 2160 0 0 0 2520 1800 1080 360 0 360 2520 2880 1440 0 0 2520 3240 1440 0 0 0 3600 2880 1440 360 360 360 3240 3240 0 0 360 0 3960 2520 1440 0 2520 2880 3600 1440 0 0 0 0 2160 1800 720 0 0 0 0 0 0 2880 0 0 3600 2520 0 0 720 0 1800];A=polyfit(t,,p,3)z=polyval(A,t);plot(t,p,'+',t,z,'.')4.路段车辆排队长度与时间的函数源程序:t=0:87;r=[90 90 60 40 60 80 50 30 10 0 0 0 0 0 0 0 0 0 30 50 40 30 0 30 30 30 10 0 0 0 60 40 40 30 30 45 30 60 50 35 30 60 50 35 30 60 30 30 40 120 60 60 45 35 45 120 120 90 70 60 120 90 90 60 60 60 100 120 120 80 90 120 120 120 90 90 90 90 100 90 60 90 90 90 120 120 120 0];A=polyfit(t,r,3)z=polyval(A,t);plot(t,r,'+',t,z,'.')11。
数学建模论文模板本文将以“动力学模型研究草地生态系统中植物物种多样性变化的机制”为例,介绍数学建模论文的写作模板。
第一篇:绪论在本篇论文中,我们将研究草地生态系统中植物物种多样性变化的机制。
植物物种多样性是生态系统中的重要指标之一,其变化与环境因素、人类干扰等因素密切相关。
我们希望通过建立动力学模型,揭示不同因素对植物物种多样性变化的影响机制,为草地生态系统保护与管理提供科学依据。
本文的具体框架如下:在第二部分中,我们将简要介绍植物物种多样性与草地生态系统的相关知识。
在第三部分中,我们将从环境因素、人类干扰、种间关系等因素入手,进行动力学模型的建立,并分析模型参数。
在第四部分中,我们将通过模型仿真和实验验证,探究不同因素对植物物种多样性的影响。
第二篇:文献综述植物物种多样性是生态系统中的重要指标之一,其变化涉及到复杂的生态因素和人类活动。
在草地生态系统中,植物群落的物种多样性变化受到许多因素的影响,例如环境因素、人类干扰、生物多样性等。
下面我们将分别对这些因素的影响机制进行综述。
环境因素:环境因素是影响生态系统中植物物种多样性变化的重要因素。
其中,土壤水分、光照等生态因素对植物的分布、生长和繁殖都有直接和间接的影响。
土壤养分、温度、氧气含量、酸碱度等也会对物种多样性产生影响。
人类干扰:人类干扰是导致生态系统中植物物种多样性下降的主要因素之一。
人类从事的采矿、建设等活动都会破坏生态系统的平衡,从而影响系统中不同物种的生存繁殖。
另外,过度放牧、过度利用等也会对植物群落的物种多样性造成一定的影响。
种间关系:物种之间的关系也是影响生态系统中植物物种多样性的重要因素之一。
其中,竞争、共生、捕食等种间关系都会直接或间接的影响植物群落的物种多样性。
第三篇:方法与结果基于在综述中分析的因素,我们建立了相应的生态动力学模型。
该模型以草地生态系统中植物群落的物种多样性为研究对象,考虑了土壤水分、光照、土壤养分等环境因素、过度放牧、过度利用等人类活动以及种间关系等多种因素对物种多样性的影响。
系泊系统的设计摘要本文为系泊系统的设计问题,根据题目要求建立了数学模型,计算出系泊系统在不同条件下的具体参数,并利用模型对系泊系统进行优化分析,使其能运用到更广的领域。
针对问题一,首先分析了锚链的形状,利用微积分原理求出锚链的静态方程,用Matlab 画出锚链形状,得出锚链的形状所符合悬链线方程。
然后把钢管、钢桶看成一个整体,并忽略钢管和钢桶倾斜引起的锚链上端高度的变化,分析出锚链的长度和锚链末端与海平面的夹角对吃水深度的影响,又对钢桶、钢管和浮标进行了受力和力矩分析。
最后建立了数学模型,计算出风速为12m/s 和24m/s 时,钢桶和各节钢管的倾斜角度(见表2),浮标吃水深度分别为0.737m 、0.752m ,浮标的浮动区域(此浮动区域是以锚为圆心的圆)面积分别为、,锚链的形状如图(5-11)、(5-12)所示。
