(完整版)硫酸铵废水MVR蒸发结晶
- 格式:docx
- 大小:63.95 KB
- 文档页数:7
mvr硫酸钠蒸发结晶工艺流程English:MVR Sodium Sulfate Evaporation and Crystallization Process.Introduction.Sodium sulfate is a common inorganic compound with a wide range of applications in various industries, including glass, paper, textile, and food. The evaporation and crystallization of sodium sulfate is an important process in the production of this compound. One commonly used method for this process is the Multiple Effect Vapor Recompression (MVR) system.Process Overview.The MVR sodium sulfate evaporation and crystallization process involves several key stages:1. Feed Preparation:The raw sodium sulfate solution is first preheated and filtered to remove impurities.2. Pre-Evaporation:The preheated solution is then fed into a pre-evaporator, where it is partially concentrated by evaporation. The vapors generated during this stage are compressed and used to heat the incoming solution.3. Multiple-Effect Evaporation:The partially concentrated solution is then passed through a series of multiple-effect evaporators. In each effect, the solution is further concentrated by evaporation using the heat generated from the vapor compression system. The number of effects used depends on the desired concentration of the solution.4. Crystallization:The concentrated solution is then cooled in a crystallizer to induce crystallization. The crystals are allowed to grow and settle to the bottom of the crystallizer.5. Separation and Drying:The crystals are separated from the mother liquor using a centrifuge or filter. The crystals are then dried to remove any remaining moisture.Advantages of MVR System.Energy Efficiency: The MVR system utilizes the latent heat of evaporation multiple times, resulting insignificant energy savings compared to conventional evaporation methods.Reduced Operating Costs: The energy efficiency of the MVR system leads to lower operating costs, making it aneconomical choice for large-scale