结构设计--中英文翻译

  • 格式:doc
  • 大小:46.50 KB
  • 文档页数:10

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文翻译结构设计

结构设计

Augustine J.Fredrich

摘要:结构设计是选择材料和构件类型,大小和形状以安全有用的样式承担荷载。一般说来,结构设计暗指结构物如建筑物和桥或是可移动但有刚性外壳如船体和飞机框架的工厂稳定性。设计的移动时彼此相连的设备(连接件),一般被安排在机械设计领域。

关键词:结构设计;结构分析;结构方案;工程要求

Abstract: Structure design is the selection of materials and member type ,size, and configuration to carry loads in a safe and serviceable fashion .In general ,structural design implies the engineering of stationary objects such as buildings and bridges ,or objects that maybe mobile but have a rigid shape such as ship hulls and aircraft frames. Devices with parts planned to move with relation to each other(linkages) are generally assigned to the area of mechanical .

Key words: Structure Design ;Structural analysis ;structural scheme ;Project requirements

Structure Design

Structural design involved at least five distinct phases of work: project requirements, materials, structural scheme, analysis, and design. For unusual

structures or materials a six phase, testing, should be included. These phases do not proceed in a rigid progression , since different materials can be most effective in different schemes , testing can result in change to a design , and a final design is often reached by starting with a rough estimated design , then looping through several cycles of analysis and redesign . Often, several alternative designs will prove quite close in cost, strength, and serviceability. The structural engineer, owner, or end user would then make a selection based on other considerations.

Project requirements. Before starting design, the structural engineer must determine the criteria for acceptable performance. The loads or forces to be resisted must be provided. For specialized structures, this may be given directly, as when supporting a known piece of machinery, or a crane of known capacity. For conventional buildings, buildings codes adopted on a municipal, county , or , state level provide minimum design requirements for live loads (occupants and furnishings , snow on roofs , and so on ). The engineer will calculate dead loads (structural and known, permanent installations ) during the design process.

For the structural to be serviceable or useful , deflections must also be kept within limits ,since it is possible for safe structural to be uncomfortable “bounce”Very tight deflection limits are set on supports for machinery , since beam sag can cause drive shafts to bend , bearing to burn out , parts to misalign , and overhead cranes to stall . Limitations of sag less than span /1000 ( 1/1000 of the beam length ) are not uncommon . In conventional buildings, beams supporting ceilings often have sag limits of span /360 to avoid plaster cracking, or span /240 to avoid occupant concern (keep visual perception limited ). Beam stiffness also affects floor “bounciness,” which can be annoying if not controlled. In addition , lateral deflection , sway , or drift of tall buildings is often held within approximately height /500 (1/500 of the building height ) to minimize the likelihood of motion discomfort in occupants of upper floors on windy days .

Member size limitations often have a major effect on the structural design. For example, a certain type of bridge may be unacceptable because of insufficient under clearance for river traffic, or excessive height endangering aircraft. In building design,