针对问题二,由问题一中建立的系泊系统的模型,计算风速为36m/s 时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。
得到了钢桶和各节钢管的倾斜角度如(表3),浮标吃水深度:0.787m ,以及游动区域面积:1229.39m 。
由于重物球的质量变化影响锚点与海床的夹角,可以通过调节重物球的质量控制锚点与海床的夹角。
分析得出当锚点与海床的夹角处于临界点(即16度)时,重物球的最小质量为1756.8kg ;当浮标刚好没入水中时,重物球的最大质量为5335.8kg 。
针对问题三,以钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域为目标函数,分析动态优化问题。
与问题一、二不同的是:此问题给定了水深、海水速度、风速的取值范围,属于模型动态变化问题。
所以对模型进行了动态分析,求得钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域的取值范围,进而分析水深、海水速度、风速对结果的影响,这有利于系泊系统的调整和应用。
本文所建立的模型对相关问题在理论上作了证明,虽然对部分模型进行了简化,但是实用性很强,而且易于推广,能够扩展到其他系泊系统。
小区开放对道路通行影响评价模型摘要本文主要研究了封闭式小区开放对其周围路段交通通行影响的问题,针对不同方面产生的影响建立了相应评价指标,使用VISSIM仿真、MATLAB软件计算,得出了不同条件下小区开放对周围道路交通的定量影响。
针对问题一,本文采用主成分分析方法,选取路段情况、路网情况、交通便捷性和网络脆弱性四个评价机制下的12个评价指标作为小区开放对周围道路影响的分析因子。
基于北京10个小区的抽样调查,用MATLAB进行计算分析,通过其贡献率高低的排序筛选出综合评价的标准,即得到完整的评价指标体系。
针对问题二,本文选取整体评价机制中评价交通流量优劣的出行时间总和评价模型,来对比研究小区开放前后对于车辆通行的影响。
本文又选择了长沙一小区的开放前附近交通量数据,并按照其内部改造规划和网络流分配原理用VISSIM仿真出了开放后交通量的数据,使用出行时间总和评价模型比较前后总的车行时间和,得出该小区的开放改建是有利于提高周边道路通行速度的。
针对问题三,本文将小区结构、周边道路结构和车流量分别抽象为小区开放不同数量的出入口、小区位于节点度不同的路网和具备不同复杂程度的内部结构三个参数,并赋予它们相互关联的数值。
利用VISSIM仿真软件在控制变量的基础上进行数据分析,并使用节点度方差指标评价仿真的结果。
将不同小区开放后内外整体网络脆弱性高低的指标作为对道路通行影响的评价机制,得出以下结论:小区结构对周围交通的影响依赖于道路结构;小区周围道路的结构越简单,对小区开放后周围交通运行更有利;车流量越小对小区开放后的周围交通越有利,且一定阈值内交通性能提升与开放程度正相关。
本文所建立的各模型之间联系紧密,且理论性强,涵盖面广,能体现真实情况,也保证了一定的可靠性。
对城市道路的评价及交通出行研究都具有一定的参考价值。
关键词:封闭小区开放主成分分析网络流节点度方差交通仿真1.问题的简述1.1题目所给的信息封闭住宅小区的逐步开放,对交通情况的改善能力如何,成为当今的热点话题之一。
数学建模获奖论文模板范文一、我校学生数学建模现状3.目前我校只开设了一门数学方面的公共选修课《数学建模》,一共16次课,仅仅靠课堂上讲的内容让学生来参加数学建模竞赛远远不够,另外,学生又要同时兼顾其他专业课程,因此学习效果不好。
5.我校学生参加数学建模的积极性不高,我校已经连续参加几年的数学建模竞赛,但最多的也就5个队,仍有多数学生称未听过有这项比赛,说明宣传不是很到位。
6.目前组队参赛的任务是交给基础部来完成,而基础部没有学生,这就会造成找队员困难的问题。
二、参加数学建模比赛的意义1.有利于培养学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整的论文,对于大多数学生来说,都是第一次,它可以提高学生如何把数学知识用到实际生活中的能力,提高学生合理利用网络查阅资料的能力,提高学生的创新意识和团队协作能力等。
很多参赛学生事后感叹到团队合作能力对于建模比赛很重要,这对他们以后参加工作也会有很好的帮助。