sodium sulfate production.High Evaporation Rates: The MVR system allows for high evaporation rates, which can increase the production capacity of the plant.Environmental Benefits: The MVR system reduces greenhouse gas emissions by utilizing waste heat and minimizing energy consumption.Conclusion.The MVR sodium sulfate evaporation and crystallization process is an advanced and efficient method for producing sodium sulfate. It offers numerous advantages, including energy efficiency, cost savings, high evaporation rates,and environmental benefits.中文回答:MVR 硫酸钠蒸发结晶工艺。
MVR分质提盐蒸发结晶工艺详解(含图)分质提盐蒸发结晶工艺主要利用了硫酸钠和氯化钠的溶解度对温度依赖性的差异,在50~120℃,硫酸钠溶解度随温度升高而减小,氯化钠溶解度随温度升高而增大。
依据Na+//Cl-、SO42--H2O体系不同温度下三相共饱和时的溶解度,结晶温度设计上首先要保证硫酸钠和氯化钠溶解度有一定的差异,而且温度不能过低,避免压缩机进口气体体积较大。
实际工业生产中,硫酸钠与氯化钠溶液蒸发量较大,结晶终点一般要求低于饱和浓度。
MVR分质提盐蒸发结晶系统流程如下图所示(图中数字1~31为管段编号),其具体工作流程如下。
对于原料液,经一级预热器(2)与从一效降膜蒸发器(5)和二效强制循环蒸发器加热室(6)中出来的高温蒸汽冷凝水首先进行换热,到达设定的蒸发温度后进入一效降膜蒸发器(5)换热蒸发,料液中硫酸钠组分达到饱和后进入二效强制循环蒸发器(6)、(7)进行过饱和蒸发(此时料液中氯化钠组分得到浓缩至接近饱和),产生的晶浆通入一级结晶分离器(10),硫酸钠组分经分离后通入硫酸钠晶体储存罐(11)。
分离出硫酸钠后产生的浓缩液经二级预热器(12)与从预热器(2)出来的冷凝水进行换热,达到设定的蒸发温度后进入三效强制循环蒸发器(15)、(16)进行过饱和蒸发,产生的晶浆通入二级结晶分离器(20),氯化钠组分经分离后通入氯化钠晶体储存罐21,部分浓缩液则通过循环泵(19)回到强制循环蒸发器继续蒸发至结晶出料量,通过卸液阀排出剩余浓缩液。
在一定蒸发温度下硫酸钠与氯化钠的溶解度是确定的,因此可确定出对应状态下的饱和浓度,利用离子浓度仪控制硫酸钠与氯化钠的饱和或过饱和状态。
对于蒸汽,一效降膜蒸发器(5)和二效强制循环蒸发器蒸发室(7)产生的二次蒸汽通入一级气液分离器(8),三效强制循环蒸发器蒸发室(16)产生的二次蒸汽通入二级气液分离器(17),去除气体中夹杂的液滴后分别进入蒸汽压缩机(9)和(18)进行压缩,利用从预热器(12)出来的冷凝水对压缩产生的过热蒸汽进行喷水处理至饱和状态,作为蒸发所需的热源蒸汽分别通入三个蒸发器中。
硫酸铵三效蒸发系统结晶及干燥效果分析摘要:根据硫酸铵回收装置三效蒸发系统稳定生产过程中,出现的硫铵结晶颗粒小、干燥效果差、储料斗、包装系统无法正常使用等现象,通过分析和改造处理,最终达到较好的硫铵结晶干燥效果,实现储料斗、包装系统的正常使用。
关键词:三效蒸发系统盘式干燥器储料斗前言三效蒸发硫铵装置是炼化公司聚丙烯酰胺生产的配套装置,由蒸发结晶、离心分离、干燥、包装等工序组成,采取外循环加热、三效减压蒸发等操作,用稀硫酸作为吸收液将聚丙烯酰胺生产过程中的含氨废气,进行两级吸收后产生浓度约25%的稀硫酸铵溶液,经预热后温度达到60℃,首先通过一效加热室进行间接换热,换热后进入一效分离室进行汽液分离,在压差的作用下进入二效分离室,经过二效加热室换热后,由二效出料泵输送至旋流器,旋流器底部固体含量较高的溶液进入稠厚器;旋流器顶部低浓度溶液送至三效分离室,经三效加热室换热,物料蒸发浓缩到固含量25%左右,经三效出料泵再输送至旋流器。
旋流器顶部浓度较低的溶液回流至三效分离室继续浓缩,旋流器底部固体含量较高的溶液进入稠厚器增稠,通过离心机脱水后的固体结晶再进行烘干。
