正弦振动试验和随机振动试验的区分精选文档
- 格式:docx
- 大小:150.59 KB
- 文档页数:3
随机振动特征描述:随机振动是一种非确定性振动。
当物体作随机振动时,我们预先不能确定物体上某监测点在未来某个时刻运动参量的瞬时值。
因此随机振动和确定性振动有本质的不同,是不能用时间的确定性函数来描述的一种振动现象。
这种振动现象存在着一定的统计规律性,能用该现象的统计特性进行描述。
随机振动又分为平稳随机振动和非平稳随机振动。
平稳随机振动是指其统计特性不随时间而变化。
卫星所经受的随机振动激励是一种声致振动,主要来自起飞喷气噪声和飞行过程中的气动噪声.过去,模拟随机振动环境大部分都是用正弦扫描试验来代替,随着快速傅里叶变换算法的出现和电子计算机的发展,各种型号数字式随机振动控制系统相继问世,才使随机振动试验得以广泛采用。
试验条件及其容差:(1)试验条件随机振动试验条件包括试验频率范围、试验谱形及量级、试验持续时间和试验方向.试验谱形及量级常以表格形式或加速度功率谱密度曲线形式给出.下图为以功率谱密度曲线给出的卫星组件典型的随机振动试验条件。
(2)试验容差根据中国军标GJB1027的要求,卫星及其组件随机振动试验容差为:a.加速度功率谱密度• 20~500Hz(分析带宽25Hz或更窄)±1.5dB• 500~2000Hz(分析带宽50Hz或更窄)±3dBb.总均方根加速度±1.5dB与正弦振动试验一样,要满足随机振动试验的容差要求,不是对每个试件都能做到的.控制精度主要与控制系统的动态范围、均衡速度、均衡精度,试验夹具和试件安装的合理性、试件本身的动特性等有关.解决试验超差主要应从上述几方面分析原因,提高控制精度.试验方法:随机振动试验的控制原理如图所示.随机振动试验方法与正弦振动试验方法有很多共同点,二者的主要区别在于振动控制系统.(1)振动台的选用(2)总均方根加速度的计算(3)试验参数的设置随机振动试验控制中的参数设置直接关系到试验的控制精度.影响控制精度的参数主要有谱线数(或分辨率)和统计自由度(帧数),试验中应合理选择.谱线数决定了频率分析的精度,而统计自由度决定了统计误差.谱线数和统计自由度越多,统计分析精度越高,但不一定达到高的试验控制精度.因为谱线数和统计自由度越多,分析计算时间就越长,均衡速度也就越慢.增加均衡时间,对持续时间短的试验,在绝大部分时间内试验并未真正达到高的控制精度.对卫星的随机振动试验,因试验要求时间短(1~2min),故谱线数和自由度不宜太多.一般取400条谱线,100个统计自由度即可.随机振动试验响应数据处理:卫星及其组件在振动试验中经常涉及到两种数据类型,一是正弦数据,一是随机数据.随机振动响应数据常常因为结构共振而表现为宽带加窄带随机的特征.因为对结构的振动激励输入为稳态随机信号,因此输出一般也具有稳态特征.下图为随机激励典型的输入输出特性.对该类数据一般要求给出它的功率谱密度特性.有时也要求进行传递函数分析、相关分析(时域)、概率密度分析(幅域)等.1、随机振动数据处理卫星及其组件在振动试验中所经受的随机振动激励属稳态激励,一般情况下其输出信号也具有稳态特征,满足平稳性假设,因此可以用统计平均的分析方法处理振动试验中的响应数据。
国家标准GBT2423.17-93震动试验标准(VTS)引言国家标准GBT2423.17-93震动试验标准(VTS)是为了评估和验证产品在振动环境下的可靠性和耐受性而制定的。
该标准旨在为各个行业提供统一的试验方法和参数,以确保产品在运输、使用和储存过程中不会受到损坏或失效。
本文档将详细介绍国家标准GBT2423.17-93震动试验标准(VTS)的目的、适用范围、试验设备、试验方法和评定标准。
1. 标准目的国家标准GBT2423.17-93震动试验标准(VTS)的目的是评估产品在振动环境下的耐受性和可靠性,并为产品设计、改进和验证提供参考依据。
通过进行基于标准参数的试验,可以检测产品在振动环境下的性能表现,评估其耐久性和耐用性,从而保证产品在实际应用中的可靠性。