2.有利于促进高职数学课程的改革三、数学建模课的发展建议1.把数学建模的管理层次上升到学院,因为只有学院的大力支持,领导的高度重视才是提高高职学生数学建模能力的首要条件,而且只有学院的倡导和支持,各部门在宣传数学建模方面时才会更加尽职尽责,不会出现推诿的现象。
3.平时开设数学建模选修课,假期集中培训备战国赛,由于我校的数学建模课一般开设在大一的下学期,而技能大赛的比赛时间通常是选修课开课之前,这就导致了学生参加技能大赛时根本不知道数学建模比赛比的是什么。
而且选修课只有一个老师教,力度太小。
应该是大一开学就开始开设相关的数学建模选修课,几个数学老师分工,每个数学老师讲授一块内容,这样学生了解的知识面会更广一些。
另外,必须赛前集中培训,因为平时的选修课只是让学生了解,但并没有让他们系统的练习,所以赛前培训就是重点讲数学建模习题,并让学生以三人一个小组模拟训练。
4.技能大赛的数学建模比赛应该和学校其他教学系的比赛错开时间,因为学院的技能大赛一般是三天,多数项目的比赛时间通常只有半天,但数学建模恰恰是技能大赛中最特殊的一项比赛,首先是耗时长,正规的数学建模比赛是需要三天的时间,需要学生选定题目后在三天的时间里选定题目后完成一篇完整的论文;其次是必须三人一项小组,由于数学建模的工作量较大,需要三个人共同协作,缺少一个队员就会拖延整个小组的工作进度;再者数学建模比赛期间学生是比较自由的,可以上网,可以和其他人讨论。
2016高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆信息技术职业学院参赛队员(打印并签名) :1. 杨肖肖2. 邓亭3. 杨海觉指导教师或指导教师组负责人(打印并签名):肖文日期:2016年 9 月12 日赛区评阅编号(由赛区组委会评阅前进行编号):2016高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):电池剩余放电时间预测摘要铅酸电池(VRLA)作为电源被广泛用于工业、军事、日常生活中。
在铅酸电池以恒定电流强度放电过程中,电压随放电时间单调下降,直到额定的最低保护电压(Um)9V。
电池在当前负荷下还能供电多长时间是实际使用中必须回答的问题。
电池通过较长时间使用或放置,充满电后的荷电状态会发生衰减。
针对问题一,首先,本文使用Matlab软件进行一元多项式回归拟合作出电池放电时间分别与各电流的一元多项式回归曲线,并根据Matlab程序结果得出各放电曲线一[2]。
其次,采用系统抽样方法在附件1中从元多项式回归模型Um开始按不超过0.005V的最大间隔提取231个电压样本点,在Excel软件中,算出各电流中相邻电压之差,在这些差中用统计中的countif函数找出 0.005的所有样本点在各电流中的分布将其清 0.005的所有样本点分布为对象:(各电流中的样晰的标出,此时各电流中的样本点以本点/总样本点)*231得出231个样本点在各电流中的分布,接着各电流中的样本点以231个样本点分布为对象:用231个样本点在各电流中分布的样本点找出其样本点所放电时间,并利用(各电流中的总放电时间-各电流中样本的放电时间)/各电流中的总放电时间/各电流中的样本点得出平均相对误差。
湖南第一师范学院
HUNAN FIRST NORMAL UNIVERSITY
《线性规划与数学建模》
考查论文
论文题目:
姓 名 专业班级 及学号 分工 成绩评定
组员1
组员2
1
摘要
(标题黑体不加粗四号居中,正文宋体小4号,下同)
内容要点:
1、 研究目的:本文研究……问题。
2、 建立模型思路、:首先,本文……。
然后针对第一问……问题,本文建立……模型:
在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么
模型
在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么
模型
3、 求解思路,使用的方法、程序
针对模型的求解,本文使用什么方法,计算出,并利用什么工具求解出什么
问题,进一步求解出什么结果。
4、 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度
分析,模型检验等)
关键词:方法;理论;概念等
2
一、问题重述
内容要点:
1、问题背景:结合时代、社会、民生等
2、需要解决的问题
问题一:
问题二:
问题三:
二、问题分析
内容要点:什么问题、需要建立什么样的模型、用什么方法来求解