由离心机分离和稠厚器溢流出的母液则流入母液罐,经母液泵输送至三效加热室继续蒸发提浓。
烘干的硫铵结晶经过螺旋输送机送入储料斗,最后经过称重、包装、入库,实现回收结晶硫铵的目的。
一、三效蒸发系统硫铵结晶及干燥情况1.三效蒸发系统硫铵结晶情况稀硫铵液经过乏汽预热器、冷凝水预热器升温到70℃左右,经过一效加热室进入一效分离室,通过一效轴流泵强制循环加热到110℃左右,在一效分离室内进行汽液分离。
一效浓缩硫铵液(浓度为37%)在压力差作用下进入二效分离室(操作温度为93℃左右),二效分离室内的硫铵溶液通过二效轴流泵进行强制循环,经过二效加热室加热浓缩后,由二效出料泵送入旋流器A,固含量为10%(V/V)的溶液经过旋流器分离出的低浓度硫铵溶液部分返回二效分离室继续浓缩,另一部分送至三效加热室进行加热浓缩,三效浓缩液(固含量为25%)经三效出料泵进入旋流器B,分离出的低浓度硫铵溶液进入三效加热室继续蒸发浓缩,高浓度含固液体(固含量为50%)进入稠厚器,靠压差流入离心机进行脱水分离,然后在下一工序进行干燥、包装。
mvr蒸发结晶系统工艺流程
一、概述
MVR蒸发结晶系统是指采用机械压缩蒸汽循环,将低温低压的水蒸气压缩成高温高压的水蒸气,从而实现能量回收和节能的一种蒸发结晶技术。
该系统广泛应用于化工、制药、食品等行业中,本文将详细介绍MVR蒸发结晶系统的工艺流程。
二、原料处理
1. 原料输送:将原料通过管道输送到预处理设备中。
2. 预处理:对原料进行初步处理,如去除杂质、过滤等。
3. 调配:根据生产需要,对原料进行配比和调整。
三、预热
1. 初级蒸汽加热:通过初级蒸汽对原料进行加热至一定温度。
2. 省略式换热器:利用省略式换热器对初级蒸汽进行加热,提高能量利用效率。
四、浓缩
1. MVR循环压缩:将低温低压的水蒸气通过MVR循环压缩成高温高压的水蒸气。
2. 能量回收:通过热交换器将高温高压的水蒸气与原料进行换热,实现能量回收。
3. 一级蒸发器:将原料进行一次蒸发浓缩。
4. 二级蒸发器:将一级蒸发器的浓缩液继续进行二次蒸发浓缩。
五、结晶
1. 冷却结晶:将浓缩后的溶液通过冷却器冷却至饱和度,使得其中的
溶质结晶出来。
2. 分离:通过过滤机等设备对结晶出来的固体物进行分离。
3. 洗涤:对分离后的固体物进行洗涤,去除杂质和残留物。
六、干燥
1. 干燥:对洗涤后的固体物进行干燥处理,使其达到所需干燥度。
2. 研磨:对干燥后的固体物进行研磨处理,使其达到所需粒度和形态。
七、成品包装
1. 包装:将制成品按规定包装方式进行包装。
2. 质检:对包装好的成品进行质量检验,并记录相应数据。
江苏赛格尔环保工程有限公司专业从事MVR蒸发器、罗茨、离心蒸气压缩机等核心成套设备的研发、设计、制造。
集聚了在节能环保蒸发器领域的专家和科技人才,组成了MVR高效节能蒸发器及蒸汽压缩机的设计和制造精英团队,致力于成为一流的蒸发浓缩结晶的工艺设计者,设备制造者,运行管理服务提供者,节能技术领跑者。
公司致力于高浓度高盐废水处理及资源化利用,立志成为该领域的先锋。
公司开发的MVR蒸发器具有应用领域宽广、高效节能、全自动无人值守和组态实时监控等特点,可广泛应用在环保、制糖、制药、化工、食品、等节能减排和环境保护领域,为企业和城市环境提供了真正实现“零排放”的全套技术解决方案。
※公司愿景永恒节能,永恒环保。
※公司理念责任:对社会负责、对企业负责、对客户负责、对员工负责。
创新:持续不断地进行技术创新、经营创新、管理创新。
精神:认真负责、追求卓越。
※公司目标打造卓越品质,成就行业品牌。
三、MVR工艺介绍1、MVR原理MVR是蒸汽机械再压缩技术,(mechanical vapor recompression )的简称。
MVR 蒸发器是重新利用它自身产生的二次蒸汽的能量,从而减少对外界能源的需求的一项节能技术。
MVR其工作过程是将低温位的蒸汽经压缩机压缩,温度、压力提高,热焓增加,然后进入换热器冷凝,以充分利用蒸汽的潜热。
除开车启动外,整个蒸发过程中无需生蒸汽从蒸发器出来的二次蒸汽,经压缩机压缩,压力、温度升高,热焓增加,然后送到蒸发器的加热室当作加热蒸汽使用,使料液维持沸腾状态,而加热蒸汽本身则冷凝成水。
这样原来要废弃的蒸汽就得到充分的利用,回收潜热,提高热效率,生蒸汽的经济性相当于多效蒸发的30效。
为使蒸发装置的制造尽可能简单和操作方便,可使用离心式压缩机、罗茨式压缩机。
这些机器在1:1.2到1:2压缩比范围内其体积流量较高。
蒸发设备紧凑占地面积小所需空间也小。
又可省去冷却系统。
对于需要扩建蒸发设备而供汽,,场地不够的现有工厂供水能力不足,特别是低温蒸发需要冷冻水冷凝的场合,可以收到既节省投资又取得较好的节能效果。