2. 适用范围国家标准GBT2423.17-93震动试验标准(VTS)适用于各个行业的产品,包括但不限于电子、电气、机械、汽车、航空航天和船舶等。
该标准可以用于评估产品在运输、使用和储存过程中受到的振动环境对其可靠性的影响。
测试过程中可以通过模拟不同的振动环境,包括正弦振动、随机振动和冲击振动等。
3. 试验设备国家标准GBT2423.17-93震动试验标准(VTS)规定了试验设备和仪器的要求。
试验设备需要能够产生符合特定振动参数的振动信号,并能够精确测量产品在振动过程中的响应。
常用的试验设备包括振动台、振动控制系统、加速度传感器和数据采集系统等。
4. 试验方法国家标准GBT2423.17-93震动试验标准(VTS)中规定了不同试验方法的参数和要求。
常用的试验方法包括正弦振动试验、随机振动试验和冲击振动试验等。
对于不同类型的产品,可以选择合适的试验方法进行评估。
试验过程中需要根据产品的特性和试验要求,设定振动的频率、加速度和振动形式等参数。
5. 评定标准国家标准GBT2423.17-93震动试验标准(VTS)确定了产品在振动试验中应达到的性能要求和评定标准。
振动试验分类北京西科远洋机电设备有限公司 Jeff.jiang振动试验根据模拟振动环境的不同输出不同的激励波形,根据激励波形的不同振动试验可分为:1.正弦扫频试验正弦试验是最早的振动试验,传统的扫频正弦试验通过改变信号的频率、相位和幅值来实现。
正弦试验通过正弦信号发生器改变信号的频率和幅值,控制试件在频率范围内按要求振动。
正弦扫频试验在研究结构的共振峰特性时是尤为有效的。
结构共振点上会激发出很高的响应,在共振点实行定频振动,是疲劳试验的有效手段。
美国迪飞DP SignalStar 与 北京西科 Standard 2x 正弦试验的最重要特点是使用跟踪滤波器技术,使用固定的或者比例带宽的高品质数字跟踪滤波器可以确保在存在环境噪声的情况下仍然能精确地测量和控制正弦试验。
2.谐振搜索和驻留试验谐振搜索和驻留试验,首先通过正弦扫频获取评估谐振特征的传递函数,输入频率范围、幅值阈值和最低Q值(尖锐度)参数用于判断哪些模态会被评估为谐振峰。
谐振搜索和驻留在很多机械结构的疲劳试验中非常有效。
谐振搜索和驻留自动侦测谐振峰的偏移,并自动调整正弦激励信号的频率来跟踪谐振峰的偏移。
跟踪驻留试验在高周期关键部件如涡轮机叶片和汽车曲轴的疲劳试验中非常常见。
美国迪飞DP SignalStar 与 北京西科 Standard 2x谐振搜索和驻留主要集中在结构疲劳试验上。
疲劳试验中会自动跟踪谐振峰的偏移来驻留激励,同时可以限制幅值和频率的偏离度来终止试验。
3.多正弦试验疲劳试验时,如汽车厂商的发动机部件试验,多个频率的正弦同步扫频可以大大减少试验时间。
在德国汽车制造商组织的推动下,该方法目前正越来越广泛地为其他谐波试验所应用。
依据一家知名的德国汽车制造商的要求。
多频率正弦试验已经发展为汽车发动机组件可靠性试验的一个重要方法。
这一试验方法的目的是在不影响试验效果的前提下降低试验时间和开发成本。
DP的SignalStar多频率正弦控制软件减少了试验时间,且不牺牲试验控制精度和试验效果。
振动试验技术论文摘要:振动试验技术是一门专业性很强的技术学科,需要从试验参数识别、试验控制、振动分析、故障预测与诊断、试验夹具设计等各个方面入手,加强这门试验技术研究。
关键词:随机振动试验技术振动控制振动试验是在实验室条件下产生一个人工可控的振动环境,该环境模拟产品生命周期(制造/维修、运输、工作、其它)内的使用振动环境,使产品经受与实际使用过程的振动环境相同或相似的振动激励作用,考核产品在预期使用过程的振动环境作用下,能否达到设计所规定的各项技术要求,同时也是考核产品结构强度和可靠性的一个主要试验方法。
因此,振动试验是产品可靠性试验的重要组成部分。
1 正弦振动试验1.1 正弦振动试验原理振动变量是正弦函数形式的一种振动试验。
1.2 正弦振动试验方法常用的正弦振动试验分为:定频振动和扫频振动。