三、模型假设与约定
内容要点:
1、根据题目中条件作出假设
2、根据题目中要求作出假设
写作要求:
细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并
简化它们的关系。将一些问题理想化、简单化。
1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何
曲解
2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只
会扰乱读者的思考
3、假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如
从问题的性质出发作出合乎常识的假设,或者由观察所给数据的图象,得到变量
的函数形式,也可以参考其他资料由类推得到。对于后者应指出参考文献的相关
内容
四、符号说明及名词定义
内容要点:包括建立方程符号、及编程中用到的符号等
五、模型建立
内容要点:
1、模型一
2、模型二
3、模型三
对于每一个模型的建立,需要写出的内容:问题分析→公式推导→基本模型
→最终或简化模型。基本模型要有数学公式、方案等。简化模型要明确说明简化
3
思想、依据。
写作要点:
数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、
难(度大)。模型要实用,有效,以解决问题有效为原则。
1、能用初等方法解决的、就不用高级方法
2、能用简单方法解决的,就不用复杂方法
3、能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法
4、鼓励创新,但要切实,不要离题搞标新立异
六、模型求解
内容要点:
1、模型一的求解
2、模型二的求解
3、模型三的求解
每一块内容包括:计算方法设计或选择、算法设计或选择、算法思想依据、
步骤及实现、计算框图、所采用的软件名称
写作要求:
1、需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论
证严密
2、需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,
说明采用此软件的理由,软件名称
3、计算过程,中间结果可要可不要的,不要列出
4、设法算出合理的数值结果
5、最终数值结果的正确性或合理性是第一位的
6、对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差
大时,分析原因, 对算法、计算方法、或模型进行修正、改进
7、题目中要求回答的问题,数值结果,结论,须一一列出
8、列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、
分析,为各种方案的提出提供依据
9、结果表示:要集中,一目了然,直观,便于比较分析
▲数值结果表示:精心设计表格;可能的话,用图形图表形式
▲求解方案,用图示更好
10、必要时对问题解答,作定性或规律性的讨论。最后结论要明确
七、模型检验
内容要点:结果分析、检验;模型检验及模型修正;结果表示
写作要求:
1、最终数值结果的正确性或合理性是第一位的
2、对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差
大时,分析原因, 对算法、计算方法、或模型进行修正、改进
3、题目中要求回答的问题,数值结果,结论,须一一列出
4、列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、
4
分析,为各种方案的提出提供依据
5、结果表示:要集中,一目了然,直观,便于比较分析
▲数值结果表示:精心设计表格;可能的话,用图形图表形式
▲求解方案,用图示更好
八、模型评价
内容要点:
1、优点
2、缺点(结合模型假设)
3、改进方法
写作要求:
优点突出,缺点不回避。改变原题要求,重新建模可在此做。推广或改进方
向时,不要玩弄新数学术语。
九、模型推广
结合社会实际问题
十、参考文献
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
十一、附录
内容要点:搜集的相关资料、所编程序的运行结果、计算框图、详细图表。
主要结果数据,应在正文中列出,不怕重复。