MVR技术在硫酸铵蒸发结晶中的应用唐华【摘要】MVR即机械蒸汽再压缩,工作原理是将低温位的蒸汽经压缩机压缩,温度和压力提高,热焓增加,然后进入换热器与物料进行换热,充分利用蒸汽的潜热,整个蒸发过程中不再需要补充生蒸汽,压缩机只要提供少量的电力驱动就能实现蒸发器热能循环利用,连续蒸发,达到节能效果.与传统多效蒸发相比达到节能效果,MVR蒸发器是新一代蒸发器技术,是一种节能环保的高新技术,在化工、制药、环保等行业中广泛使用.【期刊名称】《广州化工》【年(卷),期】2015(043)024【总页数】3页(P179-180,211)【关键词】MVR;蒸发结晶;硫酸铵【作者】唐华【作者单位】江苏智道工程技术有限公司,江苏南京210009【正文语种】中文【中图分类】TH机械蒸汽再压缩技术(Mechanical Vapor Recompression,MVR)是一种高效节能环保技术,该技术主要通过重新利用蒸发器内产生的二次蒸汽能量,达到减少对外界能源需求目的。
具体过程是将蒸发过程中产生的二次蒸汽经过压缩机压缩(介质一般是水蒸气),温度、压力上升,热焓值增加,用于补充或完全取代新鲜蒸汽为热源,实现潜热的持续循环使用[1-4]。
在常压下,100 ℃的水蒸气冷凝成100 ℃的水放出的潜热为2256.6 kJ/kg,因而这部分能量是极具利用价值的[3]。
MVR技术在国外已经经过几十年的发展,而国内引进MVR技术也有接近十年时间了。
在国内,该技术已在含盐污水处理、印染废水处理,食品浓缩,中药蒸发浓缩,冶金行业等方面有许多成功案例[4-5],在其使用上累积了较多的经验。
MVR蒸发器近几年在国内发展得比较快,受推崇的原因是节能效果显著。
在每个项目中计算得出结论:虽然初期投入成本比传统蒸发器高很多,但是很快就可以在运行过程可以把初期的投入收回来,一般是一年到两年时间。
这是MVR蒸发器的优势。
1.1 工作原理MVR蒸发得装置原理图如图1所示,原料液通过蒸发器吸收来自蒸汽的热量后进入闪蒸罐中蒸发浓缩,达到要求的浓缩液直接进入下一道工序;而所蒸发出来的低压乏汽则通过蒸汽压缩机压缩做功,以提高其温度和压力,增加热焓值,提高乏汽的品位。
煤化工高盐废水的来源与特点:煤化工高盐废水指的是在煤工业生产过程中产生的,含盐量在1% 以上的废水。
具体而言,在煤工业生产过程中,锅炉排水、补充新鲜水、除盐水处理等流程均会产生一定废水,混合而成的产物就是煤化工高盐废水,其内部组成成分一般包括硝酸钠、氯化钠等无机盐以及氰化物、芳烃等有机物,其中,补充新鲜水环节产生的盐分含量最高,基本能够达到整体高盐废水的50% 左右。
煤化工高盐废水主要存在以下特点:(1) 成分较为复杂。
不仅包括钾离子、钠离子、镁离子、钙离子等阳离子,还包括氯离子、硫酸根离子等阴离子,也涵盖了大量的杂质离子,不同项目废水组分具有较强的多变性。
高温①③⑥煅烧1611干燥2988(2) 危害较大。
煤化工高盐废水中存在大量的离子,且盐分含量相当高,一般都在10 000 mg/L 左右,在特殊情况下,其盐分含量甚至能够达到 30 000 mg/L,这样高的盐分含量会导致其难以成为生物降解废水,不仅会使微生物细胞脱水出现质壁分离现象,还会增加溶液浓度,进一步影响生物处理的净化效果。
(3) 可利用性。
煤化工高盐废水在经过预处理、结晶等工艺处理之后,能够产生有较高利用价值的盐类,同时也能产生可循环利用的水资源,因此,对煤化工高盐废水进行合理处理能够变废为宝,具有一定的研究价值。
煤化工高盐废水MVR蒸发结晶系统,高盐废水强制循环蒸发器工艺设备选型:对煤化工高盐废水进行蒸发结晶时,需要用到的工艺设备包括预热、蒸发、结晶和分离装置。
在对煤化工高盐废水进行降膜蒸发处理之前,需要先完成预热装置设置,将低温液体加热到88~100 ℃,这样可以降低氧气、二氧化碳等不凝气在水中的溶解度。
去除二氧化碳可以避免浓盐水在浓缩时产生碳酸盐结垢,减少对蒸发器的腐蚀和结垢。
具体使用预热装置时,料液经过预加热,再经过蒸汽塔再送入降膜蒸发器,因其上方设有液膜布水器,液体在降膜管束中以均匀的液膜进行传热和蒸发。
浓盐水蒸发形成的蒸汽和浓盐液一起下降到盐水槽,停留足够的时间以保证在盐水中形成微小晶体。
燃煤发电厂脱硫废水(蒸发结晶工艺)资源化零排放MED(MVR)系统技术介绍首航艾启威节能技术股份双塔燃煤发电脱硫废水(蒸发结晶工艺)资源化零排放MED(MVR)系统介绍前言本期设备适用于脱硫废水“三箱式脱硫废水处理单元”系统处理后的废水的资源化零排放MED浓缩结晶系统。