定频振动是指频率一定,振动加速度(或幅值)、试验时间可变的正弦振动试验。
扫频振动即正弦扫描,指按规定振动量的正弦波,在试验频率范围内,以某种规律连续改变振动频率以激励被试件。
扫描时频率变化率称为扫描速率,扫描形式分为线性扫描和对数扫频两种。
[1]1.3 正弦振动试验的峰值加速度要求(1)振动环境:保证在规定频率范围内,控制传感器上的正弦峰值加速度偏差不大于规定值的±10%。
(2)振动测量:保证在试验频率范围内,振动测量系统提供传感器安装面上的正弦峰值测量数据,其偏差在振动量值的±5%之内。
(3)均方根加速度值:正弦振动均方根加速度等于0.707倍的峰值加速度。
2 随机振动试验2.1 随机振动定义振动变量是一种随机变化的振动试验,在任意给定时刻,其瞬时值都不能精确预知。
因此,随机振动用统计的方法来进行描述,采用频率域统计描述,即用功率谱密度函数来描述随机信号在频率域的统计特性。
[2]3 随机振动试验技术3.1 试验允差随机振动规定了加速度谱密度、频率测量、横向加速度允差要求。
3.1.1 加速度谱密度文献[3]规定在任何情况下,控制传感器上的加速度谱密度的允差应不超过±3 dB,500 Hz以上可以放宽到-6~+3 dB,但是超过允差的累积带宽应限制在整个试验频率带宽的5%以内。
汽车零件振动试验方法
汽车零件振动试验方法通常有以下几种:
1. 正弦振动试验:在特定频率下对汽车零件进行正弦振动,以模拟实际使用环境中的振动情况。
通常使用振动台或振动器来产生振动,并使用加速度计或位移传感器来测量振动参数。
2. 随机振动试验:通过在特定频率范围内产生随机振动信号,以模拟实际使用环境中的随机振动情况。
通常使用振动台或振动器来产生振动信号,并使用加速度计或位移传感器来测量振动参数。
3. 冲击振动试验:通过施加冲击或冲击负载来模拟实际使用环境中的冲击振动情况。
通常使用冲击台或冲击器来产生冲击负载,并使用加速度计或位移传感器来测量振动参数。
4. 路面模拟试验:将汽车零件安装在路面模拟装置上,通过模拟不同路况下的振动,以评估零件的耐久性和可靠性。
通常使用液压或气压系统来模拟路面振动,并使用加速度计或位移传感器来测量振动参数。
这些试验方法可以根据具体的需求和试验目的进行选择和组合使用,以评估汽车零件在振动环境下的性能和可靠性。
运输包装件正弦定频振动试验详解■ 文/陈振强,张卫红,郑安,李志恒,陈志强试验方法存在差异以外,试验程序中的其他要求基本一致,各标准的试验程序。
1 各标准的相同之处除了试验方法以外,试验程序的规定基本大同小异,没有本质性的差异。
下面对相同之处进行统一说明,不按照标准分开阐述,各标准相同之处的具体内容如下。
1.1 试验样品的装备一般用正常运输包装件作为试验样品,考虑到包装件内装物的特性和价值,可以采用模拟内装物,模拟内装物尺寸及物理性质,均应接近内装物尺寸及物理性质,并按发运前的正常程序对包装件进行封装。
试验时,内装物使用真是产品是首选条件。
但是,如果无法获得真是产品,而使用模拟内装物,就要对模拟物进行评估,并确保使用的模拟物不会对试验结果产生影响。
当使用有缺陷的实际内装物时,应详细记录内装试验前的缺陷,试验后,若试验前的缺陷没有发生明显变化,则认为这些缺陷没有影响试验结果;如果试验前的缺陷发生了明显变化,则建议使用无缺陷的内装物运输包装件振动试验分为正弦定频振动试验、正弦变频振动试验(俗称:扫频试验)和随机振动试验,不涉及复合振动试验。
复合振动试验适用于电子元器件、军工装备、航空航天等特殊应用领域,因而复合振动试验不在运输包装件试验方法的谈论范围之内。
正弦定频振动试验用于评定运输包装件和单元货物在正弦定频振动情况下的强度和包装对内装物的保护能力,既可以作为单项试验,也可以作为一系列试验的组成部分。
这项试验的特点是运输包装不固定在振动台台面上,为了安全起见,包装件四周可以安装高低护栏,护栏与包装件之间留有一定的间隙,不能限制或影响包装件垂直方向的运动。
由于不同标准对正弦定频振动试验的规定存在不同的规定,为方便选择标准和理解标准之间的差异,下面将根据不同标准的规定对正弦定频振动试验展开详细阐述。
一般标准对试验设备、试验程序和试验报告分别进行了规定,涉及内容较多,本文仅对试验程序进行详细说明,具体内容如下:除了各标准的10.19446/ki.1005-9423.2021.02.007作者简介:陈振强,1980.03,男,河北宁晋,硕士研究生,高级工程师,运输包装检测,中包包装研究院有限公司。
正弦振动试验和随机振动试验的区分Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998正弦振动试验和随机振动试验的区分什么产品要做正弦振动什么产品要做随机振动在筛选实验中,在同种振动量级和同样时间条件下,是不是随机振动对所有的产品的筛选度都比正弦振动要大。
简单的说, 正弦振动的振动在于找出产品设计或包装设计的脆弱点, 看在哪一个具体的频率点响应最大. 就是所谓的共振点.(Resonant Frequency, Natural Frequency).找到共振点后在该共振点作驻留测试.(10 or more), 确定产品能否承受共振带来的影响. 在做package design的时候,要尽量避开该频率点.随机振动要根据不同的运输方式来确定psd level;可参考astm, mil-std810,ista或IEC68;随机振动与正弦振动的区别,正弦振动在任意一瞬间只包含一种频率的振动,而随机振动在任意一瞬间包含频谱范围内的各种频率的振动,这些频率能量的大小按照规定的谱图分布。
如下图所示:对于正弦振动峰值=倍的有效值;对于随机振动峰值=3倍的有效值.余下几个问题,我自己都不是很清楚!望大虾们出手!正弦振动是一种确定性的振动,其任一时刻的状态是可以计算得到的,而且是一个确定的数值。
随机振动的是一种非确定性的振动,预选是不可能确定物体上某一时刻的运动瞬时值,只服从统计规律。
由于随机振动包涵频谱内所有的频率,所以样品上的共振点会同时激发并可能相互影响,所以试验比同量级的正弦试验严酷理论上,随机振动加速度的峰值可能是其总均方根值的任意倍,但在实现中不可能,一般标准要求其峰值不得少于总均方根值的3倍;一般情况是随机振动可发现更可的问题,因为随机振动同一时间里面包括了很长的频率范围,而正弦振动一个时间里面只有一个频率,但有时也有例外,当产品的机构的脆弱点刚刚好频率与正弦振动频率相近,正弦(定频或长扫频速度很慢的振动)有时也可发现问题,但实际上这种问题, 在实际应用的过程中一般不会发现,随机振动也可以为找共振点吧,记得以前做振动试验的时候,使用随机方式,坐在那里看着.看哪个频率下振动幅度大,记下这个频率后,使用定频方式来做振动!其实大部分现实世界中的振动多是随机振动,除了像回转机械之类所产生的振动以外。
正弦振动试验和随机振动试验的区分精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-
正弦振动试验和随机振动试验的区分
什么产品要做正弦振动?什么产品要做随机振动?在筛选实验中,在同种振动量级和同样时间条件下,是不是随机振动对所有的产品的筛选度都比正弦振动要大。
简单的说, 正弦振动的振动在于找出产品设计或包装设计的脆弱点, 看在哪一个具体的频率点响应最大. 就是所谓的共振点.(Resonant Frequency, Natural Frequency).找到共振点后在该共振点作驻留测试.(10 or more), 确定产品能否承受共振带来的影响. 在做package design的时候,要尽量避开该频率点.随机振动要根据不同的运输方式来确定psd level;可参考astm, mil-std810,ista或IEC68;随机振动与正弦振动的区别,正弦振动在任意一瞬间只包含一种频率的振动,而随机振动在任意一瞬间包含频谱范围内的各种频率的振动,这些频率能量的大小按照规定的谱图分布。
如下图所示:对于正弦振动峰值=倍的有效值;对于随机振动峰值=3倍的有效值.