表1 装置技术参数和经济性比较(20t/h为例)a.吨水运行成本=蒸汽50元/吨*汽耗+电费0.25元/度*电耗(未包括循环冷却水费用)b.由于零排放蒸发结晶系统运行时,无需加药软化,因此每吨废水可节省加药费用9-10元/(吨废水)。
一、资源化零排放MED浓缩结晶系统来水水质情况简介项目三箱式脱硫废水处理单元”处理后废水水量约20吨/小时,处理后的脱硫废水除含钠离子(Na+)和氯根离子(Cl-)外,还含有大量的钙离子(Ca2+)、镁离子(Mg2+)、硫酸根离子(SO42-)和镁离子(Mg2+)。
具体详见表1二、通过资源化零排放MED浓缩结晶系统处理后,MED出水经化学水处理系统简单处理后,完全可以满足锅炉正常补水的水质需求。
出水水质情况见表2表3 MED出水水质三、零排放MED蒸发结晶系统排出固态物零排放工艺其结晶盐通过硫酸钙、有机物、重金属等杂质的去除,结晶盐进行提纯,提纯后的NaCl结晶盐应符合“工业盐GB5462-2003二级”及以上国家标准(见表3)。
表4 工业盐GB5462-2003二级标准处理后固废比例:(1)不溶性固态物:碳酸钙、硫酸钙、氢氧化钙(镁)泥饼,产量约60kg/h。
(2)可溶性固态物:根据来水水质,零排放工艺其结晶盐组分为:NaCl 97.5%,结晶盐含水率小于0.8%,产盐量540kg/h。
工艺流程不同工艺简介•膜法:反渗透、正渗透、DTRO等浓缩,需要软化,消耗大量昂贵的Na2CO3等。
估计吨水药剂成本在43.49元。
这还不包括几年后昂贵的换膜成本。
运行复杂,水质稍微波动,如果药剂调整跟不上,会造成膜的污堵。
江苏赛格尔环保工程有限公司专业从事MVR蒸发器、罗茨、离心蒸气压缩机等核心成套设备的研发、设计、制造。
集聚了在节能环保蒸发器领域的专家和科技人才,组成了MVR高效节能蒸发器及蒸汽压缩机的设计和制造精英团队,致力于成为一流的蒸发浓缩结晶的工艺设计者,设备制造者,运行管理服务提供者,节能技术领跑者。
公司致力于高浓度高盐废水处理及资源化利用,立志成为该领域的先锋。
公司开发的MVR蒸发器具有应用领域宽广、高效节能、全自动无人值守和组态实时监控等特点,可广泛应用在环保、制糖、制药、化工、食品、等节能减排和环境保护领域,为企业和城市环境提供了真正实现“零排放”的全套技术解决方案。
※公司愿景永恒节能,永恒环保。
※公司理念责任:对社会负责、对企业负责、对客户负责、对员工负责。
创新:持续不断地进行技术创新、经营创新、管理创新。
精神:认真负责、追求卓越。
※公司目标打造卓越品质,成就行业品牌。
三、MVR工艺介绍1、MVR原理MVR是蒸汽机械再压缩技术,(mechanical vapor recompression )的简称。
MVR 蒸发器是重新利用它自身产生的二次蒸汽的能量,从而减少对外界能源的需求的一项节能技术。
MVR其工作过程是将低温位的蒸汽经压缩机压缩,温度、压力提高,热焓增加,然后进入换热器冷凝,以充分利用蒸汽的潜热。
除开车启动外,整个蒸发过程中无需生蒸汽从蒸发器出来的二次蒸汽,经压缩机压缩,压力、温度升高,热焓增加,然后送到蒸发器的加热室当作加热蒸汽使用,使料液维持沸腾状态,而加热蒸汽本身则冷凝成水。
这样原来要废弃的蒸汽就得到充分的利用,回收潜热,提高热效率,生蒸汽的经济性相当于多效蒸发的30效。
为使蒸发装置的制造尽可能简单和操作方便,可使用离心式压缩机、罗茨式压缩机。
这些机器在1:1.2到1:2压缩比范围内其体积流量较高。
蒸发设备紧凑占地面积小所需空间也小。
又可省去冷却系统。
对于需要扩建蒸发设备而供汽,,场地不够的现有工厂供水能力不足,特别是低温蒸发需要冷冻水冷凝的场合,可以收到既节省投资又取得较好的节能效果。
硫酸钴MVR蒸发结晶简介硫酸钴MVR(Mechanical Vapor Recompression)蒸发结晶是一种常用的化工过程,用于从钴含量较高的溶液中提取钴盐。
本文将对硫酸钴MVR蒸发结晶的流程、原理和应用进行全面、详细、完整的探讨。
流程硫酸钴MVR蒸发结晶主要分为以下几个步骤:1. 进料与预热将含有钴的溶液从进料口导入蒸发器,同时进行预热。
预热的目的是增加溶液温度,提高蒸发效率。
2. 蒸发器蒸发预热后的溶液进入蒸发器,在高温条件下进行蒸发。
蒸发器内有一系列加热管,通过加热管向溶液中传递热量,使溶液中的水分子蒸发。
2.1 蒸汽压缩蒸发器产生的蒸汽需要经过压缩,以增加其压力和温度。
压缩后的蒸汽被再次引入蒸发器,为蒸发过程提供热量,同时实现能量回收。
3. 结晶器操作经过蒸发,溶液中的溶质浓度逐渐增高,直到达到饱和度。
饱和度是溶液中溶质浓度达到最大值的状态。
此时,溶液进入结晶器进行结晶。