余下几个问题,我自己都不是很清楚!望大虾们出手!正弦振动是一种确定性的振动,其任一时刻的状态是可以计算得到的,而且是一个确定的数值。
随机振动的是一种非确定性的振动,预选是不可能确定物体上某一时刻的运动瞬时值,只服从统计规律。
由于随机振动包涵频谱内所有的频率,所以样品上的共振点会同时激发并可能相互影响,所以试验比同量级的正弦试验严酷理论上,随机振动加速度的峰值可能是其总均方根值的任意倍,但在实现中不可能,一般标准要求其峰值不得少于总均方根值的3倍;一般情况是随机振动可发现更可的问题,因为随机振动同一时间里面包括了很长的频率范围,而正弦振动一个时间里面只有一个频率,但有时也有例外,当产品的机构的脆弱点刚刚好频率与正弦振动频率相近,正弦(定频或长扫频速度很慢的振动)有时也可发现问题,但实际上这种问题, 在实际应用的过程中一般不会发现,随机振动也可以为找共振点吧,记得以前做振动试验的时候,使用随机方式,坐在那里看着.看哪个频率下振动幅度大,记下这个频率后,使用定频方式来做振动!其实大部分现实世界中的振动多是随机振动,除了像回转机械之类所产生的振动以外。
正弦振动试验有三
种程序:共振搜寻、正弦扫描、与共振驻留。
其中共振搜寻与共振驻留以测试结构与外在振动环境有共振频率时的强度,正弦扫描则是考虑共振频率以外的振动环境能量对产品的影响。
早期(80年代)因为试验技术的关系,大部分振动都是以正弦振动试验为主。
后来计算机数字技术发达与普及之后,随机数据产生器(RandomNumber Generator)非常成熟可靠,因此近年来所有有关振动的标准,例如MIL-STD-810,IEC-60068,大多采随机振动来验证产品的耐振能力。
一般而言,正弦振动以解决结构局部(Local)耐振能力(以受力Force为主),因为它是一个频率一个频率的处理振动问题;随机振动则结构整体(Globle)耐振能力(以能量Energy为主),从整个频率范围的总振动能量处理振动问题。
在应用上,若是在设计初期为了寻找设计产品的结构特性(如自然频率、阻尼系数等)正弦振动可以有较好的结果,但是从验证产品实际应用时的耐振能力而言,随机振动是比较接近现实世界的振动情形。
正弦振动看共振就像你在听收音机一样,试验时一般是以低G值(例如1g)出力,由低频往高频依照一定频率变化速率(扫描率)慢慢增加,当振动机出力的频率与试件的自然频率耦合时,若你在试件上贴有加速仪,你可以从示波器上看到振动值(振幅)增大的反应,此时示波器或信号分析仪对应的频率就是试件的自然频率或共振频率,就像你的收音机收到固定电台的声音,表示你接到那个电台的频率一样。
手机接到信号也是频率共振的例子。
一般结构对于振动力源的反应有一定的时间,低频反应慢、高频反应快。
这就是为什么正弦扫描时采用的对数扫描率的原因。
太快可能结构未能及时反应,信号微弱无法辨识,当然太慢也就没有意义了,徒然浪费时间而已。
简户仪器公司专注和专业制造低频震动试验机,主要为正弦振动试验机,目前正在研发随机震动试验台。
望有需求客户前来咨询,也欢迎同行共同探讨。