3.1 结晶温度控制结晶器中的温度是控制结晶速率的关键参数。
过高的温度会导致溶质过度溶解,不利于结晶;过低的温度则会降低结晶速率。
通过精确控制结晶器的温度,可实现理想的结晶效果。
4. 分离与干燥结晶完成后,通过过滤或离心等分离技术将固体结晶物与溶液分离。
随后,将结晶物进行干燥,得到纯度较高的硫酸钴。
原理硫酸钴MVR蒸发结晶的原理主要包括以下几个方面:1. MVR技术MVR技术是硫酸钴蒸发结晶过程中的关键。
通过蒸汽压缩循环,将低压蒸汽转化为高压高温蒸汽,以提供足够的热量。
这种技术不仅可以提高蒸发器的热效率,还可以实现能量的回收与再利用。
2. 结晶平衡结晶过程是在溶液中溶质与溶剂之间的平衡状态下进行的。
溶液中的溶质浓度达到饱和后,结晶就会开始发生。
结晶温度对结晶物质的纯度、颗粒大小及结晶速率等有重要影响。
3. 分离技术分离技术是将结晶物与溶液分离的过程。
常用的方法包括离心、过滤、沉淀等。
通过合理选择分离方法,可以有效提高产品的纯度和收率。
一、高盐废水处理蒸发浓缩,含盐废水MVR蒸发结晶分盐技术概述:高盐废水一般指废水中含有Na+、Ca2+、Mg2+、K+、Cl-、SO42-、NO3-、HCO3-、重金属等离子[1],浓度大于1%,且TDS溶解固体总量在10 000~25 000 mg/L范围内的难降解的废水。
高盐废水一般来自石油化工、煤化工、医药、农药等工业领域。
高盐废水未经处理直接排入河流或其他水域,将引起水体富营养化、含盐量上升等现象,对水生动植物以及人类健康带来危害。
目前,机械蒸汽再压缩(MVR)是较为热门且耗能较低的节能蒸发技术,在高盐废水中的应用越来越多。
MVR技术是将蒸汽压缩机压缩的二次蒸汽导入原系统的热循环中,以处理高盐废水,减少对外部加热的需求。
二、高盐废水处理蒸发浓缩,含盐废水MVR蒸发结晶分盐技术主要流程:二次蒸汽重复循环利用,减少外界能源需求。
与其他高盐废水处理技术相比,MVR技术占地小、结构简单,节能效果显著。
具体工艺流程为:料液由进料泵进入换热器,升温后进入蒸发器,产生的二次蒸汽经分离器,通向压缩机升温升压,再回到蒸发器作为加热蒸汽后,冷凝液经换热器降温排出。
高盐废水处理流程为:①预处理。
将废水中的悬浮物、有机物、油类及部分离子去除,降低废水硬度;②浓缩除盐。
脱除废水盐分或将盐分浓缩到一定的浓度;③结晶固化。
将废水中的盐分以固体盐的形式析出。
高盐废水结晶固化:预处理和浓缩除盐是将废水中的盐分浓度得到提高,若再深入处理,可将废水中的盐分以固体盐形式析出。
蒸发结晶产混盐和分质结晶产纯盐是两种常用的结晶固化技术。
机械蒸汽压缩再循环蒸发结晶,借助 MVR 工艺,省去外部热源,无二次蒸汽冷却水系统,使得不同纯盐组分结晶析出,相对更为节能,是一种很有应用前景的高盐废水蒸发结晶技术。
蒸发/冷却-耦合分质结晶法利用多元水盐体系相图、蒸发浓缩、冷却降温等手段,使得不同纯盐组分从溶液中分批、分阶段结晶析出。
结合以上两种结晶固化技术,借助MVR回用二次蒸汽的节能优势,采用MVR (热浓缩技术)的蒸发+冷却耦合分质结晶工艺制备纯盐。
一、脱硫废水强制循环蒸发结晶装置,脱硫废水MVR降膜循环蒸发系统,脱硫废水浓缩蒸发结晶装置概述:脱硫废水含有杂盐体系,主要含有氯化钠、硫酸钠、硝酸钠,在杂盐体系中,硫酸根的浓度是硝酸根和氯离子浓度的40倍,是氯离子浓度的15倍,因此,要将氯化钠、硫酸钠和硝酸钠分开的难度较大,比较理想的方式就是得到硫酸钠纯品,其他的为杂盐。
在脱硫废水蒸发、结晶、盐分离工艺中,蒸发器的设计以及工艺条件的设计,制约着硫酸钠蒸发结晶的品质,例如,当硝酸根+氯离子的浓度大于50g/L 时,硫酸钠的品质会受到影响,故当硝酸根+氯离子的浓度大于50g/L时,就需要排出硫酸钠蒸发器,此时滤液为饱和硫酸钠溶液+不饱和氯化钠硝酸钠溶液,此时蒸发量约为72吨。
脱硫废液蒸发出水TDS可以控制在1000ppm, 很难达到更低的要求,因此,蒸发出水需要二次处理,在蒸发结晶设备上需要设计很大的分离空间,在空间上制约了脱硫废水浓缩蒸发结晶技术的发展。
二、脱硫废水强制循环蒸发结晶装置,脱硫废水MVR降膜循环蒸发系统,脱硫废水浓缩蒸发结晶装置流程:MVR循环蒸发系统,其包括:1-3-6干燥1611煅烧二988脱硫废水原水池,原水池的入水口连接至车间排水处,原水池为MVR循环蒸发系统提供物料;冷凝水板式换热器和生蒸汽板式换热器,冷凝水板式换热器与所述原水池之间通过管路连接,所述冷凝水板式换热器连接有冷凝水罐,冷凝水罐中的二次蒸汽冷凝水进入至冷凝水板式换热器中对物料进行预热,生蒸汽板式换热器连接有生蒸汽阀,通过所述生蒸汽阀控制生蒸汽进入生蒸汽板式换热器中对物料进行预热,原水池中的物料经过冷凝水板式换热器进行一级预热,然后冷凝水板式换热器中的物料进入至所述生蒸汽板式换热器中进行二级预热;分离器,分离器通过管路连接至生蒸汽板式换热器上,物料从生蒸汽板式换热器中出来之后经过所述分离器汽液分离;MVR蒸发器,MVR蒸发器连接至分离器的物料出口,在MVR蒸发器中物料进行第一次蒸发浓缩,MVR蒸发器中物料浓缩30-40%,经过MVR蒸发器中浓缩后的物料再进入所述分离器中汽液分离;第一蒸发反应釜和第二蒸发反应釜,第一蒸发反应釜与第二蒸发反应釜并联至分离器的出液口,分离器中出来的物料进入第一蒸发反应釜或者第二蒸发反应釜中进行第二次蒸发浓缩,浓缩55%后的物料进入离心机中,在所述离心机中固液分离,液体为母液进入母液罐中,固体为回收的盐。
含氨尾气生产硫酸铵蒸发与结晶工艺探讨一、含氨尾气的处理方式含氨尾气是指一些工业过程中产生的含氨废气,例如,高炉煤气、焦炉煤气和转炉煤气等。
如果这些废气直接排放到大气中,会对环境造成严重的污染,因此,必须对这些废气进行处理。
含氨尾气的处理方式有很多种,例如,催化氧化法、吸收法、分离法和膜分离法等。
在这些处理方式中,蒸发工艺和结晶工艺被广泛应用。
二、蒸发与结晶工艺的基本原理蒸发是指将含氨尾气中的水分蒸发出来,使其达到干燥、浓缩的目的。
蒸发工艺的基本原理是利用加热的方法升高含氨尾气中的水分的蒸发温度,使水分蒸发,并经过凝结器将水分收集起来。
结晶是指将蒸发后得到的硫酸铵溶液进行恒温结晶,使得其中的硫酸铵结晶并分离出来。
结晶工艺的基本原理是利用硫酸铵在一定温度下的溶解度变化,得到一定的过饱和度后,萃取出其中已经结晶的硫酸铵。
1.蒸发过程(1)蒸发器的选择蒸发器是蒸发工艺的核心设备,不同的蒸发器对于含氨尾气的处理效果有很大的影响。
目前,常用的蒸发器有单效蒸发器、多效蒸发器和膜蒸发器等。
(2)蒸发条件蒸发的工艺条件和蒸发器的种类密切相关。
例如,单效蒸发器需要在高温高压下进行蒸发,而多效蒸发器则可以在较低的温度和压力下进行蒸发。
对于含氨尾气的处理,多效蒸发器具有处理效率高、能耗低等优点。
(3)蒸发装置的安全问题由于蒸发过程中含氨尾气中还可能存在着其他的有害气体,因此,在蒸发时,需要注意装置的安全问题。
合理的选材、设计合理的构造以及精密的蒸发参数对于蒸发器的安全保障有很重要的作用。
2.结晶过程结晶装置的选择同样对于含氨尾气的处理效果有着重要的影响。
目前,常用的结晶器有:真空下结晶器、喷雾结晶器和热交换膜结晶器等。
热交换膜结晶器的结晶效率较高,且能耗低。
不同的结晶器对于结晶条件的要求也不同。
例如,喷雾结晶器需要在较低的温度下结晶,而真空下结晶器和热交换膜结晶器则可以在较高的温度下结晶。
在选择结晶器时,需要根据具体的生产要求和工艺条件进行选择。
石家庄博特环保科技有限公司
含硫酸鞍废水蒸发浓缩结晶分离
技术方案
编制: 校核: 审核: 批准:
二零一四年十一月
含硫酸铵废水蒸发浓缩结晶分离技术方案
一、蒸发器选型简述
本设计方案针对含硫酸铵废水, 采用 MVR蒸发装置。 硫酸铵废水要求蒸发结
晶,装置分两部分第一部分用降膜蒸发器进行蒸发浓缩,第二部分采用抗盐析、 抗结
疤堵管能力强的强制循环蒸发器。
由于硫酸铵具有强腐蚀性,长期运转考虑,与物料接触部分采用 316L 不锈
钢,其余采用碳钢。
含硫酸铵废水处理量及组分:含硫酸铵废水处理量 1.5t/h ,其中硫酸铵 6%,
其余成分为水
计算条件 参数
进料流量 ㎏ /h
1500
进料浓度 ﹪
6
出料浓度 ﹪
100
原料温度 ℃
20
二次蒸汽压力 Mpa( 表) -0.03(绝压 70KPa)
二次蒸汽温度 ℃
90
总蒸发量 Kg/h
1410
三、主要工艺参数
强制循环蒸发器
二次蒸汽压强 Mpa(表) -0.03(绝压 0.07MPa)
二次蒸汽温度 ℃
90
二次蒸汽汽化热 kJ / ㎏
2283.1
蒸汽压缩机压缩比
2.5
压缩机出口压强 Mpa
(表 )
0.857 (绝压 0.143MPa)
压缩机出口温度℃
110
压缩机出口蒸汽
汽化热 kJ / ㎏
2232
溶液沸点℃
102
有效温差℃
8
进料溶液浓度 %
6
出料溶液液 %
100
蒸发量 ㎏ /h
1410
加热室换热面积 ㎡
80
预热器换热面积 ㎡
2
四、工艺流程简介
、计算依据
4.1
原液准备系统
工厂产生的含盐废水流入原液池, 原液池起到储存、 调节原液的
作用, 满足 废水蒸发处理设备的连续稳定运行。 原液池配备有原液提升泵, 原液提
升泵将含 盐废水均匀输送至蒸发处理系统, 调节原液泵后的控制阀门保持原液提升量
与蒸 发量的平衡。
4.2
二次蒸汽及压缩蒸汽系统
经开始生蒸汽在加热室经过加热直至产生足量的二次
蒸汽后关闭生蒸汽阀 门,降膜蒸发器与强制循环蒸发器加热室产生的二次蒸汽经过蒸汽
压缩机压缩后 产生温度及压力都提高的压缩蒸汽。 压缩蒸汽分配到降膜蒸发器和强制
循环蒸发 器的加热室进行加热。 加热后的压缩蒸汽形成的冷凝水进入预热器对原液进
行预 热。
4.3
料液系统
含盐废水经预热器加热后进入降膜蒸发器蒸发浓缩到 45%后进入强制循环
蒸发器蒸发结晶然后经出料泵抽出料液进入旋液分离器中浓缩分离, 然后排入储 料器
中收集,最后排入离心机离心分离。
4.4
事故及洗罐
系统工作出现事故及运转过程中洗罐时, 首先停止进料, 将蒸发设备中的母 液
排净。洗罐水用冷凝水储池的水,洗罐完毕后,将洗罐水排掉,初次洗罐水排 入原液
池,排空蒸发罐后, 首先将部分母液通过原液泵进入蒸发罐, 然后通过原 液泵补充加
入原液,使蒸发罐中的液位满足工艺要求。
附:工艺流程图
五、 MVR 蒸发结晶设备的参数:
表一: MVR 蒸发结晶设备参数
序号
设备名称 规格 数量 备注
1
强制循环蒸发器 换
热室
换热面积: 80.0m2 筒体规格:
Φ
650mm 换热管规格:φ 32×
4000mm 换热管材质: 316L 壳程
材质:碳钢
1套
2
强制循环蒸发器 蒸
发室
蒸发
筒体
材质
室直径 2000mm
规格:Φ 2000 H=4000mm
: 316L
1套
3
强制循环泵 型号 流量 扬程 转速 功率 过流 : FJX-300 : 520.0m3/h : 3.0m : 1540.0r/min : 11.0kw 部件: SUS304 1台
4
罗茨蒸汽压缩机 型号: 吸入口压强: -0.03Mpa (90℃ ) 吸入口流量: 59.0m3/min 出口压强: 0.025Mpa (106℃ ) 压缩比: 1.78 转速: 1000rpm 功率: 110.0Kw 过流部件: QFX2 防腐 1台
5
出料泵 规格 流量 扬程 转速 功率 过流 配套 : IH50- 32-250 : 6.3m3/h : 20.0m : 1540r/min : 2.2kw 部件: SUS304 动力水冷密封 2台
6
出料系统
旋液分离器
规格:Φ 200×1000mm 材质:
316L
1套
7
储料器
筒体
材质
规格:Φ 1000× 670mm
: 316L 1台
8
转料泵 规格 流量 扬程 转速 功率 : IH50- 32-250 : 6.3m3/h : 20.0m : 1540r/min : 2.2kw 1台
过流部件: SUS304
配套动力水冷密封
9
预热器
换热面积: 2 ㎡ 1套
10
温度检测仪表
温度范围: 0~150℃ 双金属温度
计,现场显示
3套
11
压力检测仪表
压力范围: -0.1-0.06Mpa 就地指标
压力型 蒸汽压力表 1.0Mpa 就地指
标压力型
2套
2套
12
综合控制柜 国标
1套
13
自动液位控制系
统
含液位传感器及电动阀门
2套
14
电线电缆 国标
1套
15
管道 配套
1套
六、外界接口及辅助配套设施
表二:辅助配套设施参数
序号
设备名称 规格 数量 备注
1
原液池
有效容积: 400m3 1台
2
生蒸汽管道 DN100,蒸汽压力 :0.3Mpa 接点:设备外围 1.0m 配套
3
设备基础
蒸发设备水泥基座
占面积约: 6.0m×5m(长×宽) 1套
4
操作平台 钢结构或钢砼结构
1套
5
滤液罐
采用钢砼结构 2m3 1套
6
设备外保温 岩棉保温
1套
7
离心机 配套
1台
8
设备管路阀门 与物料接触材质采用不锈钢 不与物料接触材质采用碳钢 配套
七、经济核算
蒸发系统采用 MVR 蒸发结晶,运行中只消耗电力。 系统装机容量:
129.8kw,运行容量: 127.6kw 每小时电费: 127.6kw/ 小时× 0.60 元
/kw=76.56 元/小时
每吨水运行成本 =76.56元/小时÷ 1.5 吨/小时=51.04元/吨
八、系统报价
氯化铵 MVR 蒸发设备报价: 72.3 万元
如果采用 PLC 及触摸屏控制系统配套全自动液位检测及阀门控制系统,需 要增
加费用 10.0 万元
说明 1:本报价包括“表一”全部工作内容 ,并包含设备供应、指导安装、系 统
调试及人员培训费。
说明 2:本报价不含“表二”辅助设施。
说明 3:由于近期原材料价格波动较大,本报价的有效期为 30 天。
石家庄博特环保科技有限公司
日期: 2014年 11月